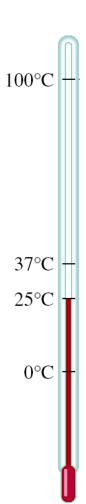
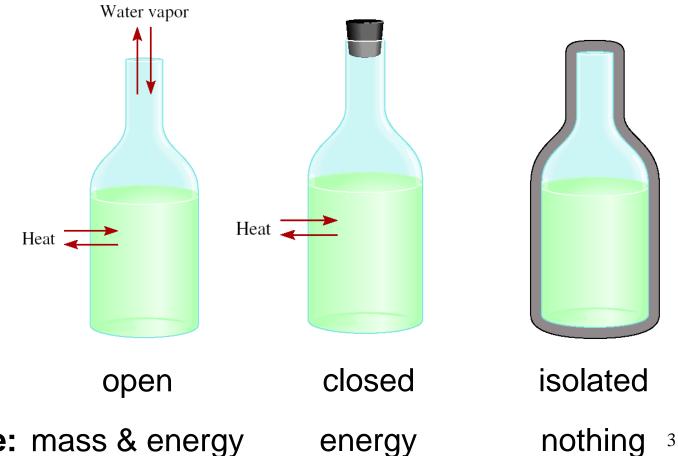


Thermochemistry Chapter 6



Energy Changes in Chemical Reactions

Heat is the transfer of **thermal energy** between two bodies that are at different temperatures.

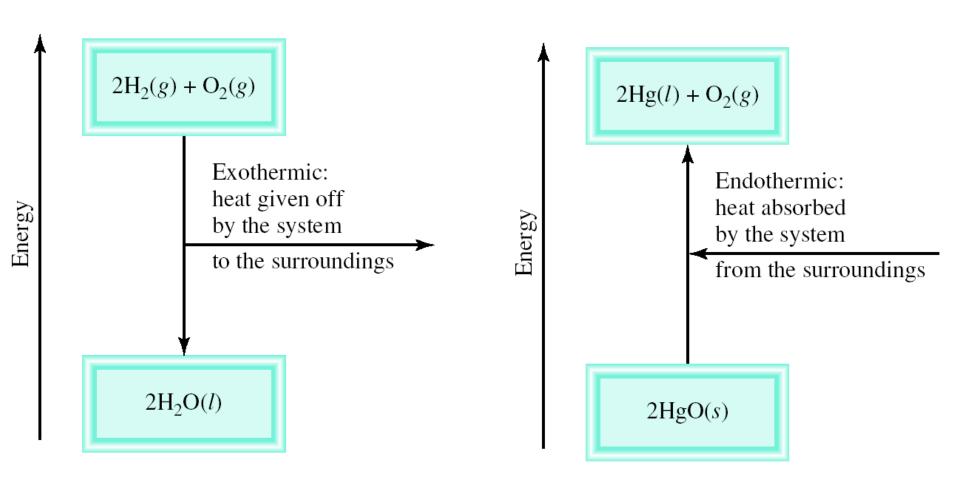

Temperature is a measure of the thermal energy.

Thermochemistry is the study of heat change in chemical reactions.

The **system** is the specific part of the universe that is of interest in the study.

The surroundings are the rest of the universe outside the system.

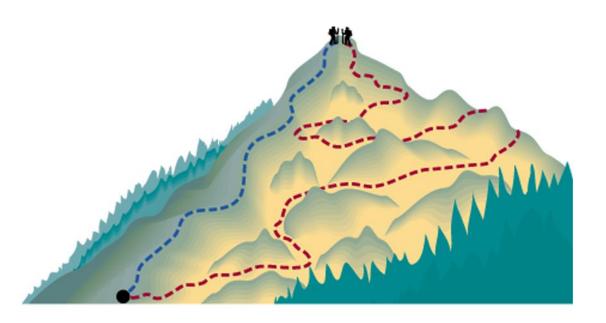
Exchange: mass & energy


Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(h) + energy$$

 $H_2O(g) \longrightarrow H_2O(h) + energy$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.


energy + 2HgO (s)
$$\longrightarrow$$
 2Hg (\hbar) + O₂ (g)
energy + H₂O (s) \longrightarrow H₂O (\hbar)

Schematic of Exothermic and Endothermic Processes

Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved. energy, pressure, volume, temperature

$$\Delta E = E_{final} - E_{initial}$$

$$\Delta P = P_{final} - P_{initial}$$

$$\Delta V = V_{final} - V_{initial}$$

$$\Delta T = T_{final} - T_{initial}$$

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

First law of thermodynamics – energy can be converted from one form to another but cannot be created or destroyed.

$$\Delta E_{system} + \Delta E_{surroundings} = 0$$
 or
$$\Delta E_{system} = -\Delta E_{surroundings}$$

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

Exothermic chemical reaction!

Chemical energy **lost** by combustion = Energy **gained** by the surroundings system surroundings

Another form of the *first law* for ΔE_{system}

$$\Delta E = q + w$$

 ΔE is the change in internal energy of a system

q is the heat exchange between the system and the surroundings

w is the work done on (or by) the system

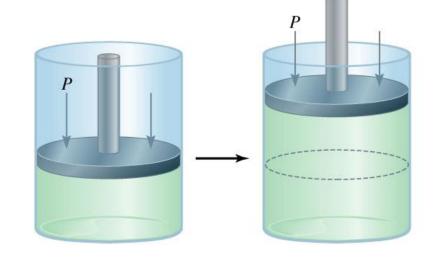
 $W = -P\Delta V$ when a gas expands against a constant external pressure

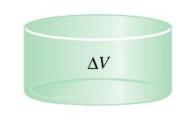
TABLE 6.1	Sign Conventions for Work and Heat	
Process		Sign
Work done by the system on the surroundings		_
Work done on the system by the surroundings		
Heat absorbed by the system from the surroundings (endothermic process)		
Heat absorbed by the surroundings from the system (exothermic process)		

Work Done On the System

$$W = F x d$$

$$W = -P \Delta V$$


$$PxV = \frac{F}{O^2}xO^3 = Fxd = W$$


$$\Delta V > 0$$

$$-P\Delta V < 0$$

$$W_{SYS} < 0$$

Work is not a state function.

$$\Delta W \times W_{final}$$
 - $W_{initial}$

initial

final

The units for work done by or on a gas are liters atmospheres.

$$1 L \cdot atm = 101.3 J$$

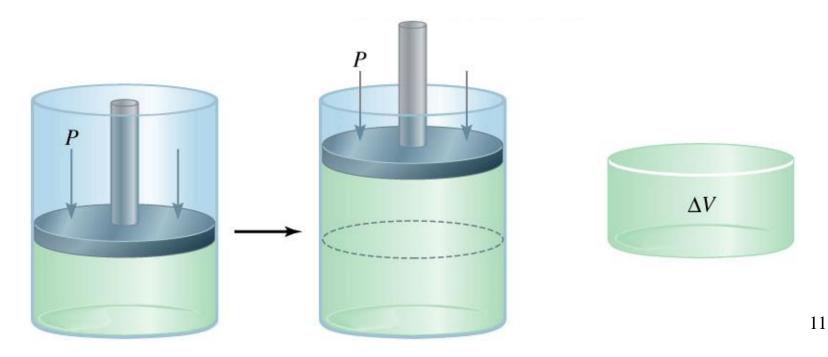
A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm?

$$W = -P\Delta V$$

(a)
$$\Delta V = 5.4 \text{ L} - 1.6 \text{ L} = 3.8 \text{ L}$$
 $P = 0 \text{ atm}$ $W = -0 \text{ atm } \times 3.8 \text{ L} = 0 \text{ L} \cdot \text{atm} = 0 \text{ joules}$

(b)
$$\Delta V = 5.4 \text{ L} - 1.6 \text{ L} = 3.8 \text{ L}$$
 $P = 3.7 \text{ atm}$ $W = -3.7 \text{ atm x } 3.8 \text{ L} = -14.1 \text{ L} \cdot \text{atm}$ $W = -14.1 \text{ L} \cdot \text{atm x } \frac{101.3 \text{ J}}{1 \text{L} \cdot \text{atm}} = -1430 \text{ J}$

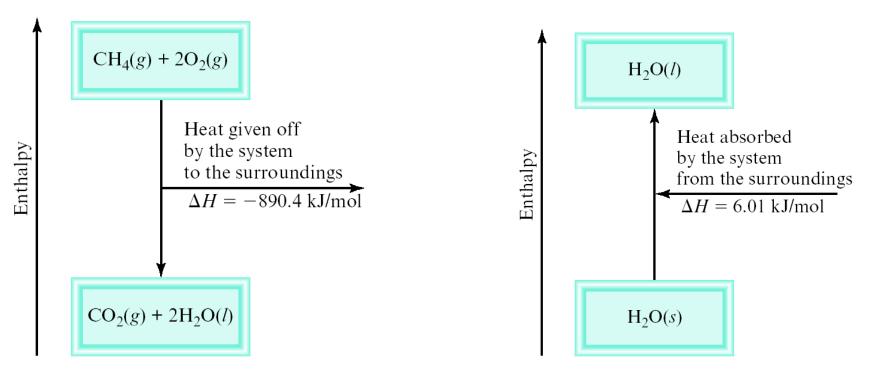
Enthalpy and the First Law of Thermodynamics


$$\Delta E = q + w$$

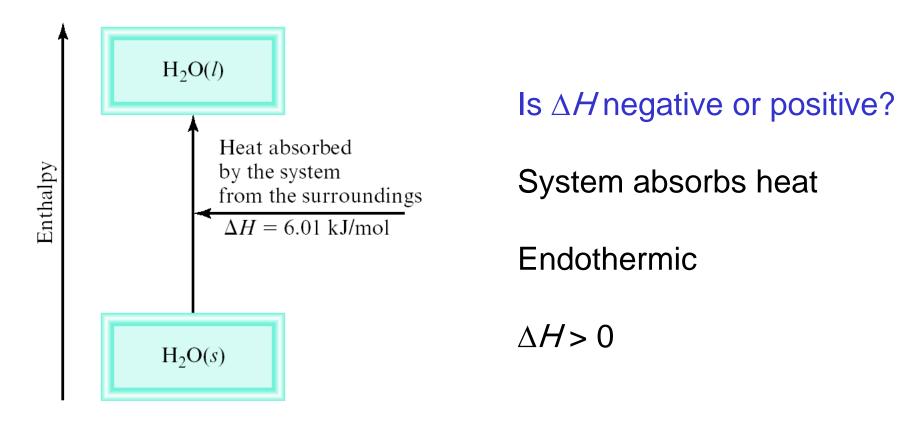
At constant pressure:

$$q = \Delta H$$
 and $w = -P\Delta V$

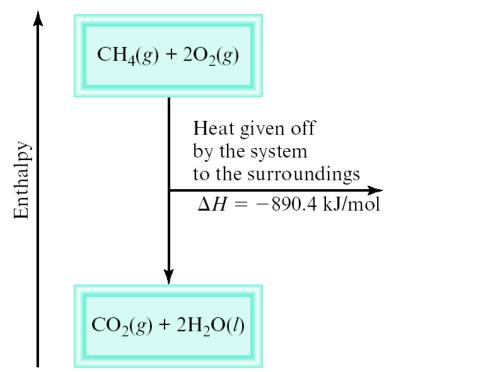
$$\Delta E = \Delta H - P \Delta V$$


$$\Delta H = \Delta E + P \Delta V$$

Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.


$$\Delta H = H(\text{products}) - H(\text{reactants})$$

 ΔH = heat given off or absorbed during a reaction at constant pressure


$$H_{\text{products}} < H_{\text{reactants}}$$

 $\Delta H < 0$

$$H_{\text{products}} > H_{\text{reactants}}$$
 $\Delta H > 0$

6.01 kJ are absorbed for every 1 mole of ice that melts at 0°C and 1 atm.

$$H_2O(s) \longrightarrow H_2O(h)$$
 $\Delta H = 6.01 \text{ kJ/mol}$

Is ΔH negative or positive?

System gives off heat

Exothermic

 $\Delta H < 0$

890.4 kJ are released for every 1 mole of methane that is combusted at 25°C and 1 atm.

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(h) \Delta H = -890.4 \text{ kJ/mol}$$

 The stoichiometric coefficients always refer to the number of moles of a substance

$$H_2O(s) \longrightarrow H_2O(h)$$
 $\Delta H = 6.01 \text{ kJ/mol}$

• If you reverse a reaction, the sign of ΔH changes

$$H_2O(h) \longrightarrow H_2O(s)$$
 $\Delta H = -6.01 \text{ kJ/mol}$

 If you multiply both sides of the equation by a factor n, then ΔH must change by the same factor n.

$$2H_2O(s) \longrightarrow 2H_2O(h) \quad \Delta H = 2 \times 6.01 = 12.0 \text{ kJ}$$

 The physical states of all reactants and products must be specified in thermochemical equations.

$$H_2O(s) \longrightarrow H_2O(h)$$
 $\Delta H = 6.01 \text{ kJ/mol}$
 $H_2O(h) \longrightarrow H_2O(g)$ $\Delta H = 44.0 \text{ kJ/mol}$

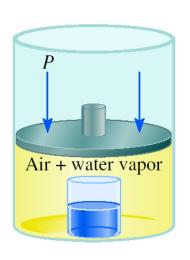
How much heat is evolved when 266 g of white phosphorus (P₄) burn in air?

$$P_4(s) + 5O_2(g) \longrightarrow P_4O_{10}(s) \Delta H = -3013 \text{ kJ/mol}$$

266 g
$$P_4$$
 X $\frac{1 \text{ mol } P_4}{123.9 \text{ g } P_4}$ X $\frac{3013 \text{ kJ}}{1 \text{ mol } P_4} = 6470 \text{ kJ}$

A Comparison of ΔH and ΔE

2Na
$$(s)$$
 + 2H₂O (l) \longrightarrow 2NaOH (aq) + H₂ (g) \triangle H = -367.5 kJ/mol


$$\Delta E = \Delta H - P \Delta V$$
 At 25 °C, 1 mole H₂ = 24.5 L at 1 atm

$$P\Delta V = 1 \text{ atm x } 24.5 \text{ L} = 2.5 \text{ kJ}$$

$$\Delta E = -367.5 \text{ kJ/mol} - 2.5 \text{ kJ/mol} = -370.0 \text{ kJ/mol}$$

The reason ΔH is smaller than ΔE in magnitude is that some of the internal energy released is used to do gas expansion work, so less heat is evolved.

A Comparison of ΔH and ΔE

To calculate the internal energy change of a gaseous reaction is to assume ideal gas behavior and constant temperature

$$\Delta E = \Delta H - \Delta (PV)$$

$$= \Delta H - \Delta (nRT)$$

$$= \Delta H - RT\Delta n$$

EXAMPLE 6.4

Calculate the change in internal energy when 2 moles of CO are converted to 2 moles of CO₂ at 1 atm and 25°C:

$$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$$
 $\Delta H = -566.0 \text{ kJ/mol}$

Solution From the chemical equation we see that 3 moles of gases are converted to 2 moles of gases so that

$$\Delta n$$
 = number of moles of product gas – number of moles of reactant gases = 2 - 3 = -1

Using 8.314 J/K · mol for R and T = 298 K in Equation (6.10), we write

$$\Delta E = \Delta H - RT\Delta n$$
= -566.0 kJ/mol - (8.314 J/K · mol) $\left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right)$ (298 K) (-1)
= -563.5 kJ/mol

The **specific heat** (s) of a substance is the amount of heat (q) required to raise the temperature of **one gram** of the substance by **one degree** Celsius.

The *heat capacity* (*C*) of a substance is the amount of heat (*q*) required to raise the temperature of **a given quantity** (*m*) of the substance by **one degree** Celsius.

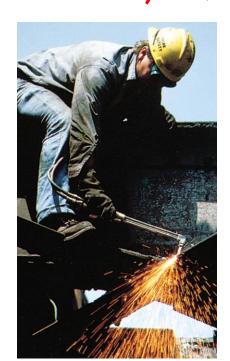
TABLE 6.2					
The Specific Heats					
of Some Common					
Substances					
Substance	Specific Heat (J/g · °C)				
Al	0.900				
Au	0.129				
C (graphite)	0.720				
C (diamond)	0.502				
Cu	0.385				
Fe	0.444				
Hg	0.139				
H_2O	4.184				
C ₂ H ₅ OH (ethanol)	2.46				

$$C = m \times s$$

Heat (q) absorbed or released:

$$q = m \times s \times \Delta t$$

$$q = C \times \Delta t$$


$$\Delta t = t_{\text{final}} - t_{\text{initial}}$$

How much heat is given off when an 869 g iron bar cools from 94°C to 5°C?

$$s$$
 of Fe = 0.444 J/g \cdot °C

$$\Delta t = t_{\text{final}} - t_{\text{initial}} = 5^{\circ}\text{C} - 94^{\circ}\text{C} = -89^{\circ}\text{C}$$

$$q = ms\Delta t = 869 \text{ g/x } 0.444 \text{ J/g} \cdot \text{ o/c} \text{ x } -89 \text{ o/c} = -34,000 \text{ J}$$

EXAMPLE 6.5

A 466-g sample of water is heated from 8.50°C to 74.60°C. Calculate the amount of heat absorbed (in kilojoules) by the water.

Solution Using Equation (6.12), we write

$$q = ms\Delta t$$
= (466 g)(4.184 J/g·°C)(74.60°C - 8.50°C)
= 1.29 × 10⁵ J × $\frac{1 \text{ kJ}}{1000 \text{ J}}$
= 129 kJ

Standard Enthalpy of Formation and Reaction

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the **standard enthalpy of formation** (ΔH_f^0) as a reference point for all enthalpy expressions.

Standard enthalpy of formation (ΔH_f^0) is the heat change that results when **one mole** of a compound is formed from its **elements** at a pressure of 1 atm.

The standard enthalpy of formation of any element in its most stable form is zero.

$$\Delta H_f^0(O_2) = 0$$

$$\Delta H_f^0 (O_3) = 142 \text{ kJ/mol}$$

$$\Delta H_f^0$$
 (C, graphite) = 0

$$\Delta H_f^0$$
 (C, diamond) = 1.90 kJ/mol

TABLE 6.4 Standard Enthalpies of Formation of Some Inorganic Substances at 25°C

Substance	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$	Substance	ΔH _f (kJ/mol)
Ag(s)	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.0	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.9
$\mathrm{Br}_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O(g)$	81.56
$CaCO_3(s)$	-1206.9	$N_2O_4(g)$	9.66
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-271.6	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	Zn(s)	0
$H_2O(l)$	-285.8	ZnO(s)	-348.0

The **standard enthalpy of reaction** (ΔH_{rxn}^0) is the enthalpy of a reaction carried out at 1 atm.

$$aA + bB \longrightarrow cC + cD$$

$$\Delta H_{rxn}^{0} = \left[c\Delta H_{f}^{0}(C) + d\Delta H_{f}^{0}(D) \right] - \left[a\Delta H_{f}^{0}(A) + b\Delta H_{f}^{0}(B) \right]$$

$$\Delta H_{rxn}^0 = \sum n \Delta H_f^0$$
 (products) - $\sum m \Delta H_f^0$ (reactants)

Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

25

The direct Method

- Suppose we want to know the enthalpy of formation of carbon dioxide.
- We must measure the enthalpy of the reaction when carbon (graphite) and molecular oxygen in their standard states are converted to carbon dioxide in its standard state:

C(graphite) +
$$O_2(g) \longrightarrow CO_2(g)$$
 $\Delta H_{rxn}^{\circ} = -393.5 \text{ kJ/mol}$

$$\Delta H_{rxn}^0 = \sum n \Delta H_f^0$$
 (products) - $\sum m \Delta H_f^0$ (reactants)

$$\Delta H_{\text{rxn}}^{\circ} = \Delta H_{\text{f}}^{\circ}(\text{CO}_2, g) - [\Delta H_{\text{f}}^{\circ}(\text{C, graphite}) + \Delta H_{\text{f}}^{\circ}(\text{O}_2, g)]$$

= -393.5 kJ/mol

$$\Delta H_{\text{rxn}}^{\circ} = \Delta H_{\text{f}}^{\circ}(\text{CO}_2, g) = -393.5 \text{ kJ/mol}$$

$$\Delta H_{\text{f}}^{\circ}(\text{CO}_2, g) = -393.5 \text{ kJ/mol}$$

or

Benzene (C₆H₆) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol.

$$2C_{6}H_{6}(h) + 15O_{2}(g) \longrightarrow 12CO_{2}(g) + 6H_{2}O(h)$$

$$\Delta H_{rxn}^{0} = \sum n\Delta H_{f}^{0} \text{ (products)} - \sum m\Delta H_{f}^{0} \text{ (reactants)}$$

$$\Delta H_{rxn}^{0} = [12\Delta H_{f}^{0} \text{ (CO}_{2}) + 6\Delta H_{f}^{0} \text{ (H}_{2}O)] - [2\Delta H_{f}^{0} \text{ (C}_{6}H_{6})]$$

$$\Delta H_{rxn}^{0} = [12x - 393.5 + 6x - 285.8] - [2x49.04] = -6338 \text{ kJ}$$

$$\frac{-6338 \text{ kJ}}{2 \text{ mol}} = -3169 \text{ kJ/mol C}_{6}H_{6}$$

The Indirect Method (Hess's Law)

- Many compounds cannot be directly synthesized from their elements.
- The reaction proceeds too slowly, or side reactions produce substances other than the desired compound.

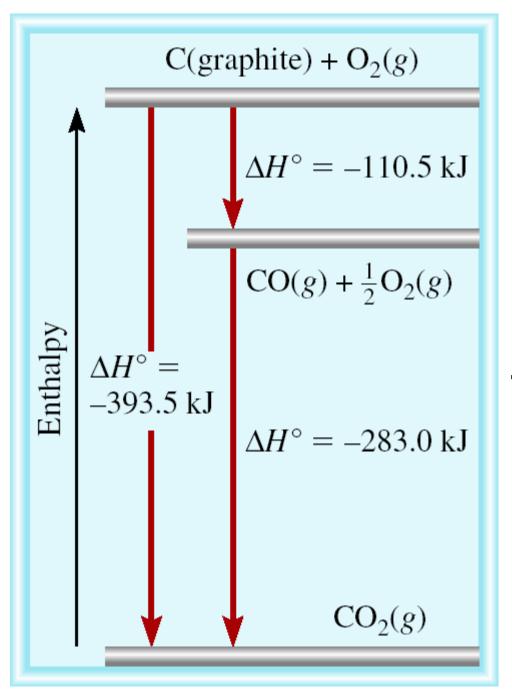
Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

Let's say we are interested in the standard enthalpy of formation of carbon monoxide (CO).

$$C(graphite) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$$

However, burning graphite also produces some carbon dioxide (CO_2) , so we cannot measure the enthalpy change for CO directly. We must employ an indirect route, based on Hess's law. It is possible to carry out the following two separate reactions:


(a)
$$C(graphite) + O_2(g) \longrightarrow CO_2(g)$$
 $\Delta H_{rxn}^{\circ} = -393.5 \text{ kJ/mol}$
(b) $CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$ $\Delta H_{rxn}^{\circ} = -283.0 \text{ kJ/mol}$

First, we reverse Equation (b) to get

(c)
$$CO_2(g) \longrightarrow CO(g) + \frac{1}{2}O_2(g) \quad \Delta H_{\text{rxn}}^{\circ} = +283.0 \text{ kJ/mol}$$

we carry out the operation (a) + (c) and obtain

(a)
$$C(graphite) + O_2(g) \longrightarrow CO_2(g)$$
 $\Delta H_{rxn}^{\circ} = -393.5 \text{ kJ/mol}$
(c) $CO_2(g) \longrightarrow CO(g) + \frac{1}{2}O_2(g)$ $\Delta H_{rxn}^{\circ} = +283.0 \text{ kJ/mol}$
(d) $C(graphite) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$ $\Delta H_{rxn}^{\circ} = -110.5 \text{ kJ/mol}$

C (graphite) +
$$1/2O_2(g) \longrightarrow CO(g)$$

CO $(g) + 1/2O_2(g) \longrightarrow CO_2(g)$
C (graphite) + $O_2(g) \longrightarrow CO_2(g)$

Calculate the standard enthalpy of formation of CS₂ (/) given that:

C(graphite) +
$$O_2(g)$$
 \longrightarrow $CO_2(g)$ $\Delta H_{rxn}^0 = -393.5 \text{ kJ/mol}$
S(rhombic) + $O_2(g)$ \longrightarrow $SO_2(g)$ $\Delta H_{rxn}^0 = -296.1 \text{ kJ/mol}$
 $CS_2(f) + 3O_2(g)$ \longrightarrow $CO_2(g) + 2SO_2(g)$ $\Delta H_{rxn}^0 = -1072 \text{ kJ/mol}$

1. Write the enthalpy of formation reaction for CS₂

$$C(graphite) + 2S(rhombic) - CS_2(\hbar)$$

2. Add the given rxns so that the result is the desired rxn.

$$\begin{array}{c} \text{C(graphite)} + \text{O}_{2} (\textit{g}) & \rightarrow \text{CQ}_{2} (\textit{g}) & \Delta \text{H}_{\text{rxn}}^{0} = \text{-393.5 kJ/mol} \\ \text{2S(rhombic)} + 2\text{O}_{2} (\textit{g}) & \rightarrow 2\text{SQ}_{2} (\textit{g}) & \Delta \text{H}_{\text{rxn}}^{0} = \text{-296.1 kJ/mol} \times 2 \\ \text{+ CO}_{2}(\textit{g}) + 2\text{SQ}_{2} (\textit{g}) & \text{CS}_{2} (\textit{f}) + 3\text{O}_{2} (\textit{g}) & \Delta \text{H}_{\text{rxn}}^{0} = \text{+1072 kJ/mol} \end{array}$$

C(graphite) + 2S(rhombic)
$$\longrightarrow$$
 CS₂ (/) $\Delta H_{rxn}^0 = -393.5 + (2x-296.1) + 1072 = 86.3 kJ/mol^{31}$