

	٦	Types of S	Solution	S
A solutio	on is a home	ogenous mix	ture of 2	or more substances
The sol	ute is(are)	the substar	nce(s) pre	sent in the smalle
amount(s	s).			
The solv	ent is the s	ubstance pr	esent in th	e larger amount.
	Types of sol (solid, liquid	lutions, depend , or gas) of the	ling on the o solution co	priginal states mponents.
	TABLE 12.1 Type	s of Solutions		
	Component 1	Component 2	State of Resulting Solution	Examples
	Gas	Gas	Gas	Air
	Gas	Liquid	Liquid	Soda water (CO ₂ in water)
	Gas	Solid	Solid	H ₂ gas in palladium
	Liquid	Liquid	Liquid	Ethanol in water
	Solid	Liquid	Liquid	NaCl in water
	Solid	Solid	Solid	Brass (Cu/Zn), solder (Sn/Pb)

Two liquids are said to be *miscible* if *they are completely soluble in each other in all proportions.*

 $Hb + 4O_2 \Longrightarrow Hb(O_2)_4$

Colligative Properties of Nonelectrolyte Solutions Colligative properties (or collective properties) are properties that depend only on the **number** of solute particles in solution and not on the **nature** of the solute particles. • The colligative properties are vapor-pressure lowering, boiling-point elevation,

- freezing-point depression,
- \succ osmotic pressure.

we are talking about relatively dilute solutions, that is, solutions whose concentrations are $\leq 0.2 M$.

Colligative Properties of Nonelectrolyte Solutions

Vapor-Pressure Lowering

Raoult's_t **law**, which states that the vapor pressure of a solvent over a solution, P_1 , is given by the vapor pressure of the pure solvent, P_1° , times the mole fraction of the solvent in the solution, X_1 :

$$P_1 = X_1 P_1^0$$

 P_{1}^{0} = vapor pressure of **pure** solvent

 X_1 = mole fraction of the <u>solvent</u>

Raoult's law

If the solution contains only one solute:

$$X_1 = 1 - X_2$$
 $P_1 = (1 - X_2)P_1^0$ $P_1 = P_1^0 - X_2P_1^0$

$$P_{1}^{0} - P_{1} = \Delta P = X_{2} P_{1}^{0}$$

 X_2 = mole fraction of the <u>solute</u>

We see that the decrease in vapor pressure, ΔP , is directly proportional to the solute concentration (measured in mole fraction).

- The boiling point of a solution is the temperature at which its vapor pressure equals the external atmospheric pressure.
- Because the presence of a nonvolatile solute lowers the vapor pressure of a solution, it must also affect the boiling point of the solution.
- At any temperature the vapor pressure of the solution is lower than that of the pure solvent regardless of temperature.
- The boiling point of the solution is higher than that of water.

olligative Properties of Nonelectrolyte Solution							
TABLE 12.2	Molal Boiling-Point El	evation and	Freezing-Point Dep	ression			
Solvent	Constants of Several O Normal Freezing Point (°C)*	Common Lic <i>K</i> f (°C/ <i>m</i>)	Quids Normal Boiling Point (°C)*	К _ь (°С/т)			
Water	0	1.86	100	0.52			
Benzene	5.5	5.12	80.1	2.53			
Ethanol	-117.3	1.99	78.4	1.22			
Acetic acid	16.6	3.90	117.9	2.93			
Cyclohexane	6.6	20.0	80.7	2.79			
Measured at 1 atm.							
				~ <u>~</u>			
				10			

 $\begin{aligned} \hline \textbf{Colligative Properties of Nonelectrolyte Solutions}} \\ \hline \textbf{What is the freezing point of a solution containing 478 g of ethylene glycol (antifreeze) in 3202 g of water? The molar mass of ethylene glycol is 62.01 g/mol.} \\ \Delta T_{f} = K_{f} m \qquad K_{f} \text{ water} = 1.86 \, {}^{\circ}\text{C}/m \\ m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} = \frac{478 \text{ g x} \frac{1 \text{ mol}}{62.01 \text{ g}}}{3.202 \text{ kg solvent}} = 2.41 \text{ m} \\ \Delta T_{f} = K_{f} m = 1.86 \, {}^{\circ}\text{C}/m \text{ x} 2.41 \text{ m} = 4.48 \, {}^{\circ}\text{C} \\ \Delta T_{f} = T_{f}^{0} - T_{f} \\ T_{f} = T_{f}^{0} - \Delta T_{f} = 0.00 \, {}^{\circ}\text{C} - 4.48 \, {}^{\circ}\text{C} = -4.48 \, {}^{\circ}\text{C} \end{aligned}$

17

Colligative Properties of Nonelectrolyte Solutions Using Colligative Properties to Determine Molar Mass

From the experimentally determined freezing-point depression or osmotic pressure,

We can calculate the molality or molarity of the solution.

Knowing the mass of the solute, we can readily determine its molar mass,

