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Introduction to LP Spaces

Introduction to LP Spaces

Let (X, <7, ) be a measure space and , 0 < p < +00.

Definition
We define the space L£P(11) to be the set of all measurable

functions f: X — R such that [ |f(x)|Pd u(x) < oco.
X
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Introduction to LP Spaces

Remark

If v is the counting measure on a countable set X, then / f(x)d pu(x) =

X

Z f(x). In this case, LP is usually denoted ¢P, the set of sequences
xeX

+oo
(Xn)n such that Z |xn|P < +00.

n=1
Definition
We define the relation ~ on LP(u) as follows f ~ g if f = g a.e.
on X. y

The relation ~ on L£P(y) is an equivalence relation.
v
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Introduction to LP Spaces

It is evident that f ~ f and that, if f ~ g, then g ~ f. Now, if
f ~ g and g ~ h, then there exist A,B € & such that A° and
B¢ are null sets and f = g on A and g = h on B. It results that
w((ANB)°)=0and f = hon AN B and, hence, f ~ h.

The relation ~ defines the equivalence classes. The equivalence class
[f] of f € LP(p) is the set of all g € LP(u) which are equivalents

to f [f]={g € LP(n); g~ f}
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Introduction to LP Spaces

Definition
We define LP(pn) = LP(u)/ ~={[f]; f € LP(n)}.

Proposition

For p > 1, the space LP(u) is a vector space.
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Introduction to LP Spaces

We shall use the trivial inequality |a + b|P < 2P~%(|a|P + |b|P), for
p>1landabeR
For p = 1 the statement is obvious. For p > 1 the function y = xP;
" bl\P P+ |b|P
x > 0is convexsince y > 0. Therefore (|a| ; | |) < 2 ;— 6] .
Assume that f, g are in LP(u). Then both functions f and g are
finite a.e. on X and, hence, f + g is defined a.e. on X. If f + g is
any measurable definition of f +g, then, using the above elementary
inequality, |(f + g)(x)|P < 2P7L(|F(x)|P + |g(x)|P) for a.e. x € X
and, hence,

[ 170 re(Pd ) <27 [ 1#0Pdn(+2° [ lgbPdiue) <+
X X X

Therefore f + g € LP(p).



Introduction to LP Spaces

Iff e LP(u)and A € R, then/ INF(x)Pd pa(x) = |>\|p/ F(x)|Pd u(x) <
X X
+o00. Therefore, \f € LP(u).
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Definition

Let f: X — R be measurable. We say that f is essentially
bounded over X with respect to the measure y if there exists
M < 400 such that |[f| < M a.e. on X.
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Proposition

Let f: X — R be measurable function. If f is essentially bounded
over X with respect to the measure p, there exists a smallest M
with the property |f| < M a.e. on X. This smallest My is
characterized by

i) |[f| < Mp a.e. on X,

i) p({x € X; |f(x)| > m}) > 0 for every m < Mp.
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We set A= {M; |f| < M a.e. on X} and My = inf A. Theset A'is
non-empty by assumption and is included in [0, +oo[ and, hence, My

exists. We take a decreasing sequence (M), in A with I|m M, =
n—> o0

Mo. From M, € A, the set A, = {x € X; |f(x)] > M} is a
null set for every n and, since {x € X; |f(x)| > Mo} = U An,
we conclude that {x € X; |f(x)| > Mo} is a null set. Therefore,
|f| < Mp a.e. on X.

If m < Mo, then m & A and, hence, u({x € X; |f(x)| > m}) >0
O
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Definition

Let f: X — R be a measurable function. If f is essentially
bounded, then the smallest M with the property that |f| < M a.e.
on X is called the essential supremum of f over X with respect to
the measure p and it is denoted by ess.supy(f) or ||f|co-

[|f]|oo is characterized by the properties

Q |f| <||f|lco a.€. On X,
Q for every m < ||f]|oo, u({x € X; |f(x)| > m}) > 0.
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Definition

We define L*°(u) to be the set of all equivalence class of
measurable functions f: X — R which are essentially bounded
over X with respect to the measure p.

Proposition

The space L>°(u) is a space over R.
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If £, g in L%(u), then there exist two subsets A;, Ay € &7 such
that u(AS) = j(AS) = 0 and || < [[f[|ec on A1 and Jg] < [[g]]ec
on Ay. If we set A = A; N Ay, then we have p(A°) = 0 and
If +g| <|fl+|g] <||fllo +1lg|lcc On A. Hence f + g is essentially
bounded over X with respect to the measure p and

I+ glloo < [Iflloc + [l&]loo-

If f € L°(u) and X € R, then there exists A € &7 with (A°) =0
such that |[f| < ||f||lcc Oon A. Then |Af| < |A|||f]|cc on A. Hence
Af is essentially bounded over X with respect to the measure p and
A flloo = [A[IIF]]oo-
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Holder Inequality

Holder Inequality

For all 1 < p < +00, we define the real number g = Ll if
p —

p=1andif p=o00, g=1. q is called the conjugate of p or the
dual of p.
p, q are related by the symmetric equality

1 1

—+—-=1.

p q
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Holder Inequality

Let p and g be two conjugate real numbers such that p > 1. Then
for all a > 0; b > 0,
aP b9

ab< — 4+ —
P q
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Halder Inequality

Note that the function ¢(t) = % + % — t with t > 0 has the only

minimum at t = 1. It follows that t < % + %.

aPb—9 1 __1

+ — > ab r-1; and the result
P q

follows. O

_ 1
For t = ab r—1, we have
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Holder Inequality

(Holder's inequalities)
Let 1 < p,q < +0o0 and p, g be conjugate to each other. If
f € LP(u) and g € L9(u), then fg € L}(p) and

/x fe(x)ld u(x) < (/X [F(x)1Pd p(x)) % (/X g(x)|%d u(x))3

/!fg(X)\dM(X)SHgHoo/!f(X)!du(X), p=1,q = +oo.
X X

V.
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Halder Inequality

We start with the case 1 < p,q < +00. If/ |f(x)|Pd pu(x) =0 or
X

if/ lg(x)|9d u(x) = 0, then either f =0 a.e. on X or g =0 a.e.
X
on X and the inequality is trivially true.

So we assume that A = / |f(x)|Pd u(x) >0and B = / lg(x)]|9d pu(x) >
X X

f
0. From the lemma (16) with a = Q b= @ we have that
Ar Bq
3 q
6l _ 116F, 11gl

ArB: P A g B
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Halder Inequality

a.e. on X. After integration we find

Then

/X|fg(x)’dﬂ(x) < (/X |f(X)|de(X));</X |g(X)|qu(X))c1,

Let now p =1 and g = +o0. Since |g| < ||g||~ a.e. on X, |fg| <
If]|lg|loc a.e. on X. Integrating, we find the desired inequality
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The Minkowski’s Inequality

The Minkowski's Inequality

(Minkowski's inequality)
Let 1 < p < +4o0. If f, gin LP(u), then

([ reregtaranta)” < ( [ 1#00Pdut) +( [ Iat )P410)

V Ol’lgl B LP Spaces



The Minkowski’s Inequality

The case p = 1 is trivial. Hence, we assume that 1 < p < +o0.
We write |f + g|P < (|| +|g|)If +glP~t = |f|If +g|P~ +[g]If +
g|P~1 a.e. on X and, applying Hélder's inequality, we find

([ 1reapanc)” ([ 16600+ s0are
/Ig )Pd p(x )‘1’ /If ) + g(x)|¢
= ([ 1Feordnt) ) ( | 176+ gGord

Simplifying, we get the inequality we want to prove.

IA

[ 1760+ £GP ut)
X

Y, Ol’lgl B LP Spaces



The Minkowski’s Inequality

1

The mapping f — ||f||, = </ \f(x)\p>p is a norm on LP(u) and
X

(LP(), || ||p) is a normed vector space.
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Properties of the LP Spaces

Properties of the LP Spaces

V Ol’lgl B LP Spaces



Properties of the LP Spaces

Pointwise Convergence

Let A be an arbitrary non empty set and (f,: A— R), be a
sequence of functions defined on A.

O We say that the sequence (fa)n converges pointwise on A to a
function f: A — R if ET fa(x) = f(x) for all x € A.

In case f(x) is finite, this means that Ve > 0, IN € N such
that [f(x) — f(x)| <e, Vn>N.

Q Let (X, o7, 1) be a measure space. We say that the sequence
(fa)n converges to f (pointwise) a.e. on A € & if there exists
aset Be o/, B C A, such that u(A\ B) =0 and (f,),
converges to f pointwise on B.
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Properties of the LP Spaces

Remark

If (f,)n converges to both f and g a.e. on A, then f = g a.e. on A.
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Properties of the LP Spaces

Convergence in LP

Definition

Let (f,)n be a sequence in LP(u) and f € LP(u). We say that (f,)n
converges to f in LP(u) if limp— 400 ||fn — f||p = 0.

We say that (f,), is Cauchy in LP(u) if Iin+ i — i) [z = Ok
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Properties of the LP Spaces

If (fo)n is Cauchy sequence in LP(u), then there exists f € LP(1u)
such that (f,), converges to f in LP(u). (In other words LP(u) is a
Banach space.)

Moreover, there exists a subsequence (f,, ), which converges to f
a.e. on X.
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Properties of the LP Spaces

If (fy)n converges to f in LP(u), there is a subsequence (f,, )«
which converges to f a.e. on X.
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Properties of the LP Spaces

a) We consider the first case 1 < p < +o0.
Since each f, is finite a.e. on X, there exists A € &/ such that
wu(A) =0 and all £, are finite on A. Then for every k, there exists

1
nk such that / [fn(x) — fn(X)|Pd u(x) < > for every n,m > ny.
X
Since we may assume that each ny is large enough, then we can

take ng < ny41 for every k. Therefore, (f,, )k is a subsequence of

(fa)n.
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Properties of the LP Spaces

From the construction of ny and from the fact that nx < nyy1, we
1
[ (X) = fo (X)[Pd p(x) < >k for every k. We define the

measurable function G by

G = Z |f’7k+1 -

N
Let Gy = Z |foin—fn | on Aand Gy = 0 on A, then (/ G,’\’,(x)d,u(x))
X

=0, on A°.

/ o (5) — i ()P du(x)) < 1, by Minkowski's inequality.

Since (Gn)n increases to G on X, / GP(x)d pu(x) < 1 and, thus,
X

+oo
G < 400 a.e. on X. It follows that the series Z(fnk+l(X) — fn, (x))
k=1
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Properties of the LP Spaces

N
On B we have f = f, + Nlim Z(fnk+1 —fn) = NiToo fny and,

—+
k=1

hence, (f,, )k converges to f a.e. on X. We, also, have on B

“+o00

’an - f’ = ’an - fn1 - Z(fnk+1 - fnk)’
k=1
N—-1 —+oo
= | Z(fnk+1 o f”k) B Z(fnk+1 - fnk)|
k=1 k=1
+o00
< Z |fnk+1_fnk|§G
k=N+1
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Properties of the LP Spaces

for every N and, hence, |f,, — f|P < GP a.e. on X for every N.

Since / GP(x)d pu(x) < +oo and N“T |foy — f] = 0 ae. on X,
— 400

we use the Dominated Convergence Theorem we find that

lim /| %) — F(x)|Pd j(x) = 0

N—+o00

If np — 400, we get

lim (/X\fk(x)—f(x)\pdu(x))’l’ < lim [(/X\fk(x)—f,,k(x)]”du

k—+o00 k—400

([ ) = 0P ane)”

and we conclude that (f,), converges to f in LP(pu).
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Properties of the LP Spaces

b) Now, let p = +o00. For each n, m we have a set A, , € &7 such
that p(A7 ) = 0 and |y — fin| < |[|fn — fin[|oc ON Apm.

Let A= (1) Anm, then u(A€) =0 and |fy — fm| < [|fs — fim||oc 0N

n,m>1
A for every n,m. This gives that (f,), is Cauchy sequence for the
norm || ||cc Oon A and, hence, there exists a mapping f such that

(fa)n converges to f uniformly on A. Now,

. <y TR
N o = Flloo < Tim_supfa(x) = F(x)] =0
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Properties of the LP Spaces

Convergence in Measure

Let (X, <7, u) is a measure space.

Q Let f,f,: X — R be measurable functions. We say that
(fa)n converges to f in measure on A € < if all f,f, are finite

a.e. on A and for every € > 0;
imp({x € A [fox) = F(x)| > €) =0,

@ We say that (f,), is a Cauchy sequence in measure on A € &/
if all f, are finite a.e. on A and for every ¢ > 0

lim  u({x € A; |fa(x) — fm(x)| > €}) = 0.

n,m—-4-00
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Properties of the LP Spaces

Remarks

@ The uniform convergence yields the convergence in measure
@ If we want to be able to write the values
H({x € A; [fo(x) = F(x)| = }) and
u({x € A; |fa(x) — fim(x)| > €}), we first extend the functions
|f, — f| and |f, — fp| outside the set B C A, where all f, f, are
finite, as functions defined on X and measurable. Then, since
u(A\ B) =0, we get that the above values are equal to the
values u({x € B; |fo(x) — f(x)| > €}) and, respectively,
w({x € B; |fo(x) — fm(x)| > €}). Therefore, the actual
extensions play no role and, hence, we may for simplicity
extend all f,f, as 0 on X \ B. Thus the replacement of all
f,f, by 0 on X\ B makes all functions finite everywhere on A
and does not affect the fact that (f,), converges to f in

measure on A or that (7,), is Cauchy in measure on A.
A S -
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Properties of the LP Spaces

Proposition

If (f,)n converges to both f and g in measure on A, then f = g
a.e. on A.
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Properties of the LP Spaces

We may assume that all f, g, f, are finite on A. Applying the above
remark we find that

u{xe A [Fx)—g(l Ze}) < ul(ix €A [f(x) = f(x)| = 5})

+u({x € A [f(x) — g(x)] = 5})

n-

This implies that u({x € A; |f(x) — g(x)| > ¢}) = 0 for every
€ > 0. We now write

+o00 1

{xe A f(x)#g0)) = [JIxe A If(x) —g(x)| = i

k=1
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Properties of the LP Spaces

Since each term in the union is a null set, we get u({x € A; f(x) #
g(x)}) = 0 and we conclude that f = g a.e. on A.

Proposition

If (f,)n converges to f and (g,), converges to g in measure on A
and if € R. Then

a) (f, + gn)n converges to f 4+ g in measure on A.

b) (af,), converges to af in measure on A.

c) If there exists M < 400 such that |f,] < M a.e. on A, then

|f| < M a.e. on A.

d) If there exists M < 400 such that ||, |ga] < M a.e. on A, then
(fngn)n converges to fg in measure on A.
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Properties of the LP Spaces

We may assume that all f, f, are finite on A.
a) We apply the remark 3

p{x € A [(Fa +80)(x) = (F+8)(X)[ = e}) < p({x € A |falx) — f(
+u({x € A lgn(x) — g0
b) Also for av # 0,

({x € A lafy(x)~af(x)] > e}) = p({x € A; [falx)—F()| > 1 })

| | n—>+o‘

c) For n large enough
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Properties of the LP Spaces

p{x € A F()I = M+e}) < ul{x € A ()] = M+ 2})
+u({x € A [f(x) = F(x)| = 5})
= ul{x € A f(x) = F()] = 5})

nﬁ\Jroc
Hence, pu({x € A; |f(x)| > M +¢€}) =0 for every € > 0.

We have {x € A; |f(x)| > M} = U {x € A; |f(x)| > M+ £}

and, since all sets of the union are null sets, then u({x € A; |f(x)| >

M}) = 0. Hence,
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Properties of the LP Spaces

d) Applying the result of c),

IN

p(fx € A [fa(x)gn(x) — F(x)g(x)| = £}) p{x € A |fa(x)gn(x) —
+u({x € A [fa(x)g(x) -
p({x € A lgn(x) — g(x)|

+u({x € A [fa(x) — F(x

IN

O
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Properties of the LP Spaces

Proposition

Let (f,)n be a sequence of measurable functions on a measure
space (X, B, ). If p is finite and the sequence (f,), converges
almost everywhere to f, then the sequence (f,), converges in
measure to f.
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Properties of the LP Spaces

Let € > 0, we set
An(e) = {xi [falx) = F(X)| 2 €}, Bale) = | Axl(e)
and

B(g) = ) Ba(e) =liMn_s 400 An(e)
n>1

If x € B(e), then x belongs to an infinite of A,(¢). The sequence

(fa(x))n can not converges to f(x) and then u(B(e)) = 0. Moreover

since f is finite Iir'rjr w(Bn(€)) = 0, and since A,(g) C Bp(e), then
n——+00

lim_p(An(<)) =0.
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Properties of the LP Spaces

If (f,)n is a Cauchy sequence in measure on A, there exists
f: X — R such that (f,), converges to f in measure on A.

Moreover, there is a subsequence (f,, )« which converges to f a.e.
on A.

v

If (fy)n converges to f in measure on A, there is a subsequence
(fn. )k Which converges to f a.e. on A.
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Properties of the LP Spaces

As usual, we assume that all f, are finite on A. We have, for all
k, p({x € A; |fa(x) = fin(x)| > zik}) — 0. Therefore, there

n,m—-4-00
exists ny such that p({x € A; |fo(x) — fm(x)| > zik}) < 2—1k for every
n,m > ni. Since we may assume that each ny is as large as we
like, we may inductively take ng such that nx < ng41 for every k.
Hence, (f,, )k is a subsequence of (f,), and, from the construction
of nk and since ny < ng41, we have that for every k;

V Ol’lgl B LP Spaces



Properties of the LP Spaces

px € A e, (00 — ()] = 521) < o

Let Ex = {x € A; [fp ., (X) = fa, (x)| = 2%} and, hence, u(Ex) < 4

+oo +oo
forall k. Let Fo= | J Ei, F = () Frm = limjss o0 Ei.

k=m m=1
+o0 +o0o 1 1
u(Fm) < D w(E) < Y op = 5oy and, hence, u(F) <
k=m k=m

(i(Fm) < 5= for every m. This implies that zu(F) = 0.
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Properties of the LP Spaces

If x € A\ F, there exists m such that x € A\ Fp,,, which implies that

x € A\ E for all k > m. Therefore, |fy, ., (x) — f (x)| < 3 for all
+o0o
1
k > m, such that Z [ (x) = fo (X)) < om1 . Thus, the series
k=m

+oo
Z (fa.1 (x) — £, (x)) converges and we may define f: X — R by

k=m
f:fnl +Z Ney1 nk
on A\ F and 0, on AU F.

m

F() = ()l (s () = () = lim ()
k=1
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Properties of the LP Spaces

for every x € A\ F and since u(F) = 0, we get (f,, )k converges to
fae.
Now, on A\ Fp,; we have

+0o0
o = Fl = |fo = fy = > _(Fosr — )|
k=1
m—1 —+oo
= | Z(fnkJrl B f”k) B Z(fnk+1 - f"’k)|
k=1 k=1

+00 1
= Z [ frs = Tl < om—1°
k=m
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Properties of the LP Spaces

Therefore, {x € A; |fn,(x) — f(x)| > 51} C Fm and, hence,

P € A () = 0] 2 53 ) < ) < 5

Take an arbitrary € > 0 and myg large enough such that 2,,,%1 <e. If
m>mg, {x € A; |fp,(x)—f(x)|>ec} C{xe€A |fh,(x)—Ff(x)] >
2,,1%1} and, hence,

1
2m—1 m—:)oo 0.

p(fx € A [fa, (x) = F(x)] 2 €}) <
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Properties of the LP Spaces

This means that (f, )k converges to f in measure on A. Since

ne, —— oo, we have
k——+o0

plx € A4 IR0~ FI 2 eh) = ul{x €A 1) — (9] = 5))

Ful{x € A [fa () = F(I = 5})

and we conclude that (f,), converges to f in measure on A.
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Properties of the LP Spaces

Remark

Consider the sequence (f,), defined by: fi = xj01, 2 = ZX]O,%[,
f; = 2X]1 1 and for all n € N, fn(n+1)+k+1 = NX]_k_ ke, for k =

n+1’n+1

0,....n. If0<e <1, p({x 6]0 1[; |fa(x)| > €}) B 0.

Therefore, (f,), converges to 0 in measure on ]0,1[. But, as we

have already seen, it is not true that (f,), converges to 0 a.e. on
10, 1]
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Properties of the LP Spaces

Let 1 < p < +o0.
@ The convergence in LP implies convergence in measure.

@ If u(X) < oo, then L9 C LP and the convergence in L9 implies
convergence in LP, for all g > p.
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Properties of the LP Spaces

@ Suppose the sequence (f,), converges to f in LP and let
€ > 0, Then by the Markov inequality,

1
pllf =12 b < 5 [ 1= fPdn= S~ 111
and 1) follows at once.

@ The Holder inequality gives for any measurable function f,

a—p

[ 1reapan < ( [ 1rGorauts ) ([ auta) ™ =1zt

ﬂ
1o < [[Fllq(r(X)) s
and 2) is proved.

(|
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Properties of the LP Spaces

Egoroff's Theorem

(Egoroff)

Let (X, Z, 1) be a measure space. Assume that the measure p is
bounded and (f,),cn a sequence of real or complex measurable
functions on X which converges point wise on X to a function f.
For any £ > 0 there exists a set A. € %, such that u(A.) < ¢ and
the restriction of the sequence (f,) on the complementary of A. is
uniformly convergent.
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Properties of the LP Spaces

The function f is measurable. For any integers (n, k), k > 0, let

£ = (Ve lf00 — £ < L

p_
This set is measurable. For a given k, the sequence (E,(,k)),,eN is

increasing and  lim ER = x. (Because the sequence (f;)nen
n—+00

converges to f on X). As p is bounded, Iim M(E(k))c = 0. Then
n—

there exists an integer n(k) such that M(E((z)) < /2K The set

A = +°°(E((,Z))C is appropriate. In fact u(A:;) < ¢, and on the
complementary of A the sequence (f,),en converges uniformly to

f.
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Properties of the LP Spaces

Remark

The requirement that p is bounded is essential. For constructing
a counterexample it suffices to take u the Lebesgue measure on R
and f, the characteristic function of the interval [n, +o0].
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