

Mongi BLEL

King Saud University

March 27, 2024

Table of contents

The Minkowski's Inequality

 L^{∞} Space Hölder Inequality The Minkowski's Inequality Properties of the L^p Spaces

Introduction to L^p Spaces

Let (X, \mathscr{A}, μ) be a measure space and , 0 .

Definition

We define the space $\mathcal{L}^{p}(\mu)$ to be the set of all measurable functions $f: X \longrightarrow \mathbb{R}$ such that $\int_{X} |f(x)|^{p} d \mu(x) < \infty$.

 L^{∞} Space Hölder Inequality The Minkowski's Inequality Properties of the L^p Spaces

Remark

If μ is the counting measure on a countable set X, then $\int_X f(x)d\mu(x) = \sum_{x \in X} f(x)$. In this case, \mathcal{L}^p is usually denoted ℓ^p , the set of sequences

$$(x_n)_n$$
 such that $\sum_{n=1}^{+\infty} |x_n|^p < +\infty.$

Definition

We define the relation \sim on $\mathcal{L}^p(\mu)$ as follows $f \sim g$ if f = g a.e. on X.

 L^p Spaces

Proposition

The relation \sim on $\mathcal{L}^{p}(\mu)$ is an equivalence relation.

Mongi BLEL

 L^{∞} Space Hölder Inequality The Minkowski's Inequality Properties of the L^{p} Spaces

Proof

It is evident that $f \sim f$ and that, if $f \sim g$, then $g \sim f$. Now, if $f \sim g$ and $g \sim h$, then there exist $A, B \in \mathscr{A}$ such that A^c and B^c are null sets and f = g on A and g = h on B. It results that $\mu((A \cap B)^c) = 0$ and f = h on $A \cap B$ and, hence, $f \sim h$. The relation \sim defines the equivalence classes. The equivalence class [f] of $f \in \mathcal{L}^p(\mu)$ is the set of all $g \in \mathcal{L}^p(\mu)$ which are equivalents to f $[f] = \{g \in \mathcal{L}^p(\mu); g \sim f\}$.

 L^{∞} Space Hölder Inequality The Minkowski's Inequality Properties of the L^p Spaces

Definition

We define
$$L^p(\mu) = \mathcal{L}^p(\mu) / \sim = \{[f]; f \in \mathcal{L}^p(\mu)\}.$$

Proposition

For $p \ge 1$, the space $L^p(\mu)$ is a vector space.

 L^{∞} Space Hölder Inequality The Minkowski's Inequality Properties of the L^p Spaces

Proof

We shall use the trivial inequality $|a + b|^p \leq 2^{p-1}(|a|^p + |b|^p)$, for $p \geq 1$ and $a, b \in \mathbb{R}$. For p = 1 the statement is obvious. For p > 1 the function $y = x^p$; x > 0 is convex since $y'' \geq 0$. Therefore $\left(\frac{|a| + |b|}{2}\right)^p \leq \frac{|a|^p + |b|^p}{2}$. Assume that f, g are in $L^p(\mu)$. Then both functions f and g are finite a.e. on X and, hence, f + g is defined a.e. on X. If f + g is any measurable definition of f + g, then, using the above elementary inequality, $|(f + g)(x)|^p \leq 2^{p-1}(|f(x)|^p + |g(x)|^p)$ for a.e. $x \in X$ and, hence,

$$\int_X |f(x) + g(x)|^p d\,\mu(x) \le 2^p \int_X |f(x)|^p d\,\mu(x) + 2^p \int_X |g(x)|^p d\,\mu(x) < +\infty$$

Therefore $f + g \in L^{p}(\mu)$. Mongi BLEL

Introduction to L^{p} Spaces L^{∞} Space

L[∞] Space Hölder Inequality The Minkowski's Inequality Properties of the L^P Spaces

If
$$f \in L^p(\mu)$$
 and $\lambda \in \mathbb{R}$, then $\int_X |\lambda f(x)|^p d\mu(x) = |\lambda|^p \int_X |f(x)|^p d\mu(x) < +\infty$. Therefore, $\lambda f \in L^p(\mu)$.

Definition

Let $f: X \longrightarrow \overline{\mathbb{R}}$ be measurable. We say that f is essentially bounded over X with respect to the measure μ if there exists $M < +\infty$ such that $|f| \le M$ a.e. on X.

Proposition

Let $f: X \longrightarrow \overline{\mathbb{R}}$ be measurable function. If f is essentially bounded over X with respect to the measure μ , there exists a smallest Mwith the property $|f| \le M$ a.e. on X. This smallest M_0 is characterized by i) $|f| \le M_0$ a.e. on X, ii) $\mu(\{x \in X; |f(x)| > m\}) > 0$ for every $m < M_0$.

Proof

We set $A = \{M; |f| \le M \text{ a.e. on } X\}$ and $M_0 = \inf A$. The set A is non-empty by assumption and is included in $[0, +\infty[$ and, hence, M_0 exists. We take a decreasing sequence $(M_n)_n$ in A with $\lim_{n \to +\infty} M_n =$ M_0 . From $M_n \in A$, the set $A_n = \{x \in X; |f(x)| > M_n\}$ is a null set for every n and, since $\{x \in X; |f(x)| > M_0\} = \bigcup_{n=1}^{+\infty} A_n$, we conclude that $\{x \in X; |f(x)| > M_0\}$ is a null set. Therefore, $|f| \le M_0$ a.e. on X. If $m < M_0$, then $m \notin A$ and, hence, $\mu(\{x \in X; |f(x)| > m\}) > 0$. \Box

Definition

Let $f: X \longrightarrow \overline{\mathbb{R}}$ be a measurable function. If f is essentially bounded, then the smallest M with the property that $|f| \le M$ a.e. on X is called the essential supremum of f over X with respect to the measure μ and it is denoted by $\operatorname{ess.sup}_X(f)$ or $||f||_{\infty}$. $||f||_{\infty}$ is characterized by the properties

1
$$|f| \le ||f||_{\infty}$$
 a.e. on *X*,

(a) for every $m < ||f||_{\infty}$, $\mu(\{x \in X; |f(x)| > m\}) > 0$.

Definition

We define $L^{\infty}(\mu)$ to be the set of all equivalence class of measurable functions $f: X \longrightarrow \overline{\mathbb{R}}$ which are essentially bounded over X with respect to the measure μ .

Proposition

The space $L^{\infty}(\mu)$ is a space over \mathbb{R} .

Proof

If f, g in $L^{\infty}(\mu)$, then there exist two subsets $A_1, A_2 \in \mathscr{A}$ such that $\mu(A_1^c) = \mu(A_2^c) = 0$ and $|f| \leq ||f||_{\infty}$ on A_1 and $|g| \leq ||g||_{\infty}$ on A_2 . If we set $A = A_1 \cap A_2$, then we have $\mu(A^c) = 0$ and $|f+g| \leq ||f|+|g| \leq ||f||_{\infty}+||g||_{\infty}$ on A. Hence f+g is essentially bounded over X with respect to the measure μ and

$$||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}.$$

If $f \in L^{\infty}(\mu)$ and $\lambda \in \mathbb{R}$, then there exists $A \in \mathscr{A}$ with $\mu(A^c) = 0$ such that $|f| \leq ||f||_{\infty}$ on A. Then $|\lambda f| \leq |\lambda|||f||_{\infty}$ on A. Hence λf is essentially bounded over X with respect to the measure μ and $||\lambda f||_{\infty} = |\lambda|||f||_{\infty}$.

Hölder Inequality

Definition

For all $1 , we define the real number <math>q = \frac{p}{p-1}$, if

p = 1 and if $p = \infty$, q = 1. q is called the conjugate of p or the dual of p.

p, q are related by the symmetric equality

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Lemma

Let p and q be two conjugate real numbers such that p > 1. Then for all a > 0; b > 0,

$$ab \leq rac{a^p}{p} + rac{b^q}{q}$$

Proof

Note that the function $\varphi(t) = \frac{t^{p}}{p} + \frac{1}{q} - t$ with $t \ge 0$ has the only minimum at t = 1. It follows that $t \le \frac{t^{p}}{p} + \frac{1}{q}$. For $t = ab^{-\frac{1}{p-1}}$, we have $\frac{a^{p}b^{-q}}{p} + \frac{1}{q} \ge ab^{-\frac{1}{p-1}}$; and the result follows.

Theorem

(Hölder's inequalities) Let $1 \leq p, q \leq +\infty$ and p, q be conjugate to each other. If $f \in L^{p}(\mu)$ and $g \in L^{q}(\mu)$, then $fg \in L^{1}(\mu)$ and

$$\int_{X} |fg(x)| d\,\mu(x) \le \left(\int_{X} |f(x)|^{p} d\,\mu(x) \right)^{\frac{1}{p}} \left(\int_{X} |g(x)|^{q} d\,\mu(x) \right)^{\frac{1}{q}}$$

$$\int_X |fg(x)| d\,\mu(x) \leq ||g||_\infty \int_X |f(x)| d\,\mu(x), \quad p=1, q=+\infty.$$

Proof

We start with the case $1 < p, q < +\infty$. If $\int_{X} |f(x)|^p d\mu(x) = 0$ or if $\int_{Y} |g(x)|^q d\mu(x) = 0$, then either f = 0 a.e. on X or g = 0 a.e. on \hat{X} and the inequality is trivially true. So we assume that $A = \int_X |f(x)|^p d\mu(x) > 0$ and $B = \int_X |g(x)|^q d\mu(x) > 0$ 0. From the lemma (16) with $a = \frac{|f|}{A^{\frac{1}{p}}}$, $b = \frac{|g|}{B^{\frac{1}{q}}}$, we have that $\frac{|fg|}{A^{\frac{1}{2}}D^{\frac{1}{2}}} \leq \frac{1}{p}\frac{|f|^{p}}{A} + \frac{1}{q}\frac{|g|^{q}}{R}$

 $\begin{array}{l} \mbox{Introduction to L^{P} Spaces} \\ \mbox{L^{∞} Space} \\ \mbox{Hölder Inequality} \\ \mbox{The Minkowski's Inequality} \\ \mbox{Properties of the L^{P} Spaces} \end{array}$

a.e. on X. After integration we find

$$\frac{1}{A^{\frac{1}{p}}B^{\frac{1}{q}}}\int_{X}|fg(x)|d\,\mu(x)\leq \frac{1}{p}+\frac{1}{q}=1$$

Then

$$\int_X |fg(x)| d\,\mu(x) \le \left(\int_X |f(x)|^p d\,\mu(x)\right)^{\frac{1}{p}} \left(\int_X |g(x)|^q d\,\mu(x)\right)^{\frac{1}{q}}$$

Let now p = 1 and $q = +\infty$. Since $|g| \le ||g||_{\infty}$ a.e. on X, $|fg| \le |f|||g||_{\infty}$ a.e. on X. Integrating, we find the desired inequality

The Minkowski's Inequality

Theorem

(Minkowski's inequality) Let $1 \le p < +\infty$. If f, g in $L^p(\mu)$, then

$$\left(\int_X |f(x) + g(x)|^p d\,\mu(x)\right)^{\frac{1}{p}} \le \left(\int_X |f(x)|^p d\,\mu(x)\right)^{\frac{1}{p}} + \left(\int_X |g(x)|^p d\,\mu(x)$$

Proof

The case p = 1 is trivial. Hence, we assume that 1 . $We write <math>|f + g|^p \le (|f| + |g|)|f + g|^{p-1} = |f||f + g|^{p-1} + |g||f + g|^{p-1}$ a.e. on X and, applying Hölder's inequality, we find

$$\begin{split} \int_{X} |f(x) + g(x)|^{p} d\,\mu(x) &\leq \left(\int_{X} |f(x)|^{p} d\,\mu(x) \right)^{\frac{1}{p}} \Big(\int_{X} |f(x) + g(x)|^{(p-1)} \\ &+ \Big(\int_{X} |g(x)|^{p} d\,\mu(x) \Big)^{\frac{1}{p}} \Big(\int_{X} |f(x) + g(x)|^{(p-1)} \\ &= \left(\int_{X} |f(x)|^{p} d\,\mu(x) \right)^{\frac{1}{p}} \Big(\int_{X} |f(x) + g(x)|^{p} d\,\mu(x) \Big)^{\frac{1}{p}} \Big(\int_{X} |f(x) + g(x)|^{p} d\,\mu$$

Simplifying, we get the inequality we want to prove.

Corollary

The mapping
$$f \mapsto ||f||_p = \left(\int_X |f(x)|^p\right)^{\frac{1}{p}}$$
 is a norm on $L^p(\mu)$ and $(L^p(\mu), || ||_p)$ is a normed vector space.

Properties of the L^p Spaces

Pointwise Convergence

Definition

Let A be an arbitrary non empty set and $(f_n \colon A \longrightarrow \overline{\mathbb{R}})_n$ be a sequence of functions defined on A.

- We say that the sequence $(f_n)_n$ converges pointwise on A to a function $f: A \longrightarrow \overline{\mathbb{R}}$ if $\lim_{n \to +\infty} f_n(x) = f(x)$ for all $x \in A$. In case f(x) is finite, this means that $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $|f_n(x) - f(x)| \le \varepsilon; \forall n \ge N$.
- Let (X, A, µ) be a measure space. We say that the sequence (f_n)_n converges to f (pointwise) a.e. on A ∈ A if there exists a set B ∈ A, B ⊂ A, such that µ(A \ B) = 0 and (f_n)_n converges to f pointwise on B.

If $(f_n)_n$ converges to both f and g a.e. on A, then f = g a.e. on A.

Convergence in L^p

Definition

Let $(f_n)_n$ be a sequence in $L^p(\mu)$ and $f \in L^p(\mu)$. We say that $(f_n)_n$ converges to f in $L^p(\mu)$ if $\lim_{n \to +\infty} ||f_n - f||_p = 0$. We say that $(f_n)_n$ is Cauchy in $L^p(\mu)$ if $\lim_{n,m \to +\infty} ||f_n - f_m||_p = 0$.

Theorem

If $(f_n)_n$ is Cauchy sequence in $L^p(\mu)$, then there exists $f \in L^p(\mu)$ such that $(f_n)_n$ converges to f in $L^p(\mu)$. (In other words $L^p(\mu)$ is a Banach space.) Moreover, there exists a subsequence $(f_{n_k})_k$ which converges to fa.e. on X.

Corollary

If $(f_n)_n$ converges to f in $L^p(\mu)$, there is a subsequence $(f_{n_k})_k$ which converges to f a.e. on X.

Proof

a) We consider the first case $1 \le p < +\infty$. Since each f_n is finite a.e. on X, there exists $A \in \mathscr{A}$ such that $\mu(A^c) = 0$ and all f_n are finite on A. Then for every k, there exists n_k such that $\int_X |f_n(x) - f_m(x)|^p d \mu(x) < \frac{1}{2^{kp}}$ for every $n, m \ge n_k$. Since we may assume that each n_k is large enough, then we can take $n_k < n_{k+1}$ for every k. Therefore, $(f_{n_k})_k$ is a subsequence of $(f_n)_n$.

From the construction of n_k and from the fact that $n_k < n_{k+1}$, we get $\int_{X} |f_{n_{k+1}}(x) - f_{n_k}(x)|^p d\mu(x) < \frac{1}{2^{kp}}$ for every k. We define the measurable function G by $+\infty$ $G = \sum |f_{n_{k+1}} - f_{n_k}|, \text{ on } A \text{ and } G = 0, \text{ on } A^c.$ k=1Let $G_N = \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|$ on A and $G_N = 0$ on A^c , then $\left(\int_{\infty}^{\infty} G_N^p(x) d\mu(x)\right)$ $\sum_{k=1}^{N} \left(\int_{X} |f_{n_{k+1}}(x) - f_{n_k}(x)|^p d\,\mu(x) \right)^{\frac{1}{p}} < 1, \text{ by Minkowski's inequality.}$ Since $(G_N)_N$ increases to G on X, $\int_{Y} G^p(x) d \mu(x) \leq 1$ and, thus, ${\cal G}<+\infty$ a.e. on X. It follows that the series $\sum (f_{n_{k+1}}(x)-f_{n_k}(x))$ k=1Mongi BLEL L^p Spaces

On *B* we have
$$f = f_{n_1} + \lim_{N \to +\infty} \sum_{k=1}^{N} (f_{n_{k+1}} - f_{n_k}) = \lim_{N \to +\infty} f_{n_N}$$
 and,
hence $(f_k)_k$ converges to f_k a $on_k X$. We also have on *B*

hence, $(f_{n_k})_k$ converges to f a.e. on X. We, also, have on B

$$\begin{aligned} |f_{n_N} - f| &= |f_{n_N} - f_{n_1} - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})| \\ &= |\sum_{k=1}^{N-1} (f_{n_{k+1}} - f_{n_k}) - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})| \\ &\leq \sum_{k=N+1}^{+\infty} |f_{n_{k+1}} - f_{n_k}| \leq G \end{aligned}$$

for every N and, hence, $|f_{n_N} - f|^p \leq G^p$ a.e. on X for every N. Since $\int_X G^p(x) d\mu(x) < +\infty$ and $\lim_{N \to +\infty} |f_{n_N} - f| = 0$ a.e. on X, we use the Dominated Convergence Theorem we find that

$$\lim_{N\to+\infty}\int_X |f_{n_N}(x)-f(x)|^p d\,\mu(x)=0$$

If $n_k \longrightarrow +\infty$, we get

$$\lim_{k \to +\infty} \left(\int_X |f_k(x) - f(x)|^p d\,\mu(x) \right)^{\frac{1}{p}} \leq \lim_{k \to +\infty} \left[\left(\int_X |f_k(x) - f_{n_k}(x)|^p d\,\mu(x) \right)^{\frac{1}{p}} + \left(\int_X |f_{n_k}(x) - f(x)|^p d\,\mu(x) \right)^{\frac{1}{p}} \right]^{\frac{1}{p}}$$

and we conclude that $(f_n)_n$ converges to f in $L^p(\mu)$.

b) Now, let
$$p = +\infty$$
. For each n, m we have a set $A_{n,m} \in \mathscr{A}$ such that $\mu(A_{n,m}^c) = 0$ and $|f_n - f_m| \le ||f_n - f_m||_{\infty}$ on $A_{n,m}$.
Let $A = \bigcap_{n,m \ge 1} A_{n,m}$, then $\mu(A^c) = 0$ and $|f_n - f_m| \le ||f_n - f_m||_{\infty}$ on

A for every n, m. This gives that $(f_n)_n$ is Cauchy sequence for the norm $|| ||_{\infty}$ on A and, hence, there exists a mapping f such that $(f_n)_n$ converges to f uniformly on A. Now,

$$\lim_{n \to +\infty} \|f_n - f\|_{\infty} \le \lim_{n \to +\infty} \sup_{x \in \mathcal{A}} |f_n(x) - f(x)| = 0$$

Convergence in Measure

Let (X, \mathscr{A}, μ) is a measure space.

Definition

Let f, f_n: X → ℝ be measurable functions. We say that (f_n)_n converges to f in measure on A ∈ 𝔄 if all f, f_n are finite a.e. on A and for every ε > 0;

$$\lim_{n \to +\infty} \mu(\{x \in A; |f_n(x) - f(x)| \ge \varepsilon) = 0$$

We say that (f_n)_n is a Cauchy sequence in measure on A ∈ A if all f_n are finite a.e. on A and for every ε > 0

$$\lim_{n,m\to+\infty}\mu(\{x\in A; |f_n(x)-f_m(x)|\geq \varepsilon\})=0.$$

Remarks

- The uniform convergence yields the convergence in measure
- If we want to be able to write the values

 $\mu(\{x \in A; |f_n(x) - f(x)| > \varepsilon\})$ and $\mu(\{x \in A; |f_n(x) - f_m(x)| \ge \varepsilon\})$, we first extend the functions $|f_n - f|$ and $|f_n - f_m|$ outside the set $B \subset A$, where all f, f_n are finite, as functions defined on X and measurable. Then, since $\mu(A \setminus B) = 0$, we get that the above values are equal to the values $\mu(\{x \in B; |f_n(x) - f(x)| > \varepsilon\})$ and, respectively, $\mu(\{x \in B; |f_n(x) - f_m(x)| \ge \varepsilon\})$. Therefore, the actual extensions play no role and, hence, we may for simplicity extend all f, f_n as 0 on $X \setminus B$. Thus the replacement of all f, f_n by 0 on $X \setminus B$ makes all functions finite everywhere on A and does not affect the fact that $(f_n)_n$ converges to f in measure on A or that $(f_n)_n$ is Cauchy in measure on A. $\begin{array}{c} \textbf{O} \quad | et a \ b > 0 \text{ and } A = \{x \in A: |f(x)| > a\} \\ \textbf{Mongi BLEL} \quad \iota^p \text{ spaces} \\ \end{array}$

Proposition

If $(f_n)_n$ converges to both f and g in measure on A, then f = g a.e. on A.

Proof

We may assume that all f, g, f_n are finite on A. Applying the above remark we find that

$$\mu(\{x \in A; |f(x) - g(x)| \ge \varepsilon\}) \le \mu(\{x \in A; |f_n(x) - f(x)| \ge \frac{\varepsilon}{2}\}) + \mu(\{x \in A; |f_n(x) - g(x)| \ge \frac{\varepsilon}{2}\})_n$$

This implies that $\mu(\{x \in A; |f(x) - g(x)| \ge \varepsilon\}) = 0$ for every $\varepsilon > 0$. We now write

$$\{x \in A; f(x) \neq g(x)\} = \bigcup_{k=1}^{+\infty} \{x \in A; |f(x) - g(x)| \ge \frac{1}{k}\}.$$

Since each term in the union is a null set, we get $\mu(\{x \in A; f(x) \neq g(x)\}) = 0$ and we conclude that f = g a.e. on A.

Proposition

If $(f_n)_n$ converges to f and $(g_n)_n$ converges to g in measure on Aand if $\alpha \in \mathbb{R}$. Then a) $(f_n + g_n)_n$ converges to f + g in measure on A. b) $(\alpha f_n)_n$ converges to αf in measure on A. c) If there exists $M < +\infty$ such that $|f_n| \le M$ a.e. on A, then $|f| \le M$ a.e. on A. d) If there exists $M < +\infty$ such that $|f_n|, |g_n| \le M$ a.e. on A, then $(f_n g_n)_n$ converges to fg in measure on A.

Proof

We may assume that all f, f_n are finite on A. a) We apply the remark 3

$$\mu(\{x \in A; \ |(f_n + g_n)(x) - (f + g)(x)| \ge \varepsilon\}) \le \mu(\{x \in A; \ |f_n(x) - f(x) + \mu(\{x \in A; \ |g_n(x) - g(x) + \theta_n(x) - g(x) + \theta_n(x) + \theta_$$

b) Also for $\alpha \neq 0$,

$$(\{x \in A; |\alpha f_n(x) - \alpha f(x)| \ge \varepsilon\}) = \mu(\{x \in A; |f_n(x) - f(x)| \ge \frac{\varepsilon}{|\alpha|}\}) \xrightarrow[n \to +\infty]{}$$

c) For *n* large enough

$$\begin{split} \mu(\{x \in A; \ |f(x)| \ge M + \varepsilon\}) &\leq \quad \mu(\{x \in A; \ |f_n(x)| \ge M + \frac{\varepsilon}{2}\}) \\ &\quad +\mu(\{x \in A; \ |f_n(x) - f(x)| \ge \frac{\varepsilon}{2}\}) \\ &= \quad \mu(\{x \in A; \ |f_n(x) - f(x)| \ge \frac{\varepsilon}{2}\}) \underset{n \to +\infty}{\longrightarrow} \end{split}$$

Hence, $\mu(\{x \in A; |f(x)| \ge M + \varepsilon\}) = 0$ for every $\varepsilon > 0$. We have $\{x \in A; |f(x)| > M\} = \bigcup_{k=1}^{+\infty} \{x \in A; |f(x)| \ge M + \frac{1}{k}\}$ and, since all sets of the union are null sets, then $\mu(\{x \in A; |f(x)| > M\}) = 0$. Hence, $|f| \le M$ a.e. on A.

d) Applying the result of c),

$$\mu(\{x \in A; |f_n(x)g_n(x) - f(x)g(x)| \ge \varepsilon\}) \le \mu(\{x \in A; |f_n(x)g_n(x) - x + \mu(\{x \in A; |f_n(x)g(x) - x \le \mu(\{x \in A; |g_n(x) - g(x)| + \mu(\{x \in A; |f_n(x) - f(x)\} + \mu(\{x \in A; |f_n(x) - f(x)\})\})$$

Proposition

Let $(f_n)_n$ be a sequence of measurable functions on a measure space (X, \mathcal{B}, μ) . If μ is finite and the sequence $(f_n)_n$ converges almost everywhere to f, then the sequence $(f_n)_n$ converges in measure to f.

Proof

Let $\varepsilon > 0$, we set

$$A_n(\varepsilon) = \{x; |f_n(x) - f(x)| \ge \varepsilon\}, \quad B_n(\varepsilon) = \bigcup_{k \ge n} A_k(\varepsilon)$$

and

$$B(\varepsilon) = \bigcap_{n \ge 1} B_n(\varepsilon) = \overline{\lim}_{n \to +\infty} A_n(\varepsilon)$$

If $x \in B(\varepsilon)$, then x belongs to an infinite of $A_n(\varepsilon)$. The sequence $(f_n(x))_n$ can not converges to f(x) and then $\mu(B(\varepsilon)) = 0$. Moreover since μ is finite $\lim_{n \to +\infty} \mu(B_n(\varepsilon)) = 0$, and since $A_n(\varepsilon) \subset B_n(\varepsilon)$, then $\lim_{n \to +\infty} \mu(A_n(\varepsilon)) = 0$.

Theorem

If $(f_n)_n$ is a Cauchy sequence in measure on A, there exists $f: X \longrightarrow \overline{\mathbb{R}}$ such that $(f_n)_n$ converges to f in measure on A. Moreover, there is a subsequence $(f_{n_k})_k$ which converges to f a.e. on A.

Corollary

If $(f_n)_n$ converges to f in measure on A, there is a subsequence $(f_{n_k})_k$ which converges to f a.e. on A.

Proof

As usual, we assume that all f_n are finite on A. We have, for all k, $\mu(\{x \in A; |f_n(x) - f_m(x)| \ge \frac{1}{2^k}\}) \xrightarrow[n,m \to +\infty]{} 0$. Therefore, there exists n_k such that $\mu(\{x \in A; |f_n(x) - f_m(x)| \ge \frac{1}{2^k}\}) < \frac{1}{2^k}$ for every $n, m \ge n_k$. Since we may assume that each n_k is as large as we like, we may inductively take n_k such that $n_k < n_{k+1}$ for every k. Hence, $(f_{n_k})_k$ is a subsequence of $(f_n)_n$ and, from the construction of n_k and since $n_k < n_{k+1}$, we have that for every k;

 $\begin{array}{l} \mbox{Introduction to $L^{\mathcal{P}}$ Spaces} \\ L^{\infty}$ Space \\ \mbox{Hölder Inequality} \\ \mbox{The Minkowski's Inequality} \\ \mbox{Properties of the $L^{\mathcal{P}}$ Spaces} \end{array}$

$$\mu(\{x \in A; |f_{n_{k+1}}(x) - f_{n_k}(x)| \ge \frac{1}{2^k}\}) < \frac{1}{2^k}$$
Let $E_k = \{x \in A; |f_{n_{k+1}}(x) - f_{n_k}(x)| \ge \frac{1}{2^k}\}$ and, hence, $\mu(E_k) < \frac{1}{2^k}$ for all k . Let $F_m = \bigcup_{k=m}^{+\infty} E_k$, $F = \bigcap_{m=1}^{+\infty} F_m = \overline{\lim}_{k \to +\infty} E_k$.
$$\mu(F_m) \le \sum_{k=m}^{+\infty} \mu(E_k) < \sum_{k=m}^{+\infty} \frac{1}{2^k} = \frac{1}{2^{m-1}} \text{ and, hence, } \mu(F) \le \mu(F_m) < \frac{1}{2^{m-1}} \text{ for every } m. \text{ This implies that } \mu(F) = 0.$$

If $x \in A \setminus F$, there exists m such that $x \in A \setminus F_m$, which implies that $x \in A \setminus E_k$ for all $k \ge m$. Therefore, $|f_{n_{k+1}}(x) - f_{n_k}(x)| < \frac{1}{2^k}$ for all $k \ge m$, such that $\sum_{k=m}^{+\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)| < \frac{1}{2^{m-1}}$. Thus, the series $\sum_{k=m}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$ converges and we may define $f: X \longrightarrow \overline{\mathbb{R}}$ by

$$f = f_{n_1}(x) + \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k}),$$

on $A \setminus F$ and 0, on $A^c \cup F$.

$$f(x) = f_{n_1}(x) + \lim_{m \to +\infty} \sum_{k=1}^{m} (f_{n_{k+1}}(x) - f_{n_k}(x)) = \lim_{m \to +\infty} f_{n_m}(x)$$

for every $x \in A \setminus F$ and since $\mu(F) = 0$, we get $(f_{n_k})_k$ converges to f a.e. Now, on $A \setminus F_m$; we have

1 00

$$\begin{aligned} |f_{n_m} - f| &= |f_{n_m} - f_{n_1} - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})| \\ &= |\sum_{k=1}^{m-1} (f_{n_{k+1}} - f_{n_k}) - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})| \\ &= \sum_{k=m}^{+\infty} |f_{n_{k+1}} - f_{n_k}| < \frac{1}{2^{m-1}}. \end{aligned}$$

Therefore, $\{x \in A; |f_{n_m}(x) - f(x)| \ge \frac{1}{2^{m-1}}\} \subset F_m$ and, hence,

$$\mu(\{x \in A; |f_{n_m}(x) - f(x)| \ge \frac{1}{2^{m-1}}\}) \le \mu(F_m) < \frac{1}{2^{m-1}}$$

Take an arbitrary $\varepsilon > 0$ and m_0 large enough such that $\frac{1}{2^{m-1}} \le \varepsilon$. If $m \ge m_0$, $\{x \in A; |f_{n_m}(x) - f(x)| \ge \varepsilon\} \subset \{x \in A; |f_{n_m}(x) - f(x)| \ge \frac{1}{2^{m-1}}\}$ and, hence,

$$\mu(\{x \in A; |f_{n_m}(x) - f(x)| \ge \varepsilon\}) < \frac{1}{2^{m-1}} \underset{m \to +\infty}{\longrightarrow} 0.$$

This means that $(f_{n_k})_k$ converges to f in measure on A. Since $n_k \xrightarrow[k \to +\infty]{} +\infty$, we have

$$\mu(\{x \in A; |f_k(x) - f(x)| \ge \varepsilon\}) = \mu(\{x \in A; |f_k(x) - f_{n_k}(x)| \ge \frac{\varepsilon}{2}\}) + \mu(\{x \in A; |f_{n_k}(x) - f(x)| \ge \frac{\varepsilon}{2}\})$$

and we conclude that $(f_n)_n$ converges to f in measure on A.

Remark

Consider the sequence $(f_n)_n$ defined by: $f_1 = \chi_{]0,1[}$, $f_2 = 2\chi_{]0,\frac{1}{2}[}$, $f_3 = 2\chi_{]\frac{1}{2},1[}$, and for all $n \in \mathbb{N}$, $f_{\frac{n(n+1)}{2}+k+1} = n\chi_{]\frac{k}{n+1},\frac{k+1}{n+1}[}$, for $k = 0, \ldots, n$. If $0 < \varepsilon \leq 1$, $\mu(\{x \in]0,1[; |f_n(x)| \geq \varepsilon\}) \xrightarrow[n \to +\infty]{} 0$. Therefore, $(f_n)_n$ converges to 0 in measure on]0,1[. But, as we have already seen, it is not true that $(f_n)_n$ converges to 0 a.e. on]0,1[.

Theorem

Let $1 \leq p < +\infty$.

- The convergence in *L^p* implies convergence in measure.
- If µ(X) < ∞, then L^q ⊂ L^p and the convergence in L^q implies convergence in L^p, for all q ≥ p.

Proof

Suppose the sequence $(f_n)_n$ converges to f in L^p and let $\varepsilon > 0$, Then by the Markov inequality,

$$\mu\{|f_n - f| \ge \varepsilon\} \le \frac{1}{\varepsilon^p} \int_X |f_n - f|^p d\mu = \frac{1}{\varepsilon^p} ||f_n - f||_p^p$$

and 1) follows at once.

2 The Hölder inequality gives for any measurable function f,

$$\int_{X} |f(x)|^{p} d\mu(x) \leq \left(\int_{X} |f(x)|^{q} d\mu(x) \right)^{\frac{p}{q}} \left(\int_{X} d\mu(x) \right)^{\frac{q-p}{q}} = \|f\|_{q}^{p} (\mu(x))^{\frac{q-p}{p}} = \|$$

and 2) is proved.

Egoroff's Theorem

Theorem

(Egoroff) Let (X, \mathcal{B}, μ) be a measure space. Assume that the measure μ is bounded and $(f_n)_{n \in \mathbb{N}}$ a sequence of real or complex measurable functions on X which converges point wise on X to a function f. For any $\varepsilon > 0$ there exists a set $A_{\varepsilon} \in \mathcal{B}$, such that $\mu(A_{\varepsilon}) \leq \varepsilon$ and the restriction of the sequence (f_n) on the complementary of A_{ε} is uniformly convergent.

Proof

The function f is measurable. For any integers (n, k), k > 0, let

$$E_n^{(k)} = \bigcap_{p=n}^{+\infty} \{x; |f_p(x) - f(x)| \le \frac{1}{k}.\}$$

This set is measurable. For a given k, the sequence $(E_n^{(k)})_{n\in\mathbb{N}}$ is increasing and $\lim_{n\to+\infty} E_n^{(k)} = X$. (Because the sequence $(f_n)_{n\in\mathbb{N}}$ converges to f on X). As μ is bounded, $\lim_{n\to+\infty} \mu(E_n^{(k)})^c = 0$. Then there exists an integer n(k) such that $\mu(E_{n(k)}^{(k)})^c \leq \varepsilon/2^k$. The set $A_{\varepsilon} = \bigcup_{k=1}^{+\infty} (E_{n(k)}^{(k)})^c$ is appropriate. In fact $\mu(A_{\varepsilon}) \leq \varepsilon$, and on the complementary of A_{ε} the sequence $(f_n)_{n\in\mathbb{N}}$ converges uniformly to f.

The requirement that μ is bounded is essential. For constructing a counterexample it suffices to take μ the Lebesgue measure on \mathbb{R} and f_n the characteristic function of the interval $[n, +\infty[$.

