

Lecture 7 Classification and Identification of Anemia from Peripheral Blood Smear

Outlines

- I. Normal blood film.
- II. Iron Deficiency Anemia.
- III. Hemoglobinopathies:
 - III.I Thalassemia: alpha and beta.
 - III.II Sickle cell anemia.
- IV. Megaloblastic anemia.
- V. Hereditary hemolytic anemia:
 - V.I Hereditary spherocytosis.
 - V.II Hereditary elliptocytosis.

I. Normal blood film

- Normal red blood cell:
 - Normal RBCs are **biconcave** in shape.
 - Color: normochromic (the color is normal).
 - Size: normocytic (size is normal).
- Normal platelets
- Normal white blood cells (shape and percentage)

Classification of Anemia

• Red blood cell indices (MCV and MCH) may be used to classify anemia.

Microcytic, hypochromic	Normocytic, normochromic	Macrocytic
MCV <80 fL MCH <27 pg	MCV 80–95 fL MCH ≥27 pg	MCV >95 fL
Iron deficiency Thalassaemia Anaemia of chronic disease (some cases)	Many haemolytic anaemias Anaemia of chronic disease (some cases) After acute blood loss	Megaloblastic: vitamin B ₁₂ or folate deficiency Non-megaloblastic: alcohol, liver disease, myelodysplasia,
Lead poisoning Sideroblastic anaemia (some cases)	Renal disease Mixed deficiencies Bone marrow failure (e.g. post-chemotherapy, infiltration by carcinoma, etc.)	aplastic anaemia, etc. (see Table 5.10)

MCH, mean corpuscular haemoglobin; MCV, mean corpuscular volume.

II. Iron deficiency anemia (IDA)

Blood film morphology:

- The red cells are characteristically <u>hypochromic</u> and <u>microcytic.</u>
- There are a number of <u>elliptocytes</u> and <u>teardrop</u> cells.
- **Poikilocytes** have been observed to correlate with the severity of iron deficiency anemia.

II. Iron deficiency anemia (IDA)

Iron deficiency anemia. Shows hypochromia, microcytosis. Iron deficiency anemia. Shows a mild degree of hypochromia (ring shape) and microcytosis.

Iron deficiency anaemia.

Shows a marked degree of hypochromia, microcytosis, marked anisocytosis, and mild poikilocytosis; there are some normally haemoglobinized cells.

II. Iron deficiency anemia (IDA)

- Screening tests:
 - Hb estimation (low).
 - Hct (or PCV) (low).
 - MCV and MCH (low).
 - Reticulocyte count (low).
 - Blood film.
- Specific tests:
 - Serum iron (low).
 - Serum ferritin (reduced).
 - Serum Transferrin Receptor (raised).
 - Bone marrow iron stores (absent).
 - Hemoglobin electrophoresis (normal).

III. Genetic disorders of hemoglobin

- Hb is composed of haem (iron) and globin (protein).
- Hemoglobin abnormalities result from either
- 1. The production of <u>abnormal</u> Hb (e.g., Hb S).
- <u>Reduction in the synthesis of normal Hb</u> proteins (α or β- globin) (e.g., α and βthalassemia).

 Table 2.3 Normal haemoglobins in adult blood.

		Hb A	Hb F	Hb A ₂
-	Structure	$\alpha_2 \beta_2$	$\alpha_2 \gamma_2$	$\alpha_2 \delta_2$
	Normal (%)	96–98	0.5–0.8	1.5–3.2

III.I Thalassemia

- **Cause**: reduced production rate of β or α chain.
- There are two types of Thalassemia:
 - α Thalassemia (defect in α globin chain)
 - β -Thalassemia (defect in β globin chain)

III.I Alpha Thalassemia

- α-thalassemia is caused by a <u>deletion in α genes</u> that leads to the <u>loss</u> of one or more <u>α peptide chains</u>.
- α-thalassemia type that is caused by a <u>deletion in 3 α genes</u> leads to <u>Hb H disease</u>. As a result, **Hb H** is composed mainly of 4 β globin chains.
- Hb H Can be detected by:
 - Staining by the supravital stain.
 - Electrophoresis (fast-moving band).

III.I Alpha Thalassemia

• α-Thalassemia: Hb H disease

Multiple fine, deeply stained deposits (golf ball cells)

III.I Thalassemia (α or β)

- Blood film morphology:
 - Hypochromic, microcytic, target cell, nucleated RBCs (NRBCs not seen in IDA), poikilocytosis.
- Screening test:

- Hb (low), MCV (low), MCH (low), PCV (low), reticulocyte (high), blood film.
- Specific test:
 - 1. Electrophoresis: shows an increase in Hb F.
 - 2. High-performance liquid chromatography (HPLC): shows an increase in Hb F.
 - 3. DNA analysis: shows a <u>mutation</u> in the related <u>gene</u>.

III.I Thalassemia

- Thalassemia (α or β) smear

Hypochromic, microcytic, target cell, nucleated RBCs (NRBCs not seen in IDA), poikilocytosis.

III.II Sickle cell anemia

- **Cause**: mutation in the beta chain gene (HBB) that results in the <u>production of</u> <u>abnormal Hb</u> called **HB S**.
- Blood film morphology:
 - Sickle cells, target cells, polychromasia, Howell- Jolly bodies may be present.

III.II Sickle cell anemia

- Screening test: Hb (low), blood film (sickle cell).
- Special sickle cell anemia screening test:
 - 1. Sickling test (+ve).
 - 2. Solubility test (+ve).
- Specific test:

- Electrophoresis: shows the presence of Hb S and variation in the percentage of Hb A and Hb F.
- 2. High-performance liquid chromatography (HPLC): shows the presence of Hb S and variation in the percentage of Hb A and Hb F
- 3. **DNA analysis:** shows a mutation in the beta globulin (HBB) gene.

IV. Megaloblastic anemia

• Macrocytic anemia

- Blood film morphology:
 - Macrocytic (oval).
 - Hyper-segmented neutrophil nuclei (6 or more lobes).

Photomicrograph of a blood film. Megaloblastic anemia. Shows macrocytes, oval macrocytes, and a hyper-segmented neutrophil.

IV. Megaloblastic anemia

- Screening test:
 - MCV (high), reticulocyte count (low), blood film, Hb (low)
- Specific tests:
 - 1. Serum vitamin B12 (depend)
 - 2. Serum folate (depend)
 - 3. Red cell folate (low)
 - 4. BM examination

IV. Megaloblastic anemia

- Bone Marrow Aspirate from a patient with megaloblastic anemia.
- <u>Erythroid hyperplasia</u> (decreasing of myeloid to erythroid ratio) is seen in the bone marrow.

V. Hereditary hemolytic anemias

- Hereditary hemolytic anemia is <u>increased RBC destruction</u> due to intrinsic red cell defects, which include:
 - 1. RBC enzyme defect.
 - 2. RBC membrane defect in proteins involving vertical or horizontal interactions of the RBCs Cell membrane.

Types include:

- a) Hereditary spherocytosis (HS)
- b) Hereditary elliptocytosis (HE)
- 3. Hb synthesis defect.

Red cell membrane structure

• The red cell membrane comprises a lipid bilayer, integral membrane protein, and a membrane skeleton.

V. Hereditary spherocytosis and elliptocytosis

Hereditary spherocytosis

• Defects in the proteins involved in the <u>vertical</u> interactions between the membrane skeleton and the lipid bilayer of the red cells: (e.g. ankyrin, Band3, protein 4.2).

Hereditary elliptocytosis

• Defects in the proteins involved in the <u>horizontal</u> interactions.

Hereditary spherocytosis

Hereditary elliptocytosis

Hereditary spherocytosis smear

Hereditary elliptocytosis smear

HS and HE lab finding

• Screening test:

- Hb (low)
- Reticulocytosis 5-20%
- Blood film shows <u>spherocytosis or elliptocyt</u>osis.
- MCHC (Increased) (characteristic feature)
- MCV (Decrease).
- Specific test:
 - Osmotic fragility test (increase).

Microscopy check list

Practice identifying abnormalities found in the following conditions from the blood film:

- 1. IDA
- 2. Hemoglobinopathies:
 - a. Thalassemia: alpha and beta
 - b. Sickle cell anemia.
- 3. Megaloblastic anemia.
- 4. Hereditary hemolytic anemia:
 - a. Hereditary spherocytosis.
 - b. Hereditary elliptocytosis.