
4 Vector Spaces
4.7 Row Space, Column Space, and Null Space
4.8 Rank, Nullity, and the Fundamental Matrix Spaces

















Example: Finding the solution space (or the null space) of a homogeneous system

Find the null space for matrix:

 

Solution: The null space of A is the solution space of Ax = 0

G.-J. E.

1 2 2 1 0 1 2 0 3 0

augmented matrix 3 6 5 4   0 0 0 1 1   0

1 2 0 3 0 0 0 0 0 0
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 x1 = –2s – 3t, x2 = s, x3 = –t, x4 = t
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Find a basis of the row space of  A =
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Example:   Finding a basis for a row space

Solution:
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ref(A) =G. E.⎯⎯⎯→

a basis for row(A) = {the nonzero row vectors of rref(𝐴)}

= {w1, w2, w3} = {(1, 3, 1, 3), (0, 1, 1, 0), (0, 0, 0, 1)}



Example: Finding a basis for a subspace using the previous Thm.

       Find a basis for the subspace of  R
3
 spanned by

}8) 1, (5, ,3) 0, (3, ,5) 2, 1,({
321 vvv

−=S

Solution:

a basis for span({v1, v2, v3}) 

= a basis for row(A)

= {the nonzero row vectors of ref(𝐴)}

= {w1, w2} 

= {(1, –2, – 5) , (0, 1, 3)}
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(Construct A such that row(A) = span(S))



Example:  Finding a basis for the column space of a matrix

     Find a basis for the column space of the matrix A given by 

1 3 1 3

0 1 1 0

3 0 6 1

3 4 2 1

2 0 4 2
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1 0 3 3 2 1 0 3 3 2

3 1 0 4 0 0 1 9 5 6
  

1 1 6 2 4 0 0 1 1 1

3 0 1 1 2 0 0 0 0 0
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Since col(A)=row(AT), to find a basis for the column space of the matrix 

A is equivalent to find a basis for the row space of the matrix AT



(a basis for the column space of A)

a basis for col(A)

=  a basis for row(AT)

= {the nonzero row vectors of B}

= {w1, w2, w3} 
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Notes:

    The bases for the column space derived from Sol. 1 and Sol. 2 are different. 

However, both these bases span the same col(A), which is a subspace of R5

Solution 2:

G.J. E.

1 3 1 3 1 0 2 0

0 1 1 0 0 1 1 0

3 0 6 1 0 0 0 1

3 4 2 1 0 0 0 0

2 0 4 2 0 0 0 0

A B
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Leading 1’s  {b1, b2, b4} is a basis for col(B) (not for col(A))

                        {a1, a2, a4} is a basis for col(A)

※ This method utilizes that B is with the same dependency relationships among columns as 

A, which does NOT mean col(B) = col(A)
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Example:  Rank and nullity of a matrix

     Let the column vectors of the matrix A be denoted by a1, a2, a3, a4, and a5.

4 5

1 0 2 1 0

0 1 3 1 3

2 1 1 1 3

0 3 9 0 12

A
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(a) Find the rank and nullity of A

(b) Find a subset of the column vectors of A that forms a basis for

      the column space of  A

(c) If possible, write the third column of A as a linear combination 

     of the first two columns



Solution:  Derive the reduced row-echelon form of A.

1 0 2 1 0 1 0 2 0 1

0 1 3 1 3 0 1 3 0 4
( )

2 1 1 1 3 0 0 0 1 1

0 3 9 0 12 0 0 0 0 0
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(by Thm.)nuillity( ) rank( ) 5 3 2 A n A= − = − =

(a)   rank(A) = 3 (since rank(A) = the number of nonzero rows in B)



(b) Leading 1’s

,

0

1

1

1

  and,

3

1

1

0

  ,

0

2

0

1

421



















−
=



















−

−
=



















−
= aaa

1 2 4

1 2 4

{ , , } is a basis for col( ( ))

{ , , } is a basis for col( )

rref A

A

 b b b

a a a

213 32 aaa +−=
3 1 22 3  = − + b b b(c)







Example: Finding the solution set of a nonhomogeneous system

 Find the set of all solution vectors of the system of linear equations

  

Solution:
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and xh = su1 + tu2  is a solution of Ax = 0 (you can replace 

the constant vector with a zero vector to check this result)

is a particular solution vector of Ax = b,



Example: Consistency of a system 𝐴𝑥 = 𝑏 depends on whether b is in col(𝐴)

Check if the following system is consistent by checking for column relations.
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Solution:

G.-J. E.

1 1 1 1 1 0 1 3

[   ] 1 0 1 3 0 1 2 4

3 2 1 1 0 0 0 0
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(In other words, b is in the column space of A)
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 The system of linear equations is consistent.

(due to the fact that elementary row operations do not 

change the dependency relationships among columns)



▪ A property that can be inferred:

         If rank(A) = rank([A|b]), then the system Ax = b is consistent

The above property can be analyzed as follows:

(1)  By a Theorem, Ax = b is consistent if and only if b is a linear combination of the 

columns of A, implies that placing b to the right of A does NOT increase the number of 

linearly independent columns, so dim(col(A)) = dim(col([A|b])).

(2)  By definition of the rank, rank(A) = dim(col(A)) and rank([A|b]) = dim(col([A|b])).

Combining (1) and (2), we obtain: rank(A) = rank([A|b]) if and only if Ax = b is consistent.

▪ Note from this example:

rank( ) rank([ | ]) 2A A= =b



Theorem: Summary of equivalent conditions for square matrices:

   If A is an 𝑛 × 𝑛 matrix, then the following conditions are equivalent 

(1)  A is invertible

(2)  Ax = b has a unique solution for any n×1 matrix b

(3)  Ax = 0  has only the trivial solution

(4)  A  is row-equivalent to  In

(5)  det (A)  0              

(6)  rank(A) = n

(7)  There are n row vectors of A which are linearly independent

(8)  There are n column vectors of A which are linearly independent
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