Chapter 7 Cosets and Lagrange's Theorem
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Definition of Cosets of H in G:

Let GG be a group and let H be a nonempty subset of G. Forany a € G:

+ Leftcoset:aH = {ah | h € H}
+ Rightcoset: Ha = {ha | h € H}
. Conjugate:aHa ! = {(.1',}‘1151;_1 | h € H}

When H is a subgroup of G:

« The set aH is called the left coset of H in (G containing a
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« The set Ha is called the right coset of H in (G containing a

« The element a is called the coset representative of aH (or Ha)
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Example 1 (Cosets in S3): Let G = S3and H = {(1), (13)}. Left cosets of H in G are:

- ()H = H = {(1),(13)}

- (12)H = {(12),(12)(13)} = {(12),(132)} = (132)H
- (B)H ={(13),(1); = H

- (23)H = {(23),(23)(13)} = 1(23), (123)} = (123)H

Observations:

Different elements can generate the same coset: (12)H = (132)H
« Elements in H generate H itself: (1)H = (13)H = H
« We have exactly 3 distinct cosets: H, (12)H; and (23)H
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Example 2: Left Cosets in the Dihedral Group Let K = { Ry, R1gg } in D4, the dihedral
group of order 8. The left cosets of K in Dy are:

RyK = K = {Ry, Rig}
RygK = {Ry, Rano} = Royro K
RigoK = {Rigo, Ro} = K
VK = {V,H} = HK

DK = {D,D'} = D'K

Key Point: The group Dy is partitioned into distinct cosets, each of size | K| = 2.
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Example 3: Cosets in Additive Groups: Let H = {0, 3, 6} in Zg under addition.

Note: For additive notation, we write @ + H instead of a H . The cosets of H in Zg are:

-0+ H={0,3,6}=3+H=6+H
1+ H={1,4,7}=4+H=7+H
+ 2+ H={2,5,8} =5+ H=8+H

Important Observations:

1. Cosets are usually not subgroups (e.g., 1 + H is not closed)
2. aH mayequal bH evenwhena # b
3. Left and right cosets may differ: a H #* Ha in general
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Lemma: Properties of Cosets: Let H be a subgroup of GG, and let a, b € G. Then:
Property 1: a € aH (Every left coset contains its representative)
Property 2:aH = H ifandonlyifa € H (H "absorbs" elements that belong to it)

Property 3: (ab) H = a(bH ) and H (ab) = (H a)b (Coset multiplication is associative
with group elements)

Property 4:aH = bH ifand only if a € bH (A coset is uniquely determined by any of its
elements)

Property 5:aH — bH oraH N bH = () (Two cosets are either identical or disjoint)
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Property 6: aH = bH if and only if a 'b € H (Coset equality can be tested via
membership in H)

Property 7: |a H| = |bH | (All cosets have the same size)

Property 8:ald = Haifandonlyif H = aHa ! (Left and right cosets coincide iff H is

conjugate to itself)

Property 9: aH is a subgroup of GG ifand only ifa € H (Only H itself is both a coset and a
subgroup)

Key Insight: Properties 1, 5, and 7 show that the left cosets of H partition GG into blocks of

equal size.
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Proofs:

Property1: a € aH
Proof of Property 1: a = ae € aH (sincee € H)
Property 2:aH = H ifandonlyifa € H

Proof of Property 2:

e (=)Ifald = H,thena = ae € aH = H.
¢ (<) Assumea € H.
« ToshowaH C H:Forh € H,we have ah € H by closure.
« ToshowH C aH:leth € H.Sincea € H, we havea ' € H soa ‘h € H.Thus
h=e-h=(aa )h=ala 'h) € aH
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Property 3: (ab) H = a(bH) and H (ab) = (Ha)b
Proof of Property 3: This follows directly from associativity:

* (ab)h = a(bh)forallh € H
- h(ab) = (ha)bforallh € H

Property 4:aH = bH ifandonlyifa € bH
Proof of Property 4:

* (=)IfaH = bH,thena = ae € aH = bH.
« (<=)Ifa € bH, then a = bh for some h € H . Therefore:
. oH = (bh)H = b(hH) = bH
« where the last equality uses Property 2 (since h € H, we have hH = H).
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Property 5:aH = bH oraH NbH = ()

Proof of Property 5:

« |fthere exists ¢ € aH M bH, then by Property 4:
« ¢c € aH impliescH = aH
- ¢ € bH impliescH = bH
» ThereforeaH = bH

+ IfaH # bH, thenaH NbH = 0.
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Property 6: aH = bH ifandonlyifa b € H

Proof of Property 6: We have aHH = bH ifand only if H = a 'bH (multiply both sides by

a ~ on left).

This holds if and only if a 'be H (by Property 2).

Property 7: |aH| = |bH |

Proof of Property 7: Define ¢ : aH — bH by ¢(ah) = bhforh € H.

« Well-defined and onto: Clear from definition

- One-to-one: If ¢(ah;) = ¢(ahs), then bhy = bhs. By cancellation, by = hs, so
ahi = ahs.

Therefore ¢ is a bijection, so |aH| = |bH |
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Property 8:aH = Haifandonlyif H = aHa !

Proof of Property 8: We have alH = Ha ifandonlyif (aH)a ' = (Ha)a™".
This holds if and only faHa ' = H(aa ') = H.

Property 9: a H is a subgroup of G ifand onlyifa € H

Proof of Property 9:

+ (=) IfaH isasubgroup, thene € aH.SoaH NeH = aH N H # (). By Property 5,
alH = eH = H . ByProperty2,a € H.

« (&) Ifa € H, thenby Property 2, alH = H, which is a subgroup.
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Example: Cosets of H = {1,15} in U(32)
G=U(32)=1{1,3,5,7,9,11,13,15,17,19, 21, 23, 25, 27, 29, 31}
Strategy: Use Property 5 to systematically find all distinct cosets. Step-by-step:

1. Startwith H = {1,15}
Choose 3 ¢ H:Get3H = {3,45 mod 32} = {3,13}
Choose b ¢ H U3H:Get5H = {5,75 mod 32} = {5,11}

Continue choosing representatives not yet in any coset

o K~ W N

Continue until all elements of U (32) are accounted for
Result: We obtain |[U(32)|/|H| = 16 /2 = 8 distinct cosets.

Practical Application: This method works for any finite group and subgroup!
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Cosets partition groups in meaningful ways:

Example (Geometric Views of Cosets): Geometry in 3-Space

+ letG =R’and H =1 plane through the origin
+ The coset (a, b, ¢) + H is the plane through (a, b, ¢) parallel to H

« Cosets partition 3-space into parallel planes
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Example(Algebraic Views of Cosets): Matrix Determinants

+ letG = GL(2,R)and H = SL(2,R) (matrices with det = 1)

« Forany matrix A € G, the coset AH consists of all 2 X 2 matrices with the same
determinant as A

2 0
Example: [0 1] H = all matrices with determinant 2
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Theorem (Lagrange's Thm): If G is a finite group and H is a subgroup of G, then | H | divides
|G|. Moreover, the number of distinct left (right) cosets of H in G is |G|/|H|

Proof: letai H,asH, ..., a,H denote the distinct left cosets of H in GG.

1. Foreacha € G, wehave al = a;H for some . By Property 1of Lemma 7.1, a € aH.
Therefore, every element of G belongs to some coset: G = a1 H UasHU ---Ua,H.

2. By Property 5 of Lemma 7.1, this union is disjoint. Therefore:

G| = |a H| + |agH[ 4 -+ - + [a, H]|
3. By Property 7 of Lemma 7.1, |a; H| = |H| for each i. Thus: |G| = r|H

number of distinct left cosets.

4. This gives us |H | divides |G| andr = |G|/|H|. ®

 where 7 is the
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Definition: The index of a subgroup H in GG is the number of distinct left cosets of H in G
Notation: |G : H|

Corollary (Formula for Index): If G is a finite group and H is a subgroup of GG, then:

G
|G : H| — | ‘ . (Proof: This is immediate from Lagrange's Theorem.)

H|
Example: In S5 with H = {(1), (13) }:

Sg‘ — 6, |H| — 2
S3: H| = 6/2 = 3 (we found 3 distinct cosets in Example 1)
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Corollary (|a| divides |G|): In a finite group, the order of each element of the group divides
the order of the group.

Proof: Leta € G. Since |a| = |{a)| and {(a) is a subgroup of G, Lagrange's Theorem gives
us that |{a)| divides |G|.

Important Consequence: In a group of order n, every element a satisfies a” = e.
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Corollary (Groups of Prime Order Are Cyclic):

Every group of prime order is isomorphic to Zj,.
Proof:

* Suppose |G| — pwhere pis prime

 leta € Gwitha # e

» Then |(a)| divides p by Lagrange's Theorem

» Since pis prime, either |(a)| = 1or [(a)| = p
+ Since a # e, we have |(a)| # 1

« Therefore |[{a)| = p = |G|

» This means (a) = G, so G'is cyclic

» Every cyclic group of order p is isomorphic to Z,, (From Chapter 6). B
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Corollary: Let G be a finite group, and let a € G. Then al =

Proof:

+ By aprevious Corollary, we know |a| divides |G|

+ Therefore |G| = |a| - k for some positive integer k
+ Thus: al®l = @ld* = (¢/hF = b = ¢

Example: In any group of order 12, every element a satisfies a'’
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Corollary: For every integer a and every prime p: @ mod p = a mod p
Proof:

* By the division algorithm, @ = pm + rwhere 0 < r < p

Thus @ mod p = 7, so it suffices to prove r”’ mod p = r

If = 0, the result is trivial

Assumer # 0.Thenr € U(p) ={1,2,...,p — 1} under multiplication modulo p

Since |U(p)| = p — 1, Corollary 4 gives us: rP 1 mod p=1

Multiplying both sides by 7: 7 mod p = r mod p
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Warning - Converse of Lagrange is False!
False Statement: I d divides |G|, then G has a subgroup of order d.
Counterexample: A4 has order 12 but has no subgroup of order 6.
Why this matters:

 Lagrange gives us necessary conditions for subgroup orders
* |t does not give sufficient conditions

« We need additional theorems to guarantee existence of subgroups

Good News: Later theorems (Cauchy's Theorem, Sylow Theorems) do guarantee existence of
subgroups of certain orders.
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Example: A4 Has No Subgroup of Order 6

Proof by contradiction: A4 contains 8 elements of order 3. Suppose H is a subgroup of

order 6. Let a be any element of order 3 in Ay4.

Case1: Assume a ¢ H.Then Ay = H U aH (since |A4] = 12and |aH| = 6). So
a’ € Hora® € aH:

4

« Ifa* € H.Since H is a subgroup, (a2)2 — a = a € H.This contradicts our

assumption thata ¢ H.

- Ifa? € aH.Thena® = ahforsome h € H. Multiplyingbya *onthelefta = h € H.
This contradicts our assumption that a é H.

So every element of order 3 must be in H . But |H| = 6 < 8, which is impossible. Therefore,
A4 has no subgroup of order 6. B
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Definition: For subgroups H and K ofagroup G: HK = {hk | h € H,k € K}
Theorem 7.2: For two finite subgroups H and K of agroup: |HK | = |H||K|/|H N K|.

Important Note: H K is not always a subgroup! (See Exercise 6)

Proof of |HK| = |H||K|/|H N K|:

1. The set HK contains | H || K| products, but these may not all be distinct

2. Foreveryt € H N K and every product hk € HK: (ht)(t 'k) = h(tt ')k = hk
So each element in HK is represented at least | H M K | times.

3. Conversely, if hk = h'K', then:t = h 'R =Ekk'' € HN K. And we can write
h' = htand k' =t 'k

4. Soeach element in HK is represented exactly | H N K | times. Therefore,
_ |HIIK]
HK| = |
|HN K|
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Theorem 7.3: Let G be a group of order 2p, where p is a prime greater than 2. Then G is
isomorphic to Zsay, or D,

Strategy of proof:

Assume G has no element of order 2p (otherwise G =2 Zap).

Show GG must have an element of order p.

Show (G must have an element of order 2.

Determine the multiplication structure uniquely.

Verify this gives D,
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Proof: Finding an Element of Order p
Assume G has no element of order 2p. Claim: G must have an element of order p:

« By Lagrange's Theorem, every nonidentity element has order 2 or p

* Suppose every nonidentity element has order 2. Then foralla, b € G:
ab = (ab)™' = b 'a~ = ba. So G would be Abelian.

« Pick distinct nonidentity elements a, b € G witha # b

* The set {e, a, b, a,b} is closed under multiplication. Therefore it's a subgroup of order 4.
Contradiction: 4 1 2p for prime p > 2. So G must have an element of order p. Call it a.

Next step: Let b be any element not in (a). Determine |b|:
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» By Lagrange, |(a) N (b)| divides |(a)| = p.
- Since b ¢ (a), we have (a) # (b). Therefore |(a) N (b)| = 1.

. pP-D
If|b| = p. Then |<a,><b>| = ]

{a)(b)| < |G| =2p.So |b| =2foranyb ¢ (a).

= p® > 2p. This is impossible since

Structure of G: G = {(a) U (a)b = {e,a,a®,...,a? ', b,ab,a’b,...,a’ 'b}

Now the multiplication table is uniquely determined by Key relations:
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L la?=b=¢]|
2. Sinceab ¢ {(a), |ab| = 2.50 (ab)(ab) = e = abab = e = bab = a '=
ba’ = (bab)(ba’ ') =a ' (ba’ ') =---=a b So|ba’ =a b

The three types of products in Cayley table for G5:

1. a-d =a"

usual cyclic group multiplication)

2. a' - (a’b) = a"b (clear)

3. (a'd) - (a’b) = a'(ba’)b = a'(a?b)b = a" /b* = o'/

What we've shown: When p > 2 is prime, a group GG of order 2p satisfies one of two
conditions:
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Case 1: G has an element of order 2p. Then G is cyclic. Therefore G = Zg,
Case 2: (G has no element of order 2p:

+ Then G has exactly the structure: G = {e, a,a’,...,a’ *,b,ab,...,a’ b}
1

With relations: |a| = p, b* = e, bab = a~

The multiplication table is uniquely determined

These are precisely the defining relations of D,

Therefore G 2 D,

Final conclusion: G = Zy,orG = D). N
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Immediate Corollary:

« S3 = D3 (both are non-abelian groups of order 6)

+ GL(2,7Z9) = Ds (from Exercise 47, Chapter 2)
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