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1. Find the magnetic field created by the following finite length current-carrying 
wire at points A and B.  

 
Solution: 
 
Let us first calculate the magnetic field at point B. If we consider an element of the 
wire  
 

 

 
 
To solve this problem we need to apply Biot-Savart Law. We consider the elementary part 
dl of the wire at a position x having length dx. Thus . This part is flown by a 
current I so at the point B it creates a magnetic field dB given by: 
 

 

 
where r is a vector having its tail (beginning) at the tail of dl and its tip (end) at the point 
B. Thus r = (0, h, 0) – (x, 0, 0) or r = (-x, h, 0). Then  
 

dl = dxx̂
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. 

The magnitude of r is given by .  Thus for the elementary magnetic field we 

have: 
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The total magnetic field is taken by an integration we get  
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Similarly for point A we have that 𝐫 = 1− #
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2. Find the magnetic dipole moment of the loop shown in figure below. All sides have 
length w, and it carries a current I.   

 

 
 

Solution: 
 
The superposition principle implies that the magnetic dipole moment will be the   
resultant of the dipole moments of the two frames. Thus: 
 

  
 

𝐦 = 𝐦( +𝐦" = 𝐼𝑤"𝐲$ + 𝐼𝑤"𝐳$ 
 

Thus  𝑚 = 𝐼𝑤"√2 and at a direction on the y-z plane at 450  with respect to the positive 
part of the y-axis. 
 
      



 
3. A long and thin wire is flown by a current I along the z-direction. The wire is 

enclosed by a cylindrical magnetic material of radius a and magnetic permeability μa. 
Find at all space points the vectors H, B, M and the volume and surface current 
densities associated with M.    

 

 

Solution: 
 

 
 

The presence of the magnetic material forces us to work with the auxiliary field H. The 
problem has an obvious cylindrical symmetry. Assume a loop of radius r centered at the 
wire, then the field H is tangent to the loop and we have  
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Since I is the only current of free charges. For this, the relation above holds in all space 
both for r > a and for r < a.  
 
The magnetic field B is given by: 
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The magnetization inside the material is: 
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The volume current density associated with M is given by: 
 

𝐉𝐌 = ∇ZZ⃗ × 𝐌( 
 
Using the expression for curl in cylindrical coordinates we can show that 𝐉𝐌 = 0. 
 
The surface current density KM associated with M is found as follows: we consider the 
unitary vector 𝐫$ perpendicular to the surface of the material and with a direction 
outwards.  
 

 
 
 
The magnetization right after inside the material surface is given by:  
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So for KM we have: 
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