PHYSICS 507

6" HOMEWORK

Prof. V. Lempesis

Hand in: Tuesday 30" of March 2021, time: 23:59

1. Find the magnetic field created by the following finite length current-carrying
wire at points A and B.
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Solution:

Let us first calculate the magnetic field at point B. If we consider an element of the
wire

To solve this problem we need to apply Biot-Savart Law. We consider the elementary part
dl of the wire at a position x having length dx. Thus dl =dxx . This part is flown by a
current / so at the point B it creates a magnetic field B given by:
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where r is a vector having its tail (beginning) at the tail of dl and its tip (end) at the point
B. Thus r=(0, 4, 0) — (x, 0, 0) or r = (-x, A, 0). Then
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The magnitude of 7 is given by r = (xz + Rz) . Thus for the elementary magnetic field we
have:
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The total magnetic field is taken by an integration we get
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Similarly for point A we have that r = (—% — X, R, 0). Thus,
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2. Find the magnetic dipole moment of the loop shown in figure below. All sides have
length w, and it carries a current 1.

Solution:

The superposition principle implies that the magnetic dipole moment will be the
resultant of the dipole moments of the two frames. Thus:
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m=m; +m, = Iw?y + Iw?Z

Thus m = Iw?+v/2 and at a direction on the y-z plane at 45° with respect to the positive
part of the y-axis.



3. A long and thin wire is flown by a current / along the z-direction. The wire is
enclosed by a cylindrical magnetic material of radius @ and magnetic permeability z..
Find at all space points the vectors H, B, M and the volume and surface current
densities associated with M.

Solution:
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The presence of the magnetic material forces us to work with the auxiliary field H. The
problem has an obvious cylindrical symmetry. Assume a loop of radius 7 centered at the
wire, then the field H is tangent to the loop and we have
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Since / is the only current of free charges. For this, the relation above holds in all space
both for »>a and for r <a.

The magnetic field B is given by:
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The magnetization inside the material is:
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The volume current density associated with M is given by:
Ju=VxM,
Using the expression for curl in cylindrical coordinates we can show that Jy; = 0.
The surface current density Kwm associated with M is found as follows: we consider the

unitary vector T perpendicular to the surface of the material and with a direction
outwards.

The magnetization right after inside the material surface is given by:
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So for Km we have:






