Work Sampling

Sections:

1. How Work Sampling Works - part 1
2. Statistical Basis of Work Sampling

- part 2
2.1 Confidence intervals in Work Sampling
2.2 Determining Number of Observations Required
2.3 Determining Average Task Times and Standard Times

3. Application Issues in Work Sampling part 3

Work Sampling

2. Statistical Basis of Work Sampling

Statistical Basis of Work Sampling

- Statistical Basis of work sampling:
- Binomial distribution:
- parameter $p=$ true proportion of time spent in a given category of activity
- There are usu. multiple activity categories (e.g. 1)
- we have $p_{1}, p_{2}, \ldots, p_{k}$. ., p_{K} proportions
- for K different activity categories
- sum of proportions must equal unity

Statistical Basis of Work Sampling

- Binomial distribution can be approximated by normal distribution (for computational convenience), where

$$
\begin{aligned}
\mu & =n p \\
\sigma & =\sqrt{n p(1-p)}
\end{aligned}
$$

- μ : mean
- n : total number of observations
- σ : standard deviation
- p: proportion
- Normal approximation:
- quite sufficient due to large number of observations in typical WS study

Alternative Parameters

- μ and σ are converted back to proportions:
- dividing by number of observations:

$$
\begin{gathered}
p=\frac{\mu}{n}=\frac{n p}{n} \\
\sigma_{p}=\frac{\sqrt{n p(1-p)}}{n}=\sqrt{\frac{p(1-p)}{n}}
\end{gathered}
$$

- σ_{p} : standard deviation of proportion p

Estimating the Proportion p

- In a sampling study:
- \hat{p} : proportion of total number of observations devoted to an activity category of interest
- \hat{p} : is estimate of true value of population proportion p
- for \hat{p} to be good estimate, it must:
- Absent of bias
- e.g. bias when human subjects know they are being observed in WS study
- Solution: randomize observation times
- Low variance (variance $=\sigma_{p}{ }^{2}$):
- Increasing number of observations ($n)^{*}$

2.1 Confidence Intervals

- Due to statistical error,
- \hat{p} is not exactly equal to p
- estimating how close \hat{p} is to p depends on:
- defined error range
- confidence level

2.1 Confidence Intervals

- Confidence interval for std. normal distribution relative to p expressed as follows (fig. 1):

$$
\operatorname{Pr}\left(-z_{\alpha / 2}<\frac{\hat{p}-p}{\hat{\sigma}_{p}}<+z_{\alpha / 2}\right)=1-\alpha
$$

$\hat{\sigma}_{p}$: calculated value of proportion std. dev.

- Rearranging (fig. 2):

$$
\operatorname{Pr}\left(\hat{p}-z_{\alpha / 2} \hat{\sigma}_{p}<p<\hat{p}+z_{\alpha / 2} \hat{\sigma}_{p}\right)=1-\alpha
$$

- In words:
- Probability that actual value of p lies between

$$
\hat{p}-z_{\alpha / 2} \hat{\sigma}_{p} \text { and } \hat{p}+z_{\alpha / 2} \hat{\sigma}_{p} \text { is }(1-\alpha)
$$

- Or: value of p lies between $\hat{p}-z_{\alpha / 2} \hat{\sigma}_{p}$ and $\hat{p}+z_{\alpha / 2} \hat{\sigma}_{p}$ at a confidence level of $(1-\alpha)$

2.1 Confidence Intervals

Figure 1 Definition of a confidence interval in the standard normal distribution.

2.1 Confidence Intervals

Figure 2 Confidence interval superimposed on the normal distribution, with $(1-\alpha)$ and $Z_{\alpha / 2}$ defined.

2.1 Confidence Intervals

- Confidence levels used in work sampling
- Typically: 90%, in which case $z_{\alpha / 2}=1.65$
- Also: 95%, in which case $z_{\alpha / 2}=1.96$
- Other confidence levels and $z_{\alpha / 2}$ values found in tables of std. normal distribution

Example 2: Confidence Interval

- Determine the 95\% confidence interval for the proportion of time spent setting up the machines, category (1), in Example 1.
Remember (example 1):
- A total of 500 observations were taken at random times during a one-week period (40 hours) on 10 machines.

Category

(1) Being set up
(2) Running production
(3) Machine idle

Proportion	
	Hrs per category
$75 / 500=0.15$	$0.15 \times 40=6$
$300 / 500=0.60$	$0.60 \times 40=24$
$125 / 500=\frac{0.25}{1.00}$	$0.25 \times 40=\underline{10}$

Example 2: Solution

Solution: From the solution of Example 1, we know that the proportion of time spent setting up machines is $\hat{p}=0.15$. Computing the standard deviation using equation (4), given that there are a total of 500 observations ($n=500$),

$$
\hat{\sigma}_{p}=\sqrt{\frac{0.15(1-0.15)}{500}}=0.01597
$$

For the 95% confidence level, the corresponding $z_{\alpha / 2}=1.96$; thus

$$
\hat{p}-z_{\alpha 2} \hat{\sigma}_{p}=0.15-1.96(0.01597)=0.15-0.01313=0.1187
$$

and

$$
\hat{p}+z_{\alpha 2} \hat{\sigma}_{p}=015+1.96(0.01597)=0.15+0.013=0.1813
$$

Accordingly, we can state that at the 95% confidence level, the true value of the setup time proportion lies between 0.1187 and 0.1813 .

2.2 Number of Observations Required

- How can statistical errors in work sampling be reduced?
- Increasing the number of observations (n)
- Thus,
- Accuracy/precision of \hat{p} (estimate of given proportion of interest p) is increased
- Limits of the confidence interval around it can be narrowed*
- However, increasing $n \Rightarrow$ more time/costs
- \Rightarrow balance bet. cost/time and accuracy):
- determine n required to achieve a given confidence interval about estimate of p

2.2 Number of Observations Required

Step 1: define confidence interval

- We need to decide on two parameters:

1. Confidence level, $1-\alpha$

- This allows us to find corresponding $z_{\alpha / 2}$

2. Half-width of the confidence interval, c

- it's desired acceptable deviation from p
- think of c as tolerance around p
- \Rightarrow confidence interval $=p \pm c$ (fig. 2)
- Note, c corresponds to $z_{\alpha / 2} \hat{\sigma}_{p}$
$-\Rightarrow \hat{\sigma}_{p}=\frac{c}{z_{\alpha / 2}}$

2.2 Number of Observations Required

Step 2: find \boldsymbol{n} to achieve specified confidence level:

- Noting equation:

$$
\hat{\sigma}_{p}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

- We rearrange to get $n=f\left(\hat{p}, \hat{\sigma}_{p}\right)$:

$$
n=\frac{\hat{p}(1-\hat{p})}{\hat{\sigma}_{p}{ }^{2}}
$$

- Where $\hat{\sigma}_{p}$ (last slide): $\hat{\sigma}_{p}=\frac{c}{z_{\alpha / 2}} \Rightarrow$

$$
n=\frac{\hat{p}(1-\hat{p})}{\hat{\sigma}_{p}{ }^{2}}=\frac{\left(\boldsymbol{z}_{\alpha / 2}\right)^{2} \widehat{\boldsymbol{p}}(\mathbf{1}-\hat{\boldsymbol{p}})}{\boldsymbol{c}^{2}}
$$

e.g. 3 Finding Required Observations

In the context of our previous examples, determine how many observations will be required to estimate* the proportion of time used to set up the 10 machines in the automatic lathe section. The confidence interval must be within ± 0.03 of the true proportion, which the foreman initially estimates to be $\hat{p}=0.20$. A 95% confidence level will be used.

Example 3: Solution

Solution: At the 95% confidence level, $z_{\alpha / 2}=1.96$. The confidence interval is 0.20 ± 0.03, so the half-width of the interval c is 0.03 . From Equation (8),

$$
\hat{\sigma}_{p}=0.03 / 1.96=0.0153
$$

Using this value in equation (9), we obtain the required number of observations:

$$
n=\frac{0.20(1-0.20)}{(0.0153)^{2}}=683.5, \text { rounded up to } 684 \text { observations. }
$$

- Note how if \hat{p} is different than $p \Rightarrow$ recalculate n
- If computed $n>$ original $n \Rightarrow$ additional observations must be taken to maintain desired confidence level (here: 684-500)
- If computed $n<$ original $n \Rightarrow$
- confidence level > specified level,
- or: confidence level < original

2.3 Determining Average Task Times

- Time standards established by work sampling:
- not as accurate as those set by other methods
- not appropriate for wage incentive plans
- can be used when other work measurement techniques are not practical
- e.g. when length of time required to use other techniques would be excessive
- We will show how to use WS to determine:
- Average task time
- Normal time per work unit
- Standard time per work unit

2.3 Determining Average Task Times

- Average task time:
- how much time required to complete average work unit
- no consideration of worker's performance during work
- Time standard by work sampling
- requires observer to correctly classify activity category during observation, and
- also rating worker's performance
- In both cases:
- quantity of work units completed during duration of WS study must be counted

2.3 Determining Average Task Times

- Average task time for a given work category:
- computing total time for category
- then dividing by total count of work units produced by that category:

$$
T_{c i}=\frac{p_{i}(T T)}{Q_{i}}
$$

- $T_{c i}$: avg. task time (or cycle time for task i)
- p_{i} : proportion of observations associated with category
- TT: total time of WS study (note, all time is in $h r$ or min)
- Q_{i} : total quantity associated with category i (during $T T$)

Example 4 Average Task Times in WS

Suppose in Example 1 that a total of 1572 work units were completed by the 10 machines and that a total of 23 setups were accomplished during the 5-day period. Determine,
(a) the average task time per work unit during production, and
(b) the average setup time

Example 4 Solution

Solution: Let us first compute the total time of the work sampling study. The duration of the study was 40 hr , but there were 10 machines (subjects), so the total time is $40 \mathrm{hr} \times 10$ machines:

$$
T T=(40 \mathrm{hr})(10 \text { machines })=400 \mathrm{hr}
$$

(a) The 1572 work units are associated with the "running production" category, whose proportion $\hat{p}=0.60$.

$$
T_{c}=\frac{0.60(400)}{1572}=0.1527 \mathrm{hr}=9.16 \mathrm{~min}
$$

(b) The 23 setups are associated with "being set up," whose proportion $\hat{p}=0.15$.

$$
T_{s u}=\frac{0.15(400)}{23}=2.609 \mathrm{hr}=156.52 \mathrm{~min} / \mathrm{setup}
$$

Example 4 Notes

- Computed times in this e.g.: of limited value:
- unlikely that 1572 work units are all the same
- 23 setups performed during observation:
- 23 different batches \Rightarrow different parts design
- \Rightarrow different machining times*
- \Rightarrow also different setup times
- However, e.g. provides useful information:
- avg. $T_{s u}$ per batch: $156.52 \mathrm{~min}=2.609 \mathrm{hr}$
- the avg. T_{c} per part: 9.16 min
- \Rightarrow foreman may make a judgment that 2.609 hr is longer than required for setup

2.3 Determining Standard Times

- Cases to use WS to find time standards
- indirect labor activities
- clerical office work
- in general: inherent variability in tasks
- e.g. repair work on digital cameras
- e.g. products returned to the factory
- Conditions for using WS to find $T_{s t d}$
- homogeneity in work units (e.g. digital cameras) for which standard is set
- rate performance of worker during each observation*
- identifying the category of activity

2.3 Determining Standard Times

- First determine normal time for activity i

$$
T_{n i}=\frac{p_{i}(T T)\left(\overline{P R}_{i}\right)}{Q_{i}}
$$

- $T_{n i}$: normal time for work unit in work category i, min
- $\overline{P R}_{i}$: average value of performance ratings for all observations in category i
- Then determine standard time

$$
T_{s t d i}=T_{n i}\left(1+A_{p f d}\right)
$$

- $T_{\text {stdi }}$: standard time for work unit i, \min
- $A_{p f d}$: allowance (personal, fatigue, delays)

