

Work Sampling

Sections:

- 1. How Work Sampling Works part 1
- Statistical Basis of Work Sampling - part 2
- Application Issues in Work Sampling part 3

Statistical technique for determining the proportions of time spent by subjects in various defined categories of activity

- Subjects = workers, machines
- Categories of activity = setting up a machine, producing parts, idle, etc.
- Work sampling study involves:
 - Iarge number of observations for subjects
 - extended period of time
 - finding proportion of time in each activity category based on proportion of observations in that category

- For statistical accuracy:
 - Observations must be taken at random times
 - Period of the study must be representative of types of activities performed by subjects
- Work situations well-suited for work sampling:
 - Sufficient time available to perform study (usually several weeks)
 - Multiple subjects
 - Long cycle times
 - Non-repetitive work cycles
 - i.e. various tasks (not just one task)
 - work activities divided into categories

Work Sampling Defined

- When not to use Work Sampling
 - highly repetitive jobs
 - with short cycle times
 - performed by one worker
 - jobs requiring immediate measurement of task
 - in such cases use other techniques (DTS, SDS, PMTS)
- Other names used for work sampling:
 - activity sampling
 - occurrence sampling
 - ratio delay study
 - snap reading method* (*reading assignment 1*)

1. How Work Sampling Works

Machine utilization

- how much time is spent by machines in various categories of activity (e.g. 1)
- e.g. setup, production, downtime, etc.

Worker utilization

 how workers spend their time in various activities

Allowances for time standards

- assessment of delay components in PFD allowance factor
- e.g. delay components*: machine malfunctions, downtime, other interruptions

Work Sampling Applications

- Average unit time
 - determining the average time on each work unit
 - given: number of units produced during work sampling study

Time standards

- used in certain work situations (e.g. office work)
- note, work sampling provides limited statistical accuracy
 - standards set by WS should not be used for incentive pay work

Example 1: How Work Sampling Works

 A total of 500 observations were taken at random times during a one-week period (40 hours) on 10 machines with results shown below.

<u>Category</u>	No. of observations
(1) Being set up	75
(2) Running production	300
(3) Machine idle	<u>125</u>
	500

How many hours per week did an average machine spend in each category?

- Proportions of time determined as number of observations in each category divided by 500
- Time in each category determined by multiplying proportion by total hours (40 hr)

<u>Category</u>	Proportion	Hrs per category
(1) Being set up	75/500 = 0.15	$0.15 \times 40 = 6$
(2) Running production	300/500 = 0.60	$0.60 \times 40 = 24$
(3) Machine idle	125/500 = <u>0.25</u>	0.25 x 40 = <u>10</u>
	1.00	40