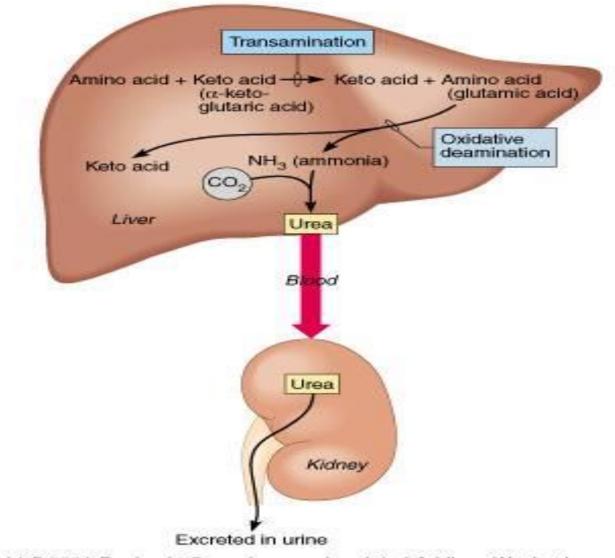

Estimation of Serum Urea

BCH472 [Practical]

-Urea:


- Urea is the highest non-protein nitrogen compound in the blood.
- Urea is the major excretory product of protein metabolism.
- It is formed by **urea cycle** in the **liver** from **free ammonia** generated during protein <u>catabolism</u>.
- Since historic assays for urea were based on measurement of nitrogen, the term **blood urea nitrogen (BUN)** has been used to refer to <u>urea determination</u>.

-Urea synthesis:

- Protein metabolism produces amino acids that can be oxidized.
- This result in the release of ammonia which is converted to urea (via urea cycle) and excreted as a waste product.
- Following synthesis in the liver, urea is carried out in the blood to the kidney which is readily filtered from the plasma by <u>glomerulus</u>.
- **Most** of the urea in the glomerular filtrate excreted in the urine, and **some** urea is reabsorbed through the renal tubules.
- The **amount reabsorbed** depends on urine flow rate and **extent of hydration** (the amount of urea reabsorbed increases with dehydration.).
- The concentration of urea in the plasma is determined by:
- → Renal and liver function,
- \rightarrow the protein content in diet,
- \rightarrow and the rate of protein catabolism.

-Urea synthesis:

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc. 4

-Clinical Application:

- Measurement of urea used to in :
- Evaluate renal function.
- To assess hydration status.
- To determine nitrogen balance.
- To aid in the diagnosis of renal diseases.
- To verify adequacy of dialysis .
- Check a person's protein balance.

1-<u>Plasma</u> urea Concentration:

- Measurement of **Blood Urea Nitrogen (BUN)** alone is <u>less useful</u> in diagnosing kidney diseases because it's blood level is influenced by dietary protein and hepatic function (why?).
- But its diagnostic value improves with serum creatinine values.

	Туре	Cause	Note
High urea (High urea concentration in plasma is called azotemia)	Pre-renal	 Cognitive heart failure. <u>Dehydration.</u> High protein diet. Increased protein catabolism. 	 Cognitive heart failure → reduced renal blood flow, less blood is delivered to kidney, then less urea is filtered.
	Renal	• Renal failure .	
	Post-renal	• Urinary tract obstruction.	
Low urea		Low protein intake.Liver disease.Pregnancy.	

2-<u>Urine</u> urea Concentration:

- The Urine Urea Nitrogen test (UUN) determines how much urea is in the urine to assess the amount of protein breakdown.
- The test can help determine how well the kidneys are functioning, and if the intake of protein is too high or low.
- Specimen: The urine urea nitrogen test is performed by collecting a **24-hour urine sample**.

Cause	
High urea in urine	 Too much protein in the diet. Too much protein breakdown in the body.
Low urea in urine	Malnutrition.Too little protein in the diet.Kidney issues.

Practical Part

• Estimation of blood urea nitrogen (BUN).

-Principle (of the kit used):

- The Reagent used contains: Urease, Glutamate Dehydrogenase, NADH, α-ketoglutaric acid, buffers and stabilizers .
- 1. Reaction one: Urea is hydrolyzed in the presence of <u>urease enzyme</u> and water to yield ammonia and carbon dioxide.

$$NH_2 - CO - NH_2 + H_2O \longrightarrow 2NH_3 + CO_2$$

2. Second reaction: The ammonia reacts with α-ketoglutaric acid and reduced nicotinamide adenine dinucleotide (NADH) in the presence of <u>glutamate dehydrogenase (GLDH)</u> to yield glutamic acid and nicotinamide adenine dinucleotide (NAD).

 $\mathbf{NH}_{3} + \text{HOOC-}(\text{CH}_{2})_{2} - \text{CO-COOH} + \mathbf{NADH} + \mathbf{H}^{*} \xrightarrow{\text{GLDH}} \text{HOOC-}(\text{CH}_{2})_{2} - \text{CH}(\text{NH}_{2}) \text{ COOH} + \mathbf{NAD}^{*} + \text{H}_{2}\text{O}$ $\alpha - \text{KETOGLUTARIC ACID} \xrightarrow{\text{GLUTAMIC ACID}} \text{GLUTAMIC ACID}$

• The amount of the urea in the sample is proportionally related to the reduced absorbance at 340 nm as a result of NADH oxidation to NAD.

-Reference Value:

SPECIMEN	UREA NITROGEN	UREA
Serum/Plasma	5-23 mg/dL	10-50 mg/dL
Urine 24 h	9-16g/24h	20-35 g/24 h

-Materials:

• BUN-ZYME Kit.

-Method:

	Standard	Serum	
Reconstituted Reagent	3ml	3ml	
Pre-warm at 37°C for 2 min. and add:			
Standard	0.025/25µ1	-	
Serum	-	0.025/25µ1	

- After exactly 30 seconds, read and record absorbance A_1 against distilled water at 340 nm.
- At exactly 60 seconds after A_1 , read and record the absorbance A_2 and determine $\Delta A (A_1-A_2)$.

-Calculations of the Results :

UREA NITROGEN (BUN)	UREA	
SERUM OR PLASMA		
Urea Nitrogen (mg/dL) = ΔA (Sample) x 25 ΔA (Standard)	Urea (mg/dL) = ΔA (Sample) x 53.57 ΔA (Standard)	

Homework:

- Determine the level of plasma Urea in the following cases and support your answer by some causes :
- 1- liver disease.
- 2- Diet high in protein.
- 3- Dehydration.

-References:

- Clinical Chemistry: Techniques, Principles, Correlations (Bishop, Clinical Chemistry)Mar 31, 2009,by Michael L. Bishop MS MT (ASCP) CLS (NCA) and Edward P. Fody MD
- <u>http://www.nlm.nih.gov/medlineplus/ency/article/003605.htm</u>