Introduction to Organic Chemistry CHEM 108

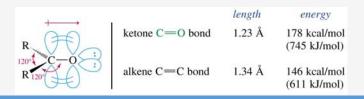
Credit hrs.: (3+1)

King Saud University

College of Science, Chemistry Department

CHAPTER 6: Aldehydes and Ketones

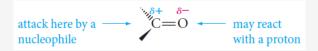
Common Classes of Carbonyl Compounds


Class	General Formula	Class	General Formula
Ketones	R R'	Aldehydes	R C H
Carboxylic acids	ROH	Acid Chlorides	R ^C CI
Esters	R ^C O ^{R'}	Amides	$R^{C} NH_2$

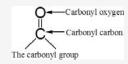
)

The Carbonyl Group

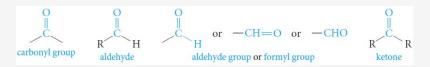
c=o: The carbonyl group


- o The carbon-oxygen double bond consists of a sigma bond and a pi bond.
- o The carbon atom is sp²-hybridized.
- o The three atoms attached to the carbonyl carbon lie in a plane with bond angles of 120°.
- The pi bond is formed by overlap of a p orbital on carbon with an oxygen p orbital.
- o There are also two unshared electron pairs on the oxygen atom.
- o The C=O bond distance is 1.24A, shorter than the C-O distance in alcohols and ethers (1.43A).

The Carbonyl Group


o Oxygen is much more electronegative than carbon. Therefore, the electrons in the C=O bond are attracted to the oxygen, producing a highly polarized bond.

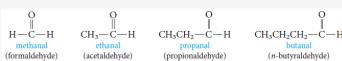
o As a consequence of this polarization, *most carbonyl reactions involve* nucleophilic attack *at the carbonyl carbon*, often accompanied by addition of a proton to the oxygen (electron rich).



Structure of Aldehydes and Ketones

o Aldehydes and ketones are characterized by the presence of the carbonyl group.

- Aldehydes have at least one hydrogen atom attached to the carbonyl carbon atom.
 The remaining group may be another hydrogen atom or any aliphatic or aromatic organic group.
 The -CH=O group characteristic of aldehydes is often called a formyl group.
- o In ketones, the carbonyl carbon atom is connected to two other carbon atoms.


.

IUPAC System

Nomenclature of Aldehydes

o Aliphatic aldehydes are named by dropping the suffix -e from the name of the hydrocarbon that has the same carbon skeleton as the aldehyde and replacing it with the suffix -al.

Alkane
$$-e+al = Alkanal$$

- o Substituted aldehydes, we number the chain starting with the aldehyde carbon.
 - -CH=O group is assigned the number 1 position.
 - Aldehyde group has priority over a double bond or hydroxyl group.

IUPAC System

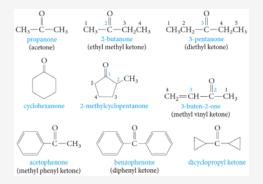
Nomenclature of Aldehydes

o Cyclic aldehydes, the suffix –carbaldehyde is used.

o **Aromatic aldehydes** are usually designated as derivatives of the simplest aromatic aldehyde, benzaldehyde.

7

Common Names

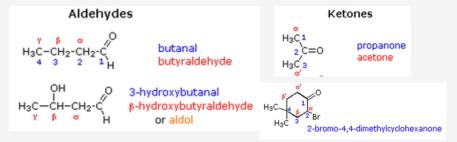

Nomenclature of Ketones

o Common names of ketones are formed by adding the word *ketone* to the names of the alkyl or aryl groups attached to the carbonyl carbon. Alkyl ketone.

IUPAC System

Nomenclature of Ketones

- o In the IUPAC system, the ending for ketones is -one.
- o The chain is numbered so that the carbonyl carbon has the lowest possible number.
- For cyclic ketones, numbering always starts from the C=O group.
- o The prefix "oxo" is used when the ketone is not the principal functional group.

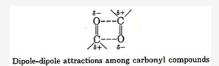


9

NOTES

Nomenclature of Aldehydes and Ketones

- o In common names carbon atoms near the carbonyl group are often designated by Greek letters.
- o The atom adjacent to the function is *alpha* (α), the next removed is *beta* (β) and so on. Since ketones have two sets of neighboring atoms, one set is labeled α , β etc., and the other α ', β ' etc.


The functional group priority order in nomenclature system is as following:
 Acid and derivatives >aldehyde> ketone> alcoho > amine > alkene > alkyne > ether

Physical Properties of Aldehydes and Ketones

Boiling Points

• Carbonyl compounds boil at higher temperatures than hydrocarbons, but at lower temperatures than alcohols of comparable molecular weight.

• This is due to the intermolecular forces of attraction, called <u>dipole-dipole interactions</u>, which is stronger than van der Waals attractions but not as strong as hydrogen bonds.

11

Physical Properties of Aldehydes and Ketones

Solubility

- Carbonyl compounds as aldehydes and ketones have a C=O bond, but no O-H bond, cannot form hydrogen bonds with themselves.
- The polarity of the carbonyl group also affects the solubility properties of aldehydes and ketones.
- Carbonyl compounds with low molecular weights are soluble in water as they can form hydrogen bonds with O-H or N-H compounds.

$$C = 0 : \cdots H - 0$$

Preparation of Aldehydes and Ketones

1) Oxidation of Primary and Secondary Alcohols

2) Hydration of Alkynes

Hydration of terminal alkynes EXCEPT acetylene yields ketones (catalyzed by acid and mercuric).

$$\begin{array}{c} CH_3(CH_2)_5C = CH \xrightarrow{H^*, H_2O} CH_3(CH_2)_5CCH_3 \\ \text{1-octyne} & 2\text{-octanone} \end{array}$$

3) Ozonolysis of Alkenes

13

Preparation of Aldehydes and Ketones

4) Friedel-Crafts Acylation

Preparing ketones that contain an aromatic ring.

Reactions of Aldehydes and Ketones

A) Reduction of Carbonyl Compounds

- o Aldehydes and ketones are easily reduced to primary and secondary alcohols, respectively.
- o The most common metal hydrides used to reduce carbonyl compounds are lithium aluminum hydride (LiAlH₄) and sodium borohydride (NaBH₄).

B) Oxidation of Carbonyl Compounds

- o Oxidation of aldehydes gives a carboxylic acid with the same number of carbon atoms.
- o Because the reaction occurs easily, many oxidizing agents, such as $KMnO_4$, CrO_3 , Ag_2O and peracids will work.

15

Reactions of Aldehydes and Ketones

C) Nucleophilic Addition Reactions

- o Nucleophiles attack the carbon atom of a carbon-oxygen double bond because that carbon has a partial positive charge.
- o The overall reaction involves addition of a nucleophile and a proton across the pi bond of the carbonyl group (when carried out in alcohol or water).

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

1) Addition of Grignard Reagents: Formation of Alcohols

- o Grignard reagents act as carbon nucleophiles toward carbonyl compounds.
- o The reaction of a Grignard reagent with a carbonyl compound provides a useful route to alcohols.

$$C = O \xrightarrow{1) \text{RMgX, dry ether}} C - OH + Mg^{2+}X^{-}CI^{-}$$
an alcohol

o The type of carbonyl compound chosen determines the class of alcohol produced.

17

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

1) Addition of Grignard Reagents: Formation of Alcohols

o Formaldehyde gives primary alcohols.

$$R - MgX + H - C - H \longrightarrow R - C - OMgX \xrightarrow{H_2O} R - C - OH H + OH H$$

o Other aldehydes give secondary alcohols

$$R-MgX + R'-C-H \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-C-OH$$

aldehyde a secondary alcohol

o Ketones give tertiary alcohols.

$$R-MgX+R'-C-R''\longrightarrow R-C-OMgX\xrightarrow[R']{H_2O} R'-C-OH$$
 ketone
$$R-MgX+R'-C-R'' \longrightarrow R-C-OHgX \xrightarrow[R']{H_2O} R'$$

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

2) Addition of Hydrogen Cyanide: Formation of Cyanohydrins

o Hydrogen cyanide adds to the carbonyl group of aldehydes and ketones to form cyanohydrins, compounds with a hydroxyl and a cyano group attached to the same carbon.

$$C = O + HCN \xrightarrow{KOH} C - OH$$

Example

19

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

3) Addition of Alcohols: Formation of Hemiacetals and Acetals

- o Alcohols add to the C=O bond, the OR group becoming attached to the carbon and the proton becoming attached to the oxygen.
- o Aldehydes and ketones react with alcohols to form, first, <u>hemiacetals</u> and then, if excess alcohol is present, <u>acetals</u>.

$$\begin{array}{c|cccc} O & OH & OR \\ R'-C-R'' & RO-H & R'-C-OR & RO-H & R'-C-OR & HOH \\ R'' & R$$

o Hemiacetals; it contains both alcohol and ether functional groups on the same carbon atom.

o Acetals have two ether functions at the same carbon atom.

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

3) Addition of Alcohols: Formation of Hemiacetals and Acetals

- o The reverse of acetal formation, called acetal hydrolysis.
- o Acetal can be hydrolyzed to its aldehyde or ketone and alcohol components by treatment with excess water in the presence of an acid catalyst.

$$\begin{array}{c|c}
 & OCH_3 \\
\hline
 & H_2O \\
\hline
 & OCH_3 \\
\hline
 & H^+
\end{array}$$

$$\begin{array}{c}
 & CH = O + 2 CH_3OH \\
\hline
 & OCH_3 \\
\hline
 & OCH_3
\end{array}$$

21

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

4) Addition of Ammonia and Ammonia Derivatives

The addition of nitrogen nucleophile, such as ammonia(NH₃) and substituted ammonia (NH₂-Y).