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A B S T R A C T   

The human beings are directly or indirectly affected with the environmental pollution, excreted from the in-
dustries in the form of liquids such as inorganic and organic hazardous material. As compared to the inorganic 
chemicals, the organic aromatic compounds are more toxic for the nature. The phenol (PhOH), which is one the 
largest applied organic compounds in industries and hose hold chemical, which affect to the human health. Due 
to the wide applicability of copper oxide (CuO) nanomaterial in numerous areas such as optoelectronics, pho-
tocatalysis, solar cells, and energy evolution etc; easy to process and provide enhanced and rapid detectible 
responses against phenol is utilized in this study. The CuO-NPs were synthesized at low refluxing (at 65°C, 90 
min) temperature and were well characterize via XRD (X-ray diffraction pattern), FESEM (Field emission 
scanning electron microscopy), TEM (Transmission electron microscopy) and FTIR (Fourier transform infrared 
spectroscopy), revels the spherical shaped morphology (∼10 nm). The NPs were pasted on a glassy carbon 
electrode (GCE) to ascertain their sensing efficiency against PhOH via three electrode system. The efficiency of 
modified electrode was evaluated under different parameters,concentration effect of PhOH (very low, mid and 
high) (1, 10 and 31 μL/100 mL of PBS) tested and discloses that the sensor efficiency is very high and con-
centration dependent at all detectable limits. The formed sensor was also tested with different potentials from 1, 
5, 10, 20, 50 and 100 mV/s and it’s sequential to the potential. The chronoamperometry (CuO-NPs/GCE) was 
investigated in absence and presence and of PhOH at four different voltages +0.05 to +1.2 V from 0 to 1500s to 
observe the effect of time, which is time reliant. The reproducibility and stability were also tested in terms of 
cyclic response for seven days (RSD 2.13%), which further displayed that the processed sensor is much reliable 
for a longer period. To understand well, furthermore, a possible mechanism was also presented, based on ob-
tained results.   
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1. Introduction 

The environment is affected with various daily house hold ha-
zardous materials and these hazardous material releases from industries 
and other sources. These harmful industrial effluents are directly or 
indirectly affected to the human beings in the form of organic, in-
organic and other compounds. In a series of hazardous chemicals, the 
Phenol (PhOH), which is an aromatic compound and are extensively 
utilized in various industries for producing numerous products such as 
rubber, fertilizer, paint, drugs, petroleum and also uses in agricultural 
industry [1–2]. Although the PhOH is largely utilized as an industrial 
chemical for various purposes but at the same time it deliver several 
adverse effect on body and known as carcinogen, with a lethal dose 
ranging from 50-500 mg/kg in human beings, if swallowed orally [3]. 
Serious complaint were causes once exposes from PhOH and have an 
effect on human organs such as the heart, blood vessels, lungs, and 
kidneys, which may lead to convulsions, dizziness, irregular respiration, 
headache, nausea, drowsiness, cyanosis and others [1–3]. PhOH also 
affects the skin on contact causing pain, boils, and burns. Inhalation can 
cause pulmonary irritation and edema [1–3]. Water contaminated with 
PhOH can lead to serious problem’s such as diarrhea, mouth sores, and 
darkening of urine. Similar toxicity also occurs in animals when ex-
posed to PhOH [1–3]. Including this, other phenol derivatives (such as 
o-cresol, m-cresol, and p-cresol) are also noted atmospheric pollutants; 
however, PhOH is better known as a water pollutant [4]. PhOH often 
contaminates soil and drinking water due to exposure to industrial 
waste and it’s also found in an essential organic compounds that largely 
used by the food industry for the production of fruit juices, beer, and 
wines, among others [5–6]. To this continuation, the removal of total 
inorganic continents from the water through microalgae cultivation 
was achieved to their high extends with co-flocculating process [7]. In 
this connection, the metal oxide and composite (Ni2+-TiO2/CoFe2O4) 
materials were utilized to degradate the organic dyes [8]. The results 
reveal that doping of Ni to composite TiO2/CoFe2O4 and their calcined 
temperature; actively take part in photocatalytic degradation activities 
[8]. The PhOH is also used as a compound in various pharmaceuticals, 
pesticides, and dyestuffs [9], and is released as industrial effluent, 
contributing environmental degradation. Furthermore, it also affects 
the marine and fresh-water systems [10]. The Environmental Protection 
Agency (EPA, USA) has cited PhOH as a priority pollutant because of its 
persistence and high toxicity [11]. It’s therefore, very important that 
PhOH continues to a topic of research in order to find a means of re-
mediation, also known as a pesticide and fungicide [12]. As the pro-
duction and utilization of PhOH involves various qualitative and 
quantitative controls, numerous means of regulating phenolic com-
pounds have been developed [13–14]. However, more reliable methods 
are required for the detection of PhOH in liquid solutions with adequate 
sensitivity, so that substance can be detected and treated more effi-
ciently [14–15]. Various investigative procedures such as mass spec-
trometry [16], HPLC [17], spectrophotometry [18], flow injection 
analysis (FI A) [19], and electrochemical methods [20–25] have all 
been used to discern PhOH concentrations in liquid samples [20–25]. 
The electrochemical techniques are cost-effective and easy-to-handle 
compared to other methods,which tend to be expensive and difficult to 
apply [21–22]. Due to their large surface areas and conductive and 
physicochemical characteristics, processed electrodes have been widely 
used for the electrochemical assessment in recent years [26]. A wide 
range of oxides and nanostructures is available for use in this field; 
CuO, which is a p-type semiconductor material [27], is available in the 
form of cuprous (BG = 2.17 eV) and cupric oxide (BG = 1.2-1.5 eV). 
Several methods have been used for the preparation of CuO nano-
particles (CuO-NPs), such as CVD (chemical vapor deposition) [28] and 
PECVD (plasma enhanced chemical vapor deposition) [29–30], etc. 
Chemical methods such as hydrothermal synthesis [31], spray pyrolysis 
[32], and solution combustion method [33] have also been utilized to 
develop the CuO nanostructures. These approaches generally require 

extensive care and need to use sophisticated instruments, and it’s 
therefore, difficult to produce the structures in a large quantities 
without acquiring massive expense [34]. However, it is possible to 
produce nanostructures in bulk and at low cost through chemical so-
lution process [35]. The synthesis of CuO-NPs from copper nitrate (Cu 
(NO3)2.6H2O), propyl amine (C3H9N), and sodium hydroxide (NaOH) is 
investigated in this study, using the solution process at low tempera-
tures (∼65 °C) over a short reflux period (90 min). The detailed 
structure of the produced powder was investigated using FESEM and 
TEM, and the crystallinity, phase, and size of the particles were in-
vestigated with XRD. The synthesized material was used as a sensing 
material and a working electrode in order to check their efficiency in 
detecting PhOH in a PBS solution. FTIR was utilized to determine the 
functional characteristics of the prepared material. The potential of the 
processed copper oxide nanoparticles-based on GCE (CuO-NPs/GCE) 
was then measured to determine the oxidation and reduction that had 
occurred, using CV with different concentrations of PhOH. 

2. Experimental 

2.1. Chemicals 

For the synthesis of copper oxide nanoparticles (CuO-NPs) chemi-
cals such as copper nitrate hexahydrate, sodium hydroxide were re-
ceived from the Aldrich chemical corporation Co. U.S.A and used 
without any further purification/modification. 

2.2. Synthesis of the copper oxide nanoparticles (CuO-NPs) 

The production of copper oxide nanoparticles (CuO-NPs) was car-
ried out via solution synthesis using copper nitrate hexahydrate as the 
precursor material with the addition of n-propyl amine, and sodium 
hydroxide. In a typical experiment copper nitrate hexahydrate (10 
mM), 30 mL of n-propyl amine and sodium hydroxide (0.2 M) were 
mixed with 100 mL of methanol (MeOH) under uniform stirring, pro-
ducing a blue color solution. NaOH was then added slowly to this so-
lution in a beaker and shaken. A pH of 12.37 was measured using a pH 
meter (Cole-Parmer, USA). The solution was then transferred into a 
refluxing pot and heated at 65 °C for 90 min. The solution was observed 
to change from blue to brown, and finally black as the refluxing tem-
perature increased. The stable reaction product was then kept in the 
refluxing pot overnight at room temperature to cool. The cooled pro-
duct was then transferred to a beaker and washed several times with 
solvent (alcohol, acetone, etc.) in order to eliminate any scum produced 
during the reaction. The formed material was then desiccated at room 
temperature and retained for analysis of the structural and chemical 
properties. 

2.3. Materials Characterizations 

The XRD (Rigaku, Japan) was utilized to determine the particle size, 
phase, and crystalline properties of the processed powder sample be-
tween 25º and 70º using CuKα radiation (λ = 1.54178 Å) at a scanning 
speed of 6º/min with an accelerating voltage of 40 kV and a current of 
30 mA. The morphology of the prepared powder was examined using 
FESEM (Hitachi, Japan) at room temperature. To analyze the results 
from FESEM, the recovered powder was sprayed homogeneously onto a 
sample holder covered with carbon tape, which was subsequently 
coated with a conducting pt layer of 3s. In order to confirm the results, 
the powder was further investigated using TEM (JEOL JEM-2010 at 200 
kV). The functional characteristics of the materials were also in-
vestigated with FTIR (Perkin Elmer-FTIR Spectrum-100, USA) analysis 
from 400-4000 cm-1 using KBr pellets. 
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2.4. Electrode modification 

The NPs were used as an electron mediator/working electrode in 
order to determine the amount of PhOH present in the PBS buffer. The 
electrode was fabricated using CuO-NPs that were coated as film onto a 
GCE electrode (active surface area = 7 × 10-2 cm2). The coating was 
constructed using a small number of NPs mixed with butyl carbitol 
acetate (BCA, at a ratio of 80:20), and the prepared slurry was coated 
onto the GCE electrode and dried at 60 ± 5 °C for 30-45 min in order to 
obtain a uniform layer over the entire surface of the electrode. 

2.5. Electrochemical studies 

The electrochemical analysis of the formed electrode was carried 
out using an autolab potentiostat/ galvanostat with the PGSTAT 204-FR 
A32 and NOVA software (Metrohom Autolab B.V. Kanaalweg 29-G, 
3526 KM Utrecht, Netherlands) in a three electrode system [36–37]. 
The CuO-NPs/GCE electrode was used as the working electrode, a 
platinum (pt) wire was used as a counter electrode, and Ag/AgCl 
(sat.KCl) was utilized as reference electrode. The PBS solution (0.1 M; 
pH 7.2) containing the PhOH was used as the electrolyte solution for all 
electrochemical measurements. In order to investigate the concentra-
tion of PhOH with the CuO-NPs/GCE electrode, a range of different 
PhOH concentrations (1 μL to 31 μL/100 mL) were added to the PBS 
and a current between − 0.15 and +1.5 V were used to determine the 
sensing characteristics. The sensitivity and amperometric response with 
current-time (i-t) curves were measured in a 6 μM PBS solution. 

2.6. Interference study of ions 

The Interference study was conducted with using various metal salts 
and prepared the solution in a demineralized double distilled water 
(DMDW) at room temperature. The interference test was performed 
with three electrode system in presence of CuO-NPs/ GCE. Various ions 
(Na+, Ag+, Cd2+, Pb2+, Mn2+, Co2+, Zn2+, Al3+, Ni2+, Fe3+, CO3

2-, 
CH3COO-, Cl-, SO4

2-) were added individually into the sample solution 
(150 μg/L) including tap and pond water sample under an optimized 
conditions. 

3. Results and discussion 

The size, phases, and crystallinity of the processed powder were 
evaluated using the same parameters as those described in section 2.3. 
The XRD spectra depicts peaks at defined positions such as 35.51°, 
38.73°, 48.08°, 53.76°, 66.73°, and 75.17° are related to the crystal 
planes (Ī11), (111), (202), (020), (311), and (222) respectively. The 
XRD pattern shows peaks that are very similar to those produced by 
single crystalline CuO with no impurities, and matches with the stan-
dard JCPDS data card numbered 05-661 with crystal lattice constants at 
a=4.79 Å, b=3.45 Å, and c=5.32 Å with a monoclinic structure.The 
pattern of XRD spectrum can be related to the formation of CuO na-
noparticles (Fig. 1) [35], with no peaks other than those suggesting the 
presence of CuO, further confirms that the produced CuO is pure and 
free from any synthetic chemical impurities (Fig. 1) [35]. The average 
particle size of the prepared powder was calculated using the Scherrer 
equation [38]:  

D = 0.9 λ/β cosθ                                                                         

Where λ is the wavelength of the X-ray radiation source, β is the 
full-width at half-maximum [FWHM] in radians, and θ is the Bragg 
diffraction angle and D represent the diameter of the particle. The 
diameters of the particles were thus calculated at approximately 10 nm. 

3.1. Morphological Assessment (FESEM and TEM results) 

The FESEM was used to assess the morphology of the grown 
powder, with the results given in Fig. 2. The obtained image (Fig. 2(a)), 
reveals that the NPs cover the whole surface of the sample holder and 
when close to scrutinization with a larger scale (Fig. 2(a)) confirms that 
the large numbers of nanoscale particles have been produced. The ob-
tained particles are smooth, clean, and spherical (Fig. 2(a)) with an 
average size of ∼10 nm. Fig. 2(b) is similar, indicating that the parti-
cles are spherical and heavily aggregated. 

In order to understand more about the morphology of the processed 
material, the powder was further analyzed with TEM using the 

Fig. 1. X-ray diffraction pattern of the prepared copper oxide powder.  

Fig. 2. FESEM images of CuO nanopowder: (a) apprehended at low magnifi-
cation and (b) captured at high magnified scale. 
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parameters as defined in Section 2.3. The TEM observation revealed 
that the NPs are closely congregated, are of very small size, and have 
smooth surfaces. From the TEM image (Fig. 3), it is apparent that the 
width of each NP is ∼10 nm and that the particles are consistently 
spherical in shape, confirming the results of the FESEM observation 
(Fig. 2a & b) [35,39–40]. 

3.2. FTIR Spectroscopy 

The functional or chemical characteristic of the prepared material 
was analyzed using FTIR spectroscopy and the obtained spectrum is 
presented as Fig. 4. A very small amount of the processed powder was 
mixed with KBr and the amount of powder must be strictly controlled in 
order to produce good spectra. The FTIR spectrum indicates the pre-
sence of the copper nitrate and sodium hydroxide (NaOH) that were 
used in the production of the CuO-NPs. The broad peak between 3200 
and 3600 cm-1 corresponds to the O-H (3443 cm-1) stretching mode of 
water molecule, whereas the asymmetric stretching of the water mo-
lecules is centered at 1637 cm-1. The small and sharp peak that is 
centered at 1430 cm-1 is associated with the stretching mode of NO3

2- 

molecule [35,41–42]. A pointed sharp and long peak observed at ap-
proximately 540 cm-1 in the FTIR spectrum represents the CuO-NP 
formation. The functional information obtained from the FTIR confirms 

the chemical properties of the prepared NPs, which is consistent with 
the data produced by the X-ray diffraction (Fig. 1). 

3.3. Electrochemical/cyclic voltammetry (CV) studies 

The fabricated electrode was initially tested without the CuO 
coating. No peak was detected in the obtained spectrum, from which it’s 
clear that no oxidation/reduction occurred, and signifies that no po-
tential was present on the bare electrode. The GCE was then coated 
with the CuO-NPs (over an area of 7 × 10-2 cm2), and the electro-
chemical characteristics of the modified electrode was evaluated using 
CV to investigate PhOH (10 μL) in a 100 mL PBS (0.1 M, pH 7.2) so-
lution (at a scan rate of 100 mV/s). The nanomaterial coated electrode 
(CuO-NPs/GCE) was further examined in presence of PhOH at two 
different concentrations (4 μM and 6 μM), on which phenol oxidation 
was clearly observed [43]. The potential and current (0.99 V, 4.27 × 
10-4, respectively) observed in the PhOH solution [43] confirms that the 
prepared electrode modified with CuO-NPs/GCE is much more efficient 
for both the transport of electrons and oxidization of the PhOH [44] 
solution (Fig. 5). 

3.4. Effect of PhOH concentration on the modified electrode (CuO-NPs/ 
GCE) 

The current and potential (I-V curve) of CuO-NPs/GCE with con-
centrations of PhOH ranging from 1 μL to 31 μL in 100 mL PBS is 
presented in Fig. 6. The obtained spectrum shows a sequential change 
in the oxidation and reduction peaks from the lowest to the highest 
PhOH concentration, examined at 100 mV with a current potential 
range from −1.0 to 1.5 V. As can be seen in Fig. 6, the current at the 
anodic peak is directly correlated with the concentration of PhOH, 
rising as the PhOH concentration increases. Fig. 6 also suggests that the 
current resulting from the movement of ions increases with the increase 
in PhOH concentration, resembling the rapid transfer of electrons at the 
conduction band. A high potential was also observed at the anodic 
peak, in a previous experiment when PhOH was used at high levels of 
concentration (Fig. 6). 

3.5. Effect of potential on the CuO-NPs/GCE electrode 

In order to gain further details regarding the reliability of the 
modified CuO-NPs/GCE electrode, a series of different (1 to 100 mV/s) 
potentials were selected to further investigate the measurement carried 
out using the PBS solution, the result of which is presented in Fig. 7. A 

Fig. 3. TEM image of prepared CuO nanopowder.  

Fig. 4. FTIR spectrum which shows the functional characteristic of grown CuO 
nano powder. 

Fig. 5. Cyclic voltammograms of bare and modified electrodes in absence and 
presence of PhOH (6 μM) in 0.1 M PBS (pH 7.2). Scan rate: 100 mVs-1. 
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successive response was observed over different cycles using a fixed 
concentration of PhOH in 0.1 M PBS solution at a pH of 7.2. The graph 
obtained shows the relationship between the current and the en-
hancement in the potential of the fabricated PhOH sensor. At (1 mV/s) 
small anodic and cathodic peaks were observed in the spectrum, de-
noting a low potential; however, as the potential was increased, 
changes to the anodic and cathodic peaks were clearly seen in the 
spectrum, the CuO-NPs/GCE can be more sensitive for PhOH detection 
by increasing the voltage applied. Over the nanoparticles, the reduced 
graphene sheets in combination with Polypyrrole (PPy) (rGO @PPy) 
based electrode have similar information with the current experiment 
of electrochemical analysis and showed superior conductivity [45]. 
Based on the obtained data’s, the linear plots were also constructed for 
the ionization potential of cathode (IPc) and ionization potential of 
anode (IPa) for the evaluation of correlation coefficient (R2). It’s ob-
served in both (IPa & IPc) for CuO-NPs/GCE, the value of R2 was 0.999 
(Fig. 8). In addition to this, the limit of detection (LOD) for CuO-NPs/ 
GCE (IPa) and CuO-NPs/GCE (IPc) were evaluated which were 0.036 
and 0.205 respectively. The limit of quantitation (LOQ) for CuO-NPs/ 
GCE (IPa) and CuO-NPs/GCE (IPc) were evaluated which were 0.110 
and 0.621 respectively (Table 1) [46–47]. 

3.6. Chronoamperometry with the CuO-NPs/GCE electrode with and 
without PhOH 

The chronoamperometry is an electrochemical technique in which 
the potential of the working electrode is periodical rather than con-
tinuous, and the resulting current from the faradaic processes occurs at 
the electrode and can be monitored as a function of time. The graph 
shows (Fig. 9) the steps that occur in the potential at set voltages, which 
are held constant over a specific period of time. The incremental re-
sponse of the potential was measured over time from 0 to 100s in order 
to carry out a detailed observation of the selectivity and reproducibility 
of the prepared modified sensor (Fig. 9). The progressive response of 
the CuO-NPs/GCE based PhOH sensor was therefore, investigated using 
incremental time periods. The chronoamperometric curves of modified 

Fig. 6. Cyclic voltammetric responses of modified electrode as a function of 
PhOH concentration with scan rate of 100 mVs-1. 

Fig. 7. Cyclic voltammetric responses of modified electrode in the presence of 
PhOH (6 μM) as a function of at different scan rates. 

Fig. 8. Linear calibration graph for cathode and anode potentials of CuO-NPs/ 
GCE. 

Table 1 
Detail calculation results for the LOD and LOQ.       

S.No Metal Oxide LOD (μM) LOQ (μM) Correlation coefficient (R2)  

1. CuO (IPa) 0.036 0.110 0.999 
2. CuO (IPc) 0.205 0.621 0.999 

Fig. 9. Chronoamperometric (A/s) curves of modified electrode in absence (a) 
and presence (b) of PhOH (6 μM) as a function of at different applied potentials 
in 0.1 M PBS (pH 7.2). 
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electrode (CuO-NPs/GCE) were first produced in absence of PhOH at 
different voltages (+0.05 to +1.2 V). The chronoamperometry was 
also carried out using the CuO-NPs/GCE in presence of PhOH at specific 
voltage ranges (+0.05 to 1.2 V) between 0 and 100s, with changes 
observed in the current over time (Fig. 10). At 0s and +0.05 V a very 
low current was observed (2.48 × 10-5), which increased at 20, 40, 60, 
80, and 100s to 1.00 × 10-5, 1.02 × 10-5, 1.06 × 10-5, 1.08 × 10-5, 
and 1.11 × 10-5, respectively [48–49]. From most of the results it’s 
concluded that the current is increases in presence of PhOH, which 

further shows the response of modified CuO-NPs/GCE electrode 
(Table 2). 

3.7. Effect of time response of CuO-NPs/GCE electrode with PhOH 

The effect of time on the modified electrode CuO-NPs/GCE was also 
observed over the period from 0 to 1500s, using PhOH for the eva-
luation of the sensor selectivity and reproducibility (Fig. 11). A sys-
tematic change was observed at different times for the prepared CuO- 
NPs/GCE based PhOH sensor. At 0 s the response to the current was 
(4.28 × 10-4) and at 100, 200, 300, 400, 500, 600, 700, 800, 900, 
1000, 1100, 1200, 1300, 1400 and 1500s, the currents were observed 
to 2.59 × 10-5, 2.04 × 10-5, 1.82 × 10-5, 1.63 × 10-5, 1.47 × 10-5, 
1.35 × 10-5, 1.264 × 10-5, 1.1 8 × 10-5, 1.11 × 10-5, 1.04 × 10-5, 9.79 
× 10-6, 9.26 × 10-6, 8.93 × 10-6, 8.46 × 10-6 and 8.02 × 10-6 re-
spectively. The obtained sequential and systematic data reveals that the 
present sensor is specific, selective, and reproducible, exhibiting sus-
tainability and reliability over extended periods of time [37]. 

3.8. Consecutive cyclic response of the modified electrode (CuO-NPs/GCE) 

The reproducibility and stability of the CuO-NPs/GCE sensor was 

Fig. 10. Chronoamperometric current–time (A/s) response of modified elec-
trode with successive addition of different concentrations of PhOH to in 0.1 M 
PBS (pH 7.2) at an applied potential of + 0.8 V (vs. Ag/AgCl). 

Table 2 
The chronoamperometry responses with the modified CuO-NPs/GCE electrode 
in absence and presence of PhOH      

Operating 
voltage 

Response 
time in 
seconds (s) 

Chronoamperometry 
responses in absence of 
PhOH (A/s) 

Chronoamperometry 
responses in presence of 
PhOH (A/s)  

+0.05 V 0 8.89 × 10-5 2.48 × 10-5 

20 3.84 × 10-5 1.00 × 10-5 

40 3.15 × 10-5 1.02 × 10-5 

60 2.98 × 10-5 1.06 × 10-5 

80 2.85 × 10-5 1.08 × 10-5 

100 2.74 × 10-5 1.11 × 10-5 

+0.10 V 0 9.04 × 10-5 6.86 × 10-5 

20 3.80 × 10-5 2.27 × 10-5 

40 3.57 × 10-5 2.16 × 10-5 

60 3.43 × 10-5 2.13 × 10-5 

80 3.33 × 10-5 2.10 × 10-5 

100 3.25 × 10-5 2.08 × 10-5 

+0.40 V 0 2.56 × 10-4 2.17 × 10-4 

20 7.83 × 10-5 4.69 × 10-5 

40 6.99 × 10-5 4.32 × 10-5 

60 6.54 × 10-5 4.15 × 10-5 

80 6.23 × 10-5 4.03 × 10-5 

100 6.00 × 10-5 3.94 × 10-5 

+0.80 V 0 4.18 × 10-4 3.88 × 10-4 

20 1.18 × 10-4 6.40 × 10-5 

40 1.05 × 10-5 5.68 × 10-5 

60 9.78 × 10-5 5.32 × 10-5 

80 9.23 × 10-5 5.07 × 10-5 

100 8.81 × 10-5 4.87 × 10-5 

+1.20 V 0 6.96 × 10-4 6. 21 × 10-4 

20 1.71 × 10-4 1.06 × 10-4 

40 1.47 × 10-4 9.34 × 10-5 

60 1.34 × 10-4 8.61 × 10-5 

80 1.24 × 10-4 8.08 × 10-5 

100 1.17 × 10-4 7.65 × 10-5    

Fig. 11. Amperometric response of CuO-NPs/GCE with successive addition of 
phenol into 0.1 M PBS (pH 7.2), which depicts the time (0 to 1500 s) and 
current spectra for the reliability and reproducibility of the optimized data. 

Fig. 12. Seven consecutive cycles for the sample in presence of 6 μM (PhOH) in 
0.1 M PBS at scan rate of 100 mV/s. 
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also tested using a cyclic test investigating the responses of electrode 
and the obtained data is presented as Fig. 12. The graph shows seven 
consecutive cycles of the CuO-NPs/GCE electrode in presence of 6 μM of 
PhOH in a 0.1 M PBS solution, demonstrating the excellent reprodu-
cibility over consecutive measurements. Tests were carried out between 
the first and the seventh day. The prepared sensor was kept in an am-
bient atmosphere over this period, during which a little change was 
observed in the shape of the voltammetric cycle, again confirming the 
long-term stability of the produced sensor. The experimental relative 
standard deviation (RSD) was found to be 2.13%, confirming the re-
producibility of the prepared electrode. The results confirm that the 
CuO-NPs/GCE electrode exhibits high stability with good reproduci-
bility, and that it is sustainable over long periods and is therefore ap-
plicable for practical uses [43]. 

3.9. Interference test 

The interference test was also conducted with cyclic voltammetry 
with a series of metal ions (cations and anions). The metal salts solu-
tions were prepared in DMDWand analyzed the interference with three 
electrode system in presence of CuO-NPs/GCE. Various metal ions 
(Na+, Ag+, Cd2+, Pb2+, Mn2+, Co2+, Zn2+, Al3+, Ni2+, Fe3+, CO3

2-, 
CH3COO-, Cl-, SO4

2-) were added individually into sample solution (150 
μg/L) under the optimized conditions. Especially, the cyclic voltam-
metry test was conducted with each metal ion and recorded from the 
range of +1.5 to -1.5 V at room temperature. Each interfering species 
had different redox potentials, the response current value was not much 
reflected, which were evidently distinguished. The peak current was not 
disturbed by concentration of interfering metal ions and the modified 
electrode was well responses as can be seen in Fig. 13. Therefore, the 
different metal ions did not interfere in the solutions and had not 
showed significant effect. The higher redox potential support CuO-NPs/ 
GCE system in PBS than the other competing metal ions. Hence, CuO- 
NPs/GCE was used as a selective for material to determine CV with 
different metal ions concentrations. The stronger response of CuO-NPs 
shows more adhesion on the surface of electrode and overcome of 
weakened ions. Generally, the response of interfering metal ions in real 
samples such as tap and pond water did show interfere with in the 
detectable limits. The study of interfering metal ions gives surety con-
cerned sensibility, selectivity and applicability of nanomaterials, which 
is the requirements of the environmental and hazardous sample study at 
quality standard [50–51]. 

4. Possible mechanism and discussion 

Copper oxide (CuO) is an interesting semiconductor material due to 
their unique physicochemical properties and a large band gap. The 
nanostructure of the material processed enhances the electrical con-
ductivity. Based on the obtained results related to use of nanostructured 
material, utilized as a sensor material for the detection of PhOH in li-
quid medium. This is well documented that the PhOH is a highly toxic 
material and also it’s largely used in an industry for the formation of 
various products. Due high toxicity rate of the chemical, therefore it’s 
an urgent demand that the sensing of PhOH need to be cost effective 
and can be identified even at lower concentration in any liquid 
medium. In this experiment, we have opted to investigate a wide range 
of PhOH concentrations (1 μL to 31 μL/100 mL in PBS (0.1 M)) and 
tested the sensing efficiency of modified working electrode (CuO-NPs/ 
GCE) to detect the PhOH via the electrochemical method. In this study, 
the CuO-NPs/GCE plays an important role in process of electron 
transport as evident from the CV data with bare and modified electrode 
(Fig. 5), also preliminary detection information of PhOH. A detailed 
concentration range (1 μL to 31 μL/100 mL in PBS (0.1 M)) was opted 
to know the CuO-NPs/GCE sensor steadiness. The obtained data shows 
that the semiconductor sensor material (CuO-NPs) is highly applicable 
and concentration dependent at every detectible limit for to detect the 
PhOH even at a very low concentration (Fig. 6). The different potential 
window also justifies that the chosen sensor material is much effective 
against PhOH and provide responses correspondingly (Fig. 7). The 
correlation coefficient (R2 = 0.999) for the ionization potentials of 
cathode and anodes (IPc and IPa) were examined (Fig. 8) for the pro-
cessed CuO-NPs/GCE sensor. The limit of detection (LOD) and quanti-
tation (LOQ) were also evaluated (Table 1). The chronoamperometry 
responses for the absence and presence of PhOH with a fixed operating 
voltage (A/s) provides a detailed out line related to the obtained cur-
rent from the faradaic processes, which occurs at the electrode (CuO- 
NPs/GCE) and can be monitored as a function of time. The increase in 
the potential with time from 0 to 100s shows a response in order to 
carry out detailed information related to selectivity and reproducibility 
of the prepared modified sensor. It assumes that due to the higher and 
longer period stability and reproducibility, the CuO-NPs/GCE electrode 
can be utilized for the large scale industrial and environmental samples 
detection of PhOH, as can be seen from the data concerning cyclic usage 
and reproducibility. The longer cyclic (seven days) response for the 
modified electrode (CuO-NPs/GCE), detection of PhOH justifies that the 
electrode (CuO-NPs/GCE) exhibit higher stability, sustainable and re-
producible in nature. The basic principle for the developed modified 
CuO-NPs/GCE works on varying concentration of analyte (PhOH) and 
measured the adsorption and conductance of the analyte with CuO- 
NPs/GCE electrode. After the prepared CuO nanostructures were de-
posited as described in section 2.5 onto the GCE, once the electrode was 
completely formed, it was immersed in PBS with different concentra-
tions of analyte (PhOH, 1 to 31 μL/100 mL). The surface of the modified 
CuO-NPs/GCE has the ability to trap and absorb atmospheric oxygen, 
and this atmospheric oxygen can spill over the whole surfaces of the 
electrode, which further ionized (O-ads) via the removal of electrons at 
the conduction band and then oxidized (O- or O2-) on the surface layer 
of the CuO-NPs/GCE. In second step, the electrolyte, which already 
have the negative charged oxygen molecule trapped and electrons are 
back to the conduction band on the surfaces of electrode. In this pro-
cess, it forms a charged layer between the electrode (CuO-NPs/GCE) 
and the analyte molecule [45,48–49]. The obtained CV data for oxi-
dation and reduction for a series of concentration, varied potential, 
time and cyclic responses for the reproducibility, sustainability support 
the sensing mechanism. The charged or oxidized oxygen was adsorbed 
onto the surface of the electrode has the capability to amplify the po-
tential of the prepared electrode, and can improve the resistance of the 
processed assemblage. Such experiment leads to a reduction in the 
conductance and an increase in the potential of the (CuO-NPs/GEC) 

Fig. 13. Cyclic voltammetry responses for the interference metal ions in pre-
sence of CuO-NPs/GCE. 
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electrode. In this study, it’s hypothesized that changing the con-
centration (low to high) of the analyte (PhOH) leads to higher efficiency 
and greater resistivity. The result of sensor data much influenced by the 
nanostructure type with variation occurring in the results when dif-
ferent architectures were utilized such as rods, flowers, tubes, wires, or 
belts are used; or the pH, electrolytes, chemical properties, and pro-
cesses for preparation of the electrode are used. The spherical shaped 
structure of the NPs is utilized in this experiment, which exhibit large 
surface areas and an increase in the band gap in which the electron 
transportation channels are generated, provides an enhanced capacity 
for sensing. The nanostructure of the semiconductors provides nu-
merous passages for the analyte via adsorption. With increased sensi-
tivity, the stability and enhanced reproducible properties of semi-
conductor materials leads to the significant transportation of electrons 
between the electrode film (CuO-NPs) and the analyte (PhOH) (as 
sketched Fig. 14). Additionally, the immobilization of the nanos-
tructures on the surface of the electrode directly affects the reaction/ 
response time and this can be easily visualized in the electrical signals 
that occur in the produced sensor. The process was significantly im-
proved with the utilization of a suitable catalyst spread over the surface 
of the CuO-NPs/GEC electrode. In this case the PhOH acts as an analyte 
in the reaction and plays a prominent role in increasing the reaction 
with the available oxygen that is absorbed onto film/layer at the surface 
(CuO-NPs). This also enhanced the conductance and the response of 
CuO-NPs/GEC electrode [52–55]. 

5. Conclusions 

The summary of the present work illustrates that the CuO-NPs were 
successfully synthesized through solution process. The characterizations 
revels that the obtained NPs are very small having ∼10 nm in diameter, 
spherical in shape and clustered form with good chemical characteristic. 
The CuO-NPs were well applied as electrode material CuO-NPs/GCE 
against to hazardous PhOH. From the sensor detection study, it’s obtained 
from the cyclic voltammetry (CV) that the modified sensor successfully 
works from a low to high range of PhOH (1 μL to 31 μL PhOH/100 mL) in 

PBS. The chronoamperometry data for modified electrode CuO-NPs/GCE in 
absence and presence of PhOH also justifies that at specified voltages such 
as +0.05, +0.10, +0.40 V, +0.80 V and +1.20 V with defined time 
intervals (0 to 100s) displayed the responses in term of signal change. From 
the observed chronoamperometry data, it depicts that the current rate 
enriched with presence of PhOH as compared to in absence of PhOH in the 
solution, this again shows that modified CuO-NPs/GCE is successfully work 
at low to high range of potential. The seven days scan cycle data also re-
veals that the modified sensor CuO-NPs/GCE is reliable, reproducible and 
sustainable for the longer periods. The interference test of various ions were 
also conducted against the CuO-NPs/GCE for to check of their sensitivity 
and selectivity, which reveals that no interference was observed at sig-
nificant level that’s mean the processed sensor, is highly responsive for the 
environmental samples. It may assume that the produced sensor will be 
suitable for various industrial purposes to check their toxicity rate from a 
low to high concentrations range of hazardous chemicals. 
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