CEN445 – Network Protocols and Algorithms Chapter 6 – Transport Layer 6.6 Performance Issues

> Dr. Mostafa Hassan Dahshan Department of Computer Engineering College of Computer and Information Sciences King Saud University <u>mdahshan@ksu.edu.sa</u> <u>http://faculty.ksu.edu.sa/mdahshan</u>

Performance Issues

- Many strategies for getting good performance have been learned over time
 - Performance problems »
 - Measuring network performance »
 - Host design for fast networks »
 - Fast segment processing »
 - Header compression »
 - Protocols for "long fat" networks »

Performance Problems

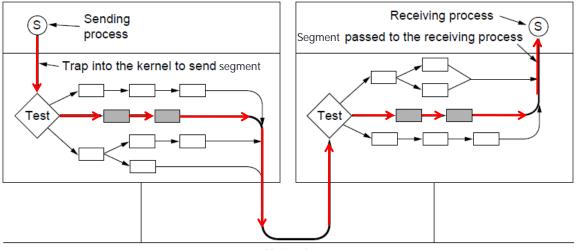
- Unexpected loads often interact with protocols to cause performance problems
 - Need to find the situations and improve the protocols
- Examples:
 - Broadcast storm: one broadcast triggers another
 - Synchronization: a building of computers all contact the DHCP server together after a power failure
 - Tiny packets: some situations can cause TCP to send many small packets instead of few large ones

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Measuring Network Performance

- Measurement is the key to understanding performance – but has its own pitfalls.
- Example pitfalls:
 - Caching: fetching Web pages will give surprisingly fast results if they are unexpectedly cached
 - Timing: clocks may over/underestimate fast events
 - Interference: there may be competing workloads

Host Design for Fast Networks


- Poor host software can greatly slow down networks.
- Rules of thumb for fast host software:
 - Host speed more important than network speed
 - Reduce packet count to reduce overhead
 - Minimize data touching
 - Minimize context switches
 - Avoiding congestion is better than recovering from it
 - Avoid timeouts

CN5E by Tanenbaum & Wetherall, $\ensuremath{\mathbb{C}}$ Pearson Education-Prentice Hall and D. Wetherall, 2011

Fast Segment Processing

Speed up the common case with a fast path

 Handles packets with expected header; OK for others to run slowly

Network

Fast Segment Processing

Header fields are often the same from one packet to the next for a flow;

copy/check them to speed up processing

Source port	Destination port	VER.	IHL	TOS	Tota	
Sequence number		Identification				Frag
Acknowledgement number		TTL Pr		Protocol	Header	
Len Unused	Window size	Source address				
Checksum	Urgent pointer	Destination address				

TCP header fields that stay the same for a one-way flow (shaded)

IP header fields that are often the same for a one-way flow (shaded)

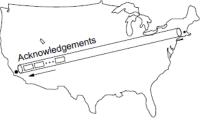
Total length

Header checksum

Fragment offset

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

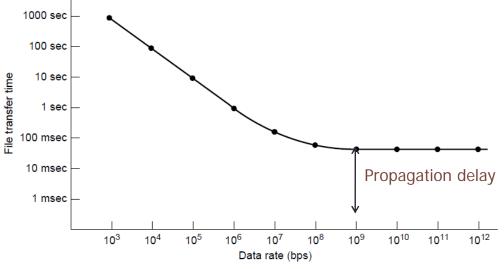
Header Compression


- Overhead can be very large for small packets
 - 40 bytes of header for RTP/UDP/IP VoIP packet
 - Problematic for slow links, especially wireless
- Header compression mitigates this problem
 - Runs between Link and Network layer
 - Omits fields that don't change or change predictably
 - 40 byte TCP/IP header \rightarrow 3 bytes of information
 - Gives simple high-layer headers and efficient links

Protocols for "Long Fat" Networks

- Networks with high bandwidth ("Fat") and high delay ("Long") can store much information inside the network
 - Requires protocols with ample buffering and few RTTs, rather than reducing the bits on the wire

Starting to send 1 Mbit San Diego \rightarrow Boston


20ms after start

40ms after start

CN5E by Tanenbaum & Wetherall, $\ensuremath{\mathbb{C}}$ Pearson Education-Prentice Hall and D. Wetherall, 2011

Protocols for "Long Fat" Networks

- You can buy more bandwidth but not lower delay
 - Need to shift ends (e.g., into cloud) to lower further

Minimum time to send and ACK a 1-Mbit file over a 4000-km line

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011