
CEN445 – Network Protocols and Algorithms

Chapter 6 – Transport Layer

6.4 Internet Transport Protocols: TCP

Dr. Mostafa Hassan Dahshan
Department of Computer Engineering

College of Computer and Information Sciences

King Saud University
mdahshan@ksu.edu.sa

http://faculty.ksu.edu.sa/mdahshan

mailto:mdahshan@ksu.edu.sa
http://faculty.ksu.edu.sa/mdahshan

Introduction to TCP

 Designed to provide reliable end-to-end
byte stream over unreliable internetwork

 Internetwork different from single network

 topologies, bandwidths, delays, packet sizes, …

 TCP was designed to

 dynamically adapts to properties of internet

 be robust in face of many types of failures

 Def in RFC 793, many improv were added

2

Introduction to TCP

 Supported by many operating systems as

 library proc, user process, part of kernel

 Breaks data stream into segments

 Maximum segment size is 64 KB

 Often 1460 to fit in single IP Ethernet frame

 Handles IP unreliability

 timeout and retransmission

 reassemble packets arriving out of order

TCP Service Model

 Sender, receiver create end points: sockets

 Socket number: IP address, port: 16-bit #

 Socket can be used for multiple connections

 < 1024, well known ports, for std services

 1024 .. 49151 can be registered with IANA

 Apps can choose their own ports

 Each server can listen @ its port at boot

 Better: single daemon @ all ports: inetd

TCP Service Model

5

TCP Service Model

 Connection is full duplex, byte stream

 Message boundaries not reserved

 Send 1024, may receive 512, 512 or vice vera

6

Four segments, each with 512 bytes
of data and carried in an IP packet

2048 bytes of data
delivered to application
in a single READ call

TCP Segment Header

7

TCP Segment Header

 Fixed 20 bytes, options: 0-40 bytes

 Data: 65535-20-20 = 65495 B may follow

 Src, dst ports: 16 bits ident conn endpoints

 Connection identifier: 5-tuple

 protocol (TCP)

 source and destination IP addresses

 source and destination port numbers

8

TCP Segment Header

 Sequence number: # of 1st byte in segment

 Ack number: next in-order byte expected

 Header length: 32-bit words (options var)

 ECE: tell sender to slow down

 CWR: tell receiver Congestion Win Reduced

 URG: set to 1 when Urgent Pointer is used

 Urgent pointer: offset of which urgent data
start from current sequence number

9

TCP Segment Header

 ACK: indicate Ack number is valid

 PSH: request rcvr to push data, not buffer

 RST: reset connection

 host crash, invalid segment, refuse connection

 SYN: used in establishing connection

 FIN: release connection, no more data

 Window size:

 how many bytes may be sent after ack number

 0: ack#-1 rcvd, no more data please
10

TCP Segment Header

 Checksum: same as UDP

 Options: add extra facilities
 MSS: max segment size willing to accept

 window scale: win size factor
 shift win size up to 14 bits

 allow windows up to 230 bytes (214+16)

 timestamp: sent by sender, echoed by receiver
 used compute round-trip, estimate lost packet

 extend seq # in fast links may wrap

 PAWS: Protect Against Wrapped Seq numbers

 SACK: Selective ACK, ranges to retransmit
11

Example – Window Scale

 OC-12 link (600 Mbps), 50 ms prop delay

 What is the link utilization?

 Answer:

 time to transmit 64 KB =
64×8×210

600×220
= 0.83 ≈ 1ms

 ACK arrives after 50 ms

 total time = 50 + 1 = 51 ms

 link idle for
𝑝𝑟𝑜𝑝

𝑝𝑟𝑜𝑝+𝑡𝑟𝑎𝑛𝑠
=

50

50+1
≈ 98% of the time

 utilization =
𝑡𝑟𝑎𝑛𝑠

𝑝𝑟𝑜𝑝+𝑡𝑟𝑎𝑛𝑠
=

1

50+1
≈ 2% of the time

12

Example – Window Scale

 OC-12 link (600 Mbps), 50 ms prop delay

 What value of window scale to allow 10%
utilization?

 Answer:

 utilization =
𝑡𝑟𝑎𝑛𝑠

𝑝𝑟𝑜𝑝+𝑡𝑟𝑎𝑛𝑠
→ 0.1 =

𝑡𝑟𝑎𝑛𝑠

50+𝑡𝑟𝑎𝑛𝑠

 𝑡𝑟𝑎𝑛𝑠 = 5.56 ms

 window size =
5.56

1000
×

600

8
× 220 =437257 bytes

 bits required = ⎾log2(437257)⏋=19

 Window scale (shifted bits) = 19 – 16 = 3

13

TCP Connection Establishment

 Use three-way handshake

 Server executes LISTEN, ACCEPT

 Client exec CONNECT, sends [SYN=1, ACK=0]

 Client specifies IP, port, max segment size

 Server: checks for process listening on port

 no? reply with [RST=1]

 yes? reply with [SYN=1, ACK=1]

 Initial seq # cycle slowly, not start @ 0

 protect against delayed duplicate, clock based

TCP Connection Establishment

15

Normal case Simultaneous connect

TCP Connection Release

 Each direction is released independently

 Send TCP segment with [FIN=1]

 When ack received, that direction shutdown

 Other side can sends ACK

 Possible to send FIN with ACK in 1 segment

 To avoid two-army problem

 if no ACK received? sender times out, release

 other side eventually time out as well

TCP Connection Management
Modeling

17

TCP Connection Management
Modeling

 Heavy solid line: normal path for a client
 Heavy dashed line: normal path for a server
 Light lines: unusual events
 Transition labeled: causing event/ resulting event

18

TCP Connection Management
Modeling

19

TCP Sliding Window

 TCP uses credit-based flow control

 Window management not tied to ack

 Remember, transport layer buffers data

 Receiver changes window according to
buffer consumption by application

TCP Sliding Window

Example

 Receiver has a 4096-byte buffer

 Sender transmit 2048-b seg; correctly rcvd

 Receiver acknowledges segment

 But, app hasn’t removed data from buffer

 Receiver advertise window 2048

 Starting at next byte expected

 Sender tr 2048 B; but receiver adv win=0
21

22

ACK + WIN is the
sender’s limit

TCP Sliding Window

 When win=0, sender can’t send, except:

 urgent data, to allow kill process remotely

 1-byte seg to force receiver re-announce win
size (window probe), to prevent deadlock

 Sender can buffer data before sending

 Receiver can wait before acknowledging

 Can use flexibility to improve performance

23

TCP Sliding Window

Example – interactive telnet/SSH application

 User A types 1 character

 TCP A sends 41-byte segment

 TCP B sends 40-byte ACK

 Editor B echoes 1 character

 TCP B sends 41-byte segment

 TCP A sends 40-byte ACK

 Total of 162 bytes used for each char typed!

TCP Sliding Window

 To optimize, delayed acknowledgements

 Delay ACK, Win update for up to 500 ms

 More data may arrive

 If terminal echoes within 500 ms,

 only 41-byte (ACK + data) are sent

 total bytes 82; half bandwidth is saved

Think of similar
examples

TCP Sliding Window

Nagle’s Algorithm

 Send one byte; Buffer the rest, wait for ACK

 Send remaining bytes in one segment

 Buffer until ACK is received

 Good for interactive typing on a terminal

 Problems

 not good for interactive games

 can cause deadlock: app waiting for data

TCP Sliding Window
Silly window syndrome

 Sending TCP sends large blocks

 Receiving app reads one byte at a time

TCP Sliding Window

 Clark’s solution to silly window syndrome

 receiver should wait before sending updates

 wait until more window space is available

 sender should not send tiny segments

 at least half receiver’s buffer size

 Nagle, Clark solutions complement

 Segment can arrive out of order

 Can discard, but waste bandwidth

 ACK not sent until up to ACKed byte arrives
28

TCP Timer Management

 TCP uses multiple timers

Most imp: RTO (Retransmission TimeOut)

 start when segment is sent

 stopped when ACK is received

 Determining timeout interval is more
difficult in TCP than in data link layer

 too small, unnecessary retransmissions

 too long, long delay, performance suffers

 Solution: dynamic timeout

TCP Timer Management

30

(a) Probability density of ACK arrival times in the data link layer

(b) Probability density of ACK arrival times for TCP

TCP Timer Management

Jacobson's Algorithm

 Dynamically adjust timeout interval

 Maintain RTT for each connection

 Best current estimate for round-trip time

 If ACK takes R sec < timer expiration,
SRTT = α SRTT + (1- α) R

 α is a smoothing factor

 Typically α = 7/8

Example

If the TCP round-trip time, RTT, is currently 30 msec and the

following acknowledgements come in after 26, 32, and 24

msec, respectively, what is the new RTT estimate using the

Jacobson algorithm? Use α = 0.9.

Solution

SRTT = α SRTT + (1- α) R

SRTT1 =0.9×30+(1–0.9)×26 = 29.6

SRTT2 =0.9×29.6+(1–0.9)×32 = 29.84

SRTT3 =0.9×29.84+(1–0.9)×24 = 29.256

TCP Timer Management

 Even w good SRTT, difficult to choose RTO

 Initial implementation used 2xRTT

 Inflexible to response to large variance

 Delay becomes large when load ≋ capacity

 May retransmit when packet still in transit

 To fix this, make RTO sensitive to variance

 𝑅𝑇𝑇𝑉𝐴𝑅 = 𝛽𝑅𝑇𝑇𝑉𝐴𝑅 + 1 − 𝛽 𝑆𝑅𝑇𝑇 − 𝑅

 𝑅𝑇𝑂 = 𝑆𝑅𝑇𝑇 + 4 × 𝑅𝑇𝑇𝑉𝐴𝑅

 Typically 𝛽 = 3/4
33

TCP Timer Management

 When segment retransmitted, ACK arrives

 Is ACK for first or second segment?

 Wrong guess contaminate SRTT

Karn’s Algorithm

 When packet is retransmitted,

 don’t update SRTT

 double timeout value on each retransmission

 Used in most TCP implementation

34

TCP Timer Management

Persistence timer

 Prevent deadlock

 receiver sends ACK, WIN=0, tell sender to wait

 later receiver updates WIN, but update is lost

 sender, receiver waiting for each other

 When timer goes off

 sender transmits probe to receiver

 receiver responds with window size

 if WIN still 0, timer is set again and cycle repeat
35

TCP Timer Management

Keepalive timer

 When connection is idle for long time

 Check whether other side is still there

 No response? connection terminated

TIME WAIT state

 when closing connection

 wait twice max packet lifetime

 make sure that when connection closed,

 all packets created by it have died off 36

TCP Congestion Control

 Congestion control is a key function of TCP

 Congestion: offered load > network ability

 NL tries to manage; if it can’t, drop

 TL receives feedback, slow down: TCP

 Additive Increase Multiplicative Decrease

 TCP implements AMID using: window, loss

 Maintains congestion window, in addition to
flow control window

37

TCP Congestion Control

38

(a) A fast network feeding a low capacity receiver

(b) A slow network feeding a high-capacity receiver

TCP Congestion Control

 Two windows maintained in parallel

 flow control window

 congestion window

 Effective windows is the smaller of the two

 Example

 receiver says send 64 KB

 sender knows > 32 KB can cause congestion

 sender will send only 32 KB

39

TCP Congestion Control

 Congestion, noise can cause packet loss

 Loss due to noise is rare in wired medium

 Not the case in wireless links: 802.11

 Wireless include own retrans mechanisms;

 TCP always assume loss is due to congestion

40

TCP Congestion Control

 Acks return at rate = slowest link along path

 Called: ack clock; used by TCP to smooth traffic

 Sending at this rate avoid unnecessary queues

41

TCP Congestion Control

 AMID take long time to reach good point

 Start w max window? too large for slow link

 Jacobson sol: mix additive, multiplicative inc

 Called slow start (compared to max win)

 First time, send 1 packet (max segment size)

 For each segment ack’ed, send 2 segments

 Congestion window doubles every RTT

 Not slow at all; exponential growth
42

TCP Congestion Control

43

Slow start grows congestion window exponentially

Increment cwnd for
each new ACK

TCP Congestion Control

 To keep under control, use threshold

 Initially set to flow control window

 Congestion window keeps increasing until
 timeout occur (packet is lost)

 congestion window exceeds threshold

 receiver’s window is filled

 If packet loss happens
 set threshold = ½ previous loss cwnd

 set cwnd to its initial value

 restart the slow start process
44

TCP Congestion Control

 When slow start threshold crossed;

 TCP sw from slow start to additive increase

 cwnd increased by 1 segment every RTT

 As in slow start, usually every ack, not RTT

45

TCP Congestion Control

46

Adds 1 every RTT;
Keeps ACK clock

TCP Congestion Control

 Defect: waiting for timeout; relatively long

 After packet lost

 receiver can’t ack past it

 ack number is fixed

 sender can’t send new packets

 long.. until timer fires, lost packet retransmitted

 Quick way to recognize loss: duplicate ack

 same ack #, likely other pkt arrived, orig lost

 may have taken diff path: out of order; unlikely
47

TCP Congestion Control

Fast retransmission

 Assume duplicate ack = packet loss

 After 3 duplicate acks, retrans lost packet

 Set threshold = ½ cwnd; same as w timeout

 Set cwnd = 1 segment

 Send new packet after ack of retransmitted

 Added in TCP Tahoe
48

TCP Congestion Control
TCP Tahoe
 Threshold is half of previous loss cwnd
 cwnd set to 1 segment

49

Loss causes timeout;
ACK clock has stopped
so slow-start again

TCP Congestion Control

Fast recovery

 Temp mode maintain ack clock

 After fast retrans (3rd duplicate ACKs)

 After 1 RTT, lost packt ACK’ed, FR exited

 Set cwnd = ½ SS threshold (not 1 seg)

 cwnd continue linear increase

50

TCP Congestion Control

TCP Reno
 SS threshold is half of previous loss cwnd
 cwnd set to threshold

51

The ACK clock doesn’t stop,
so no need to slow-start

TCP Congestion Control
Name Mechanism Purpose

ACK clock Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increase send rate to
reach roughly the right level

Additive
Increase

Increase cwnd by 1 packet
each RTT

Slowly increase send rate to
probe at about the right level

Fast
retransmit
/ recovery

Resend lost packet after 3
duplicate ACKs; send new
packet for each new ACK

Recover from a lost packet
without stopping ACK clock

 Other mechanisms

 selective acknowledgements (SACK)

 explicit congestion notification (ECN)
52

TCP Congestion Control

 Cumulative ack doesn’t tell which seg lost

 Fix: use selective ack (SACK) option

 Lists up to 3 ranges of bytes received

 More accurate retransmissions

53

With only ACKs, no way for us
to know that 2 and 5 were lost

TCP Congestion Control

 ECN: IP mech to notify hosts of congestion

 During TCP connection establishment,
sender, receiver set ECE, CWR bits

 TCP packet flagged in IP header: ECN

 Routers set ECN signal when cong approach

 Instead of dropping packet after congestion

 Receiver sets ECE, sender responds w CWR

 Sender reacts same as packet loss

54

Example

55

Consider the effect of using slow start on a line with a 10-msec round-trip

time and no congestion. The receive window is 24 KB and the maximum

segment size is 2 KB.

How long does it take before the first full window can be sent?

Solution

Starting with window size = 1 segment = 2 KB

At RTT 1 (10 ms), cwnd = 4 KB

At RTT 2 (20 ms), cwnd = 8 KB

At RTT 3 (30 ms), cwnd = 16 KB

At RTT 4 (40 ms), cwnd = 24 (limited by receiver window)

Answer = 40 ms

Example

56

Consider a TCP connection with 10 ms round-trip time, max segment size

= 2 KB, receiver window = 64 KB. Suppose packet #4 timed out and all

other transmissions were successful. RTO value is 50 ms. Calculate the

time required to reach the receiver window size. Assume RTT is fixed.

Solution

Initially, cwnd = 2KB,

ssthresh = 64 KB

ACK #1 at RTT 1, cwnd = 2*2 = 4 KB,

ACK #2 at RTT 2, cwnd = 4*2 = 8 KB,

ACK #3 at RTT 3, cwnd = 8*2 = 16 KB

#4 is lost at RTT3+RTO = 30 + 50 =80 ms

ssthresh = 16/2 = 8 KB, cwnd = 2 KB

retransmit #4

ACK #4 at RTT 1, cwnd = 2*2 = 4 KB

ACK #5 at RTT 2, cwnd = 4*2 = 8 KB

Since we reached sstresh, switch to

additive increase:

ACK #6 at RTT 3, cwnd = 8+2 = 10 KB

ACK #7 at RTT 4, cwnd = 10+2 =12 KB

ACK #8 at RTT 5, cwnd = 11+2 = 14 KB

..

ACK #x+3 at RTT x, cwnd = (2x+4) KB

..

ACK #33 at RTT 30, cwnd = 64 KB

RTT 30 = 300 + 80 = 380 ms

ack clock restart

Example

57

Threshold

Retransmit; restart RTT

Example

58

Suppose that the TCP congestion window is set to 18 KB and a timeout

occurs. Assume that the maximum segment size is 1 KB.

a. How big will the window be if the next four transmission bursts are

all successful?

b. After another four transmission bursts, how big will the window be?

Solution

a. The next transmission will be 1 maximum segment size. Then 2, 4, and 8.

So after four successes, it will be 8 KB.

b. Note that ssthresh = 18/2 = 9 KB.

After next transmission, cwnd = 8+1 = 9 KB

Then, 10, 11, 12.

So after 4 more bursts, it will be 12 KB.

We started at 1 MSS because
this is the first after timeout

ssthresh (slow-start threshold)
= ½ of the threshold value

before the timeout

External References

 TCP Congestion Control,
http://web.cs.wpi.edu/~cs3516/b09/slides/tcp-cong-control.ppt

59

http://web.cs.wpi.edu/~cs3516/b09/slides/tcp-cong-control.ppt

