
CEN445 – Network Protocols and Algorithms

Chapter 6 – Transport Layer

6.4 Internet Transport Protocols: TCP

Dr. Mostafa Hassan Dahshan
Department of Computer Engineering

College of Computer and Information Sciences

King Saud University
mdahshan@ksu.edu.sa

http://faculty.ksu.edu.sa/mdahshan

mailto:mdahshan@ksu.edu.sa
http://faculty.ksu.edu.sa/mdahshan

Introduction to TCP

 Designed to provide reliable end-to-end
byte stream over unreliable internetwork

 Internetwork different from single network

 topologies, bandwidths, delays, packet sizes, …

 TCP was designed to

 dynamically adapts to properties of internet

 be robust in face of many types of failures

 Def in RFC 793, many improv were added

2

Introduction to TCP

 Supported by many operating systems as

 library proc, user process, part of kernel

 Breaks data stream into segments

 Maximum segment size is 64 KB

 Often 1460 to fit in single IP Ethernet frame

 Handles IP unreliability

 timeout and retransmission

 reassemble packets arriving out of order

TCP Service Model

 Sender, receiver create end points: sockets

 Socket number: IP address, port: 16-bit #

 Socket can be used for multiple connections

 < 1024, well known ports, for std services

 1024 .. 49151 can be registered with IANA

 Apps can choose their own ports

 Each server can listen @ its port at boot

 Better: single daemon @ all ports: inetd

TCP Service Model

5

TCP Service Model

 Connection is full duplex, byte stream

 Message boundaries not reserved

 Send 1024, may receive 512, 512 or vice vera

6

Four segments, each with 512 bytes
of data and carried in an IP packet

2048 bytes of data
delivered to application
in a single READ call

TCP Segment Header

7

TCP Segment Header

 Fixed 20 bytes, options: 0-40 bytes

 Data: 65535-20-20 = 65495 B may follow

 Src, dst ports: 16 bits ident conn endpoints

 Connection identifier: 5-tuple

 protocol (TCP)

 source and destination IP addresses

 source and destination port numbers

8

TCP Segment Header

 Sequence number: # of 1st byte in segment

 Ack number: next in-order byte expected

 Header length: 32-bit words (options var)

 ECE: tell sender to slow down

 CWR: tell receiver Congestion Win Reduced

 URG: set to 1 when Urgent Pointer is used

 Urgent pointer: offset of which urgent data
start from current sequence number

9

TCP Segment Header

 ACK: indicate Ack number is valid

 PSH: request rcvr to push data, not buffer

 RST: reset connection

 host crash, invalid segment, refuse connection

 SYN: used in establishing connection

 FIN: release connection, no more data

 Window size:

 how many bytes may be sent after ack number

 0: ack#-1 rcvd, no more data please
10

TCP Segment Header

 Checksum: same as UDP

 Options: add extra facilities
 MSS: max segment size willing to accept

 window scale: win size factor
 shift win size up to 14 bits

 allow windows up to 230 bytes (214+16)

 timestamp: sent by sender, echoed by receiver
 used compute round-trip, estimate lost packet

 extend seq # in fast links may wrap

 PAWS: Protect Against Wrapped Seq numbers

 SACK: Selective ACK, ranges to retransmit
11

Example – Window Scale

 OC-12 link (600 Mbps), 50 ms prop delay

 What is the link utilization?

 Answer:

 time to transmit 64 KB =
64×8×210

600×220
= 0.83 ≈ 1ms

 ACK arrives after 50 ms

 total time = 50 + 1 = 51 ms

 link idle for
𝑝𝑟𝑜𝑝

𝑝𝑟𝑜𝑝+𝑡𝑟𝑎𝑛𝑠
=

50

50+1
≈ 98% of the time

 utilization =
𝑡𝑟𝑎𝑛𝑠

𝑝𝑟𝑜𝑝+𝑡𝑟𝑎𝑛𝑠
=

1

50+1
≈ 2% of the time

12

Example – Window Scale

 OC-12 link (600 Mbps), 50 ms prop delay

 What value of window scale to allow 10%
utilization?

 Answer:

 utilization =
𝑡𝑟𝑎𝑛𝑠

𝑝𝑟𝑜𝑝+𝑡𝑟𝑎𝑛𝑠
→ 0.1 =

𝑡𝑟𝑎𝑛𝑠

50+𝑡𝑟𝑎𝑛𝑠

 𝑡𝑟𝑎𝑛𝑠 = 5.56 ms

 window size =
5.56

1000
×

600

8
× 220 =437257 bytes

 bits required = ⎾log2(437257)⏋=19

 Window scale (shifted bits) = 19 – 16 = 3

13

TCP Connection Establishment

 Use three-way handshake

 Server executes LISTEN, ACCEPT

 Client exec CONNECT, sends [SYN=1, ACK=0]

 Client specifies IP, port, max segment size

 Server: checks for process listening on port

 no? reply with [RST=1]

 yes? reply with [SYN=1, ACK=1]

 Initial seq # cycle slowly, not start @ 0

 protect against delayed duplicate, clock based

TCP Connection Establishment

15

Normal case Simultaneous connect

TCP Connection Release

 Each direction is released independently

 Send TCP segment with [FIN=1]

 When ack received, that direction shutdown

 Other side can sends ACK

 Possible to send FIN with ACK in 1 segment

 To avoid two-army problem

 if no ACK received? sender times out, release

 other side eventually time out as well

TCP Connection Management
Modeling

17

TCP Connection Management
Modeling

 Heavy solid line: normal path for a client
 Heavy dashed line: normal path for a server
 Light lines: unusual events
 Transition labeled: causing event/ resulting event

18

TCP Connection Management
Modeling

19

TCP Sliding Window

 TCP uses credit-based flow control

 Window management not tied to ack

 Remember, transport layer buffers data

 Receiver changes window according to
buffer consumption by application

TCP Sliding Window

Example

 Receiver has a 4096-byte buffer

 Sender transmit 2048-b seg; correctly rcvd

 Receiver acknowledges segment

 But, app hasn’t removed data from buffer

 Receiver advertise window 2048

 Starting at next byte expected

 Sender tr 2048 B; but receiver adv win=0
21

22

ACK + WIN is the
sender’s limit

TCP Sliding Window

 When win=0, sender can’t send, except:

 urgent data, to allow kill process remotely

 1-byte seg to force receiver re-announce win
size (window probe), to prevent deadlock

 Sender can buffer data before sending

 Receiver can wait before acknowledging

 Can use flexibility to improve performance

23

TCP Sliding Window

Example – interactive telnet/SSH application

 User A types 1 character

 TCP A sends 41-byte segment

 TCP B sends 40-byte ACK

 Editor B echoes 1 character

 TCP B sends 41-byte segment

 TCP A sends 40-byte ACK

 Total of 162 bytes used for each char typed!

TCP Sliding Window

 To optimize, delayed acknowledgements

 Delay ACK, Win update for up to 500 ms

 More data may arrive

 If terminal echoes within 500 ms,

 only 41-byte (ACK + data) are sent

 total bytes 82; half bandwidth is saved

Think of similar
examples

TCP Sliding Window

Nagle’s Algorithm

 Send one byte; Buffer the rest, wait for ACK

 Send remaining bytes in one segment

 Buffer until ACK is received

 Good for interactive typing on a terminal

 Problems

 not good for interactive games

 can cause deadlock: app waiting for data

TCP Sliding Window
Silly window syndrome

 Sending TCP sends large blocks

 Receiving app reads one byte at a time

TCP Sliding Window

 Clark’s solution to silly window syndrome

 receiver should wait before sending updates

 wait until more window space is available

 sender should not send tiny segments

 at least half receiver’s buffer size

 Nagle, Clark solutions complement

 Segment can arrive out of order

 Can discard, but waste bandwidth

 ACK not sent until up to ACKed byte arrives
28

TCP Timer Management

 TCP uses multiple timers

Most imp: RTO (Retransmission TimeOut)

 start when segment is sent

 stopped when ACK is received

 Determining timeout interval is more
difficult in TCP than in data link layer

 too small, unnecessary retransmissions

 too long, long delay, performance suffers

 Solution: dynamic timeout

TCP Timer Management

30

(a) Probability density of ACK arrival times in the data link layer

(b) Probability density of ACK arrival times for TCP

TCP Timer Management

Jacobson's Algorithm

 Dynamically adjust timeout interval

 Maintain RTT for each connection

 Best current estimate for round-trip time

 If ACK takes R sec < timer expiration,
SRTT = α SRTT + (1- α) R

 α is a smoothing factor

 Typically α = 7/8

Example

If the TCP round-trip time, RTT, is currently 30 msec and the

following acknowledgements come in after 26, 32, and 24

msec, respectively, what is the new RTT estimate using the

Jacobson algorithm? Use α = 0.9.

Solution

SRTT = α SRTT + (1- α) R

SRTT1 =0.9×30+(1–0.9)×26 = 29.6

SRTT2 =0.9×29.6+(1–0.9)×32 = 29.84

SRTT3 =0.9×29.84+(1–0.9)×24 = 29.256

TCP Timer Management

 Even w good SRTT, difficult to choose RTO

 Initial implementation used 2xRTT

 Inflexible to response to large variance

 Delay becomes large when load ≋ capacity

 May retransmit when packet still in transit

 To fix this, make RTO sensitive to variance

 𝑅𝑇𝑇𝑉𝐴𝑅 = 𝛽𝑅𝑇𝑇𝑉𝐴𝑅 + 1 − 𝛽 𝑆𝑅𝑇𝑇 − 𝑅

 𝑅𝑇𝑂 = 𝑆𝑅𝑇𝑇 + 4 × 𝑅𝑇𝑇𝑉𝐴𝑅

 Typically 𝛽 = 3/4
33

TCP Timer Management

 When segment retransmitted, ACK arrives

 Is ACK for first or second segment?

 Wrong guess contaminate SRTT

Karn’s Algorithm

 When packet is retransmitted,

 don’t update SRTT

 double timeout value on each retransmission

 Used in most TCP implementation

34

TCP Timer Management

Persistence timer

 Prevent deadlock

 receiver sends ACK, WIN=0, tell sender to wait

 later receiver updates WIN, but update is lost

 sender, receiver waiting for each other

 When timer goes off

 sender transmits probe to receiver

 receiver responds with window size

 if WIN still 0, timer is set again and cycle repeat
35

TCP Timer Management

Keepalive timer

 When connection is idle for long time

 Check whether other side is still there

 No response? connection terminated

TIME WAIT state

 when closing connection

 wait twice max packet lifetime

 make sure that when connection closed,

 all packets created by it have died off 36

TCP Congestion Control

 Congestion control is a key function of TCP

 Congestion: offered load > network ability

 NL tries to manage; if it can’t, drop

 TL receives feedback, slow down: TCP

 Additive Increase Multiplicative Decrease

 TCP implements AMID using: window, loss

 Maintains congestion window, in addition to
flow control window

37

TCP Congestion Control

38

(a) A fast network feeding a low capacity receiver

(b) A slow network feeding a high-capacity receiver

TCP Congestion Control

 Two windows maintained in parallel

 flow control window

 congestion window

 Effective windows is the smaller of the two

 Example

 receiver says send 64 KB

 sender knows > 32 KB can cause congestion

 sender will send only 32 KB

39

TCP Congestion Control

 Congestion, noise can cause packet loss

 Loss due to noise is rare in wired medium

 Not the case in wireless links: 802.11

 Wireless include own retrans mechanisms;

 TCP always assume loss is due to congestion

40

TCP Congestion Control

 Acks return at rate = slowest link along path

 Called: ack clock; used by TCP to smooth traffic

 Sending at this rate avoid unnecessary queues

41

TCP Congestion Control

 AMID take long time to reach good point

 Start w max window? too large for slow link

 Jacobson sol: mix additive, multiplicative inc

 Called slow start (compared to max win)

 First time, send 1 packet (max segment size)

 For each segment ack’ed, send 2 segments

 Congestion window doubles every RTT

 Not slow at all; exponential growth
42

TCP Congestion Control

43

Slow start grows congestion window exponentially

Increment cwnd for
each new ACK

TCP Congestion Control

 To keep under control, use threshold

 Initially set to flow control window

 Congestion window keeps increasing until
 timeout occur (packet is lost)

 congestion window exceeds threshold

 receiver’s window is filled

 If packet loss happens
 set threshold = ½ previous loss cwnd

 set cwnd to its initial value

 restart the slow start process
44

TCP Congestion Control

 When slow start threshold crossed;

 TCP sw from slow start to additive increase

 cwnd increased by 1 segment every RTT

 As in slow start, usually every ack, not RTT

45

TCP Congestion Control

46

Adds 1 every RTT;
Keeps ACK clock

TCP Congestion Control

 Defect: waiting for timeout; relatively long

 After packet lost

 receiver can’t ack past it

 ack number is fixed

 sender can’t send new packets

 long.. until timer fires, lost packet retransmitted

 Quick way to recognize loss: duplicate ack

 same ack #, likely other pkt arrived, orig lost

 may have taken diff path: out of order; unlikely
47

TCP Congestion Control

Fast retransmission

 Assume duplicate ack = packet loss

 After 3 duplicate acks, retrans lost packet

 Set threshold = ½ cwnd; same as w timeout

 Set cwnd = 1 segment

 Send new packet after ack of retransmitted

 Added in TCP Tahoe
48

TCP Congestion Control
TCP Tahoe
 Threshold is half of previous loss cwnd
 cwnd set to 1 segment

49

Loss causes timeout;
ACK clock has stopped
so slow-start again

TCP Congestion Control

Fast recovery

 Temp mode maintain ack clock

 After fast retrans (3rd duplicate ACKs)

 After 1 RTT, lost packt ACK’ed, FR exited

 Set cwnd = ½ SS threshold (not 1 seg)

 cwnd continue linear increase

50

TCP Congestion Control

TCP Reno
 SS threshold is half of previous loss cwnd
 cwnd set to threshold

51

The ACK clock doesn’t stop,
so no need to slow-start

TCP Congestion Control
Name Mechanism Purpose

ACK clock Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increase send rate to
reach roughly the right level

Additive
Increase

Increase cwnd by 1 packet
each RTT

Slowly increase send rate to
probe at about the right level

Fast
retransmit
/ recovery

Resend lost packet after 3
duplicate ACKs; send new
packet for each new ACK

Recover from a lost packet
without stopping ACK clock

 Other mechanisms

 selective acknowledgements (SACK)

 explicit congestion notification (ECN)
52

TCP Congestion Control

 Cumulative ack doesn’t tell which seg lost

 Fix: use selective ack (SACK) option

 Lists up to 3 ranges of bytes received

 More accurate retransmissions

53

With only ACKs, no way for us
to know that 2 and 5 were lost

TCP Congestion Control

 ECN: IP mech to notify hosts of congestion

 During TCP connection establishment,
sender, receiver set ECE, CWR bits

 TCP packet flagged in IP header: ECN

 Routers set ECN signal when cong approach

 Instead of dropping packet after congestion

 Receiver sets ECE, sender responds w CWR

 Sender reacts same as packet loss

54

Example

55

Consider the effect of using slow start on a line with a 10-msec round-trip

time and no congestion. The receive window is 24 KB and the maximum

segment size is 2 KB.

How long does it take before the first full window can be sent?

Solution

Starting with window size = 1 segment = 2 KB

At RTT 1 (10 ms), cwnd = 4 KB

At RTT 2 (20 ms), cwnd = 8 KB

At RTT 3 (30 ms), cwnd = 16 KB

At RTT 4 (40 ms), cwnd = 24 (limited by receiver window)

Answer = 40 ms

Example

56

Consider a TCP connection with 10 ms round-trip time, max segment size

= 2 KB, receiver window = 64 KB. Suppose packet #4 timed out and all

other transmissions were successful. RTO value is 50 ms. Calculate the

time required to reach the receiver window size. Assume RTT is fixed.

Solution

Initially, cwnd = 2KB,

ssthresh = 64 KB

ACK #1 at RTT 1, cwnd = 2*2 = 4 KB,

ACK #2 at RTT 2, cwnd = 4*2 = 8 KB,

ACK #3 at RTT 3, cwnd = 8*2 = 16 KB

#4 is lost at RTT3+RTO = 30 + 50 =80 ms

ssthresh = 16/2 = 8 KB, cwnd = 2 KB

retransmit #4

ACK #4 at RTT 1, cwnd = 2*2 = 4 KB

ACK #5 at RTT 2, cwnd = 4*2 = 8 KB

Since we reached sstresh, switch to

additive increase:

ACK #6 at RTT 3, cwnd = 8+2 = 10 KB

ACK #7 at RTT 4, cwnd = 10+2 =12 KB

ACK #8 at RTT 5, cwnd = 11+2 = 14 KB

..

ACK #x+3 at RTT x, cwnd = (2x+4) KB

..

ACK #33 at RTT 30, cwnd = 64 KB

RTT 30 = 300 + 80 = 380 ms

ack clock restart

Example

57

Threshold

Retransmit; restart RTT

Example

58

Suppose that the TCP congestion window is set to 18 KB and a timeout

occurs. Assume that the maximum segment size is 1 KB.

a. How big will the window be if the next four transmission bursts are

all successful?

b. After another four transmission bursts, how big will the window be?

Solution

a. The next transmission will be 1 maximum segment size. Then 2, 4, and 8.

So after four successes, it will be 8 KB.

b. Note that ssthresh = 18/2 = 9 KB.

After next transmission, cwnd = 8+1 = 9 KB

Then, 10, 11, 12.

So after 4 more bursts, it will be 12 KB.

We started at 1 MSS because
this is the first after timeout

ssthresh (slow-start threshold)
= ½ of the threshold value

before the timeout

External References

 TCP Congestion Control,
http://web.cs.wpi.edu/~cs3516/b09/slides/tcp-cong-control.ppt

59

http://web.cs.wpi.edu/~cs3516/b09/slides/tcp-cong-control.ppt

