
LOOP TRICKS AND PITFALLS

Click to add text

Local Variable Inside for

• Possible to declare variables within a for statement

int sum = 0;

for (int n = 1 ; n <= 10 ; n++)

sum = sum + n * n;

• Note that variable n is local to the loop, it means:

• you can not use n after the loop.

• n is undeclared outside the loop.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 2

for Statement Variations

• Multiple Initializations are allowed:

for (n = 1 , product = 1 ; n <= 10; n++)

product = product * n;

• Multiple update actions are allowed:

for (n = 1, product = 1; n <= 10;

product = product * n , n++);

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 3

for Statement Variations and Pitfalls

• A for loop ending with a ; does not have a body:
for (i = 1; i <= 5; i++);

{ System.out.println("Hello");

System.out.println("*");

}

System.out.println(i);

• it is most likely a logical error,

• except like example on previous slide:
for (n = 1, product = 1; n <= 10;

product = product * n , n++);

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 4

for Statement Variations

• Only one boolean expression is allowed, but it can consist of
&&s, ||s, and !s.

• If no boolean expression is given, it is assumed to be true
for (n = 1 ; ; n++)

{ sum = sum + n;

if (n > 10) break;

}

• Omitting all three control statements ➔ infinite loop
for (; ;)

{ sum = sum + n;

if (n > 10) break;

}

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 5

The Loop Body

• To design the loop body, write out the actions the

code must accomplish.

• Then look for a repeated pattern.

• The pattern need not start with the first action.

• The repeated pattern will form the body of the loop.

• Some actions may need to be done after the pattern stops

repeating.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 6

Initializing Statements

• Some variables need to have a value before the loop

begins.

• Sometimes this is determined by what is supposed to

happen after one loop iteration.

• Often variables have an initial value of zero or one, but not

always.

• Other variables get values only while the loop is

iterating.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 7

Controlling Number of Loop Iterations

• If the number of iterations is known before the loop

starts, the loop is called a count-controlled loop.
• Use a for loop.

• Asking the user before each iteration if it is time to

end the loop is called the ask-before-iterating

technique.

• Appropriate for a small number of iterations

• Use a while loop or a do-while loop.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 8

Controlling Number of Loop Iterations

• For large input lists, a sentinel value can be used to

signal the end of the list.
• The sentinel value must be different from all the other

possible inputs.

• A negative number following a long list of nonnegative exam
scores could be suitable.

90

0

10

-1

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 9

Loop control

int N = 5; //input by user

//or assigned

int counter = 0;

int sum = 0;

while (counter < N)

{

counter++;

sum = sum + counter;

}

System.out.println(“Total= ”,sum);

10

What’s the output?

Total = 15

What if we switch the

order of these two lines?

Total = 10

What if we use
(counter<=N) ?

Total = 21

What if we put a ; here?
Infinite loop

What if we use
counter--; ?

infinite loop

Loop control

int N = 5; //input by user

//or assigned

int counter = 1;

int sum = 0;

while (counter <= N)

{

counter++;

sum = sum + counter;

}

System.out.println(“Total= ”,sum);

11

Trace it at home

☺

Beware of infinite loops

• What about this loop?

for (i = 0; i <= 5; i++)

{

System.out.println(i--);

}

System.out.println();

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 12

Programming Example

• Spending Spree

• You have $100 to spend in a store

• Maximum 3 items

• Computer tracks spending and item count

• When item chosen, computer tells you whether or not you

can buy it

• Client wants adaptable program

• Able to change amount and maximum number of items

• View sample algorithm

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 13

file:///C:/Users/Nadia/OneDrive - King Saud University Faculty/Documents/CSC111 - Java I - 24_25_1st/My Slides/Code Samples - from book/CodeSamples2.htm#Spending Spree Algorithm

Programming Example

• View sample program, listing 4.7
class SpendingSpree

Sample

screen output

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 14

file:///C:/Users/Nadia/OneDrive - King Saud University Faculty/Documents/CSC111 - Java I - 24_25_1st/My Slides/Code Samples - from book/CodeSamples2.htm#Listing 4.7

The break and continue Statement

break

• Used to exit a loop

completely.

• Skips remainder of loop

body and continues AFTER

the loop

• Ends only the innermost

loop that contains the
break.

continue

• Used to end current
iteration only.

• Skips remainder of loop
body and continues with
NEXT iteration if any:
• In a while and do…while, the

logical expression is evaluated
immediately after continue

• In a for statement, the
counter is updated after the
continue and then the logical
expression is evaluated.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 15

The break and continue Statement

• BOTH are associated with an if statement.

• BOTH affect only the innermost loop that contains
the break or continue

• BOTH make loops more difficult to understand ➔

Avoid using them.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 16

The break Statement in Loops

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 17

The break Statement in Loops

• The following code segment sums up a set of positive integers.

• This program does not allow to sum negative numbers:

18

1

2

3

4

5

6

7

8

9

10

11

12

13

int num = -1, sum = 0; //initialize the accumulator sum

while (num != 0)

{

System.out.println (“Enter a positive integer, 0 to exit”);

num = read.nextInt();

if (num < 0)

{

System.out.println (“Negative numbers are not allowed”);

break;

} //end if

sum =sum + num;

} // end while

System.out.println (“Sum = “ + sum);

The POSITIVE

number is

added

If the user

enters a

NON-ZERO

POSITIVE

number

The break Statement in Loops

• The following code segment sums up a set of positive integers.

• This program does not allow to sum negative numbers:

19

1

2

3

4

5

6

7

8

9

10

11

12

13

int num = -1, sum = 0; //initialize the accumulator sum

while (num != 0)

{

System.out.println (“Enter a positive integer, 0 to exit”);

num = read.nextInt();

if (num < 0)

{

System.out.println (“Negative numbers are not allowed”);

break;

} //end if

sum =sum + num;

} // end while

System.out.println (“Sum = “ + sum);

The –ve number

is NOT added,

because break;
exits the loop

If the user

enters a

NEGATIVE

number

The continue Statement in Loops

• The following code segment sums up a set of positive integers.

• Negative numbers are skipped, but the loop does not stop.

20

1

2

3

4

5

6

7

8

9

10

11

12

13

int num = -1, sum = 0; //initialize the accumulator sum

while (num != 0)

{

System.out.println (“Enter a positive integer, 0 to exit”);

num = read.nextInt();

if (num < 0)

{

System.out.println (“Negative numbers are not allowed”);

continue;

} //end if

sum =sum + num;

} // end while

System.out.println (“Sum = “ + sum);

The POSITIVE

number is

added

If the user

enters a

NON-ZERO

POSITIVE

number

The continue Statement in Loops

• The following code segment sums up a set of positive integers.

• This program does not allow to sum negative numbers:

21

1

2

3

4

5

6

7

8

9

10

11

12

13

int num = -1, sum = 0; //initialize the accumulator sum

while (num != 0)

{

System.out.println (“Enter a positive integer, 0 to exit”);

num = read.nextInt();

if (num < 0)

{

System.out.println (“Negative numbers are not allowed”);

continue;

} //end if

sum =sum + num;

} // end while

System.out.println (“Sum = “ + sum);

The –ve number is

NOT added,

because continue;
exits the current

iteration

If the user

enters a

NEGATIVE

number

break vs continueStatement

22

1
2
3
4
5
6
7
8
9
10
11
12
13

int num = -1, sum = 0; //initialize the accumulator sum
while (num != 0)

{
System.out.println (“Enter a positive integer, 0 to exit”); //prompt
num = read.nextInt();
if (num < 0)

{
System.out.println (“Negative numbers are not allowed”);
continue;

} //end if
sum =sum + num;

} // end while
System.out.println (“Sum = “ + sum);

1
2
3
4
5
6
7
8
9
10
11
12
13

int num = -1, sum = 0; //initialize the accumulator sum
while (num != 0)

{
System.out.println (“Enter a positive integer, 0 to exit”); //prompt
num = read.nextInt();
if (num < 0)

{
System.out.println (“Negative numbers are not allowed”);
break;

} //end if
sum =sum + num;

} // end while
System.out.println (“Sum = “ + sum);

How the break Statement works

while (testExpression) {

// codes

if (cond. to break) {

break;

}

// codes

} // while

do {

// codes

if (cond. to break) {

break;

}

// codes

} while (testExpression);

for (init; testExpression; update) {

// codes

if (cond. to break) {

break;

}

// codes

}// for

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 23

How the continue Statement works

while (testExpression) {

// codes

if (cond. to continue) {

continue;

}

// codes

} // while

do {

// codes

if (cond. to continue) {

continue;

}

// codes

} while (testExpression);

for (init; testExpression; update) {

// codes

if (cond. to continue) {

continue;

}

// codes

}// for

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 24

Tracing Variables

• Tracing variables means watching the variables

change while the program is running.

• Simply insert temporary output statements in your program to

print of the values of variables of interest

• Or, learn to use the debugging facility that may be provided

by your system.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 25

Loop Bugs

• Common loop bugs
• Unintended infinite loops

• Off-by-one errors

• Testing equality of floating-point numbers

• Subtle infinite loops
• The loop may terminate for some input values, but not for

others.

• For example, you can’t get out of debt when the monthly

penalty exceeds the monthly payment.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 26

