CEN445 — Network Protocols and Algorithms
Chapter 6 — Transport Layer

ll 6.1 Transport Layer Service

Dr. Mostafa Hassan Dahshan
Department of Computer Engineering
College of Computer and Information Sciences
King Saud University
mdahshan@ksu.edu.sa
http://faculty.ksu.edu.sa/mdahshan

ML Transport Layer

=il
m Heart of protocol hierarchy (+ NL)

= Build on NL provide data transport from
process at source to process at destination

» Reliability independent of physical network
m Abstraction needed by apps to use network

Application
Transport
Network
Link
Physical

ML Services Provided to Upper Layers
]
m Efficient, reliable, transmission to app layer

m Use services provided by network layer
s TL work done by transport entity

s Transport entity: software or hardware in
{ m operating system kernel

Internet

= library package bound into network apps

Common in the

= separate user process
s network interface card

ML Services Provided to Upper Layers

]
Host 1 Host 2
Application Application
(or session) Application/transport (or session)
layer Transport | interface layer
«— address |, T
TPDU
Transport —_— Transport
. — .
entity Transport entity
protocol
Network — 5
address TransporUnet\vork
Network layer interface Network layer

ML Services Provided to Upper Layers
]
» Similar services to network layer

m connection-oriented and connectionless
= addressing

a flow control

s So why two distinct layers?

ML Services Provided to Upper Layers
]
m TL code runs entirely in user machines

= NL mostly runs in routers

s What if NL offers inadequate service?

» Users have no control over network

s TL can make service more reliable than NL
s TL hide net svc behind std set of primitives

s Programmer code work on wide variety of
networks

ML Services Provided to Upper Layers
]

» Transport service provider
= layers 1-4
m Transport service user

= layers above 4

» TL in key position: boundary between two

ML Transport Service Primitives
]

= Connection oriented transport service
= reliable service over unreliable network
» as if two UNIX processes com over pipe
= assume conn is 100% perfect
= don’t know about lost packets, congestion, ACK

m Connectionless provide unreliable service
= only multiplexes connections over NL
= will not focus on it in this chapter

Mk Transport Service Primitives
]

s Simplified (hypothetical) set
m Apps call primitives to transport data

= client: CONNECT, SEND, RECEIVE, DISCONNECT
= server: LISTEN, RECEIVE, SEND, DISCONNECT

Primitive Segment: sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection

Mk Transport Service Primitives

=1
s CONNECT

» client send CONNECTION REQUEST to server

m if server is blocked on LISTEN
= server sends CONNECTION ACCEPTED
= when it arrives to client, connection is established

» Data exchanged using SEND, RECEIVE
m one side blocks in RECEIVE, the other do SEND
= Conn no longer needed? DISCONNECT

» either side send DISCONNECTION REQUEST
m other side also do DISCONNECT

10

Mk Transport Service Primitives

Data exchange more complicated than NL
Every data packet sent must be ACK’ed
Control packet also acknowledged
Transport entity must do timers, retrans
All this is transparent to users

User see connection as reliable bit pipe
Put bit in a side, appear on other side

Ability to hide complexity: main advantage
of layered architecture

11

Mk Transport Service Primitives

ml R
Connection request Connect primitive
TPDU received executed

jmmmmmmmmmmmmmmmm o IDLE
' }
1
¥

PASSIVE ACTIVE

ESTABLISHMENT ESTABLISHMENT

PENDING PENDING
T
E Connect primitive Connection accepted J

TPDU received
N S executed | ESTABLISHED
i
Disconnection i Disconnect
request TPDU 1 imiti
PASSIVE T oived | primitive. ACTIVE
DISCONNECT |w=====m=m === ===~ ! DISCONNECT

PENDING PENDING

T
Italics arrival '
——————— server 0
. Sesssssmmss—e—=—- - IDLE , -
client Disconnect Disconnection request
primitive executed TPDU received

12

ML Berkeley Sockets

m Socket primitives used in UNIX for TCP “«»

m Socket: connection endpoint

-e

s Widely used for Internet programming
m Like simple set plus SOCKET, BIND, and ACCEPT

Primitive Meaning
SOCKET Create a new communication end point
BIND Associate a local address with a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Passively establish an incoming connection
CONNECT | Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

13

