EXP NO: 6

Zener Diodes Characteristics

1. Z diode characteristics

Objectives

- Static recording of the current-voltage characteristic $l_z = f(V_z)$ of a Z diode
- Dynamic representation of the current-voltage characteristic I = f(V) of a Z diode
- Differential resistance of Z diodes

Equipment

Circuit elements:

- 1 Resistor 330 Ω /2W
- 1 Resistor 220 Ω /2W
- 1 Resistor 10 Ω /2W
- 1 Resistor 1K Ω /2W
- 1 Resistor 100 Ω /2W
- 1 Z diode ZPD 6.2

Measuring devices:

- 1 Multimeter M2032
- 1 Multimeter M3E
- 1 Oscilloscope
- 1 DC Power supply units:
- 1 AC Power supply unit

Accessories:

- 1 Plug-in board 297x 300
- 1 Measuring cable BNC/4mm
- 1 Set of bridging plugs 19 mm
- 1 Set of connecting leads

Exercise 1

Static recording of the current-voltage characteristic l_z .= $f(V_z)$ of a Z diode

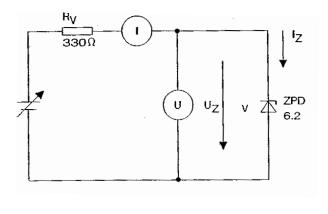


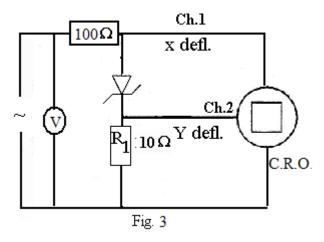
fig.1

Assemble the circuit as shown in fig.1 and carry out the measurements for the voltages given in the table 1.

ZPD 6.2 V				
V _Z /V	$I_Z mA$			
0				
1				
2				
3				
4				
5				
5.5				
6.0				
6.1				
6.2				

Draw the corresponding current-voltage characteristic $l_z = f(V_z)$.

- 1. What function does the series resistor R_v have?
- 2. Determine the Z voltage V_{zo} of the diode by drawing a tangent to the approximately linear part of the curve (fig. 2) and reading the voltage from the voltage axis where the tangent intersects it.
- 3. Set the DC supply (E) to the values appearing in Table 2 and measure both V_Z and V_R . Calculate the Zener current, I_Z using the Ohm's law given in the table and complete the table.
- 4. Plot I_Z versus V_Z using the data in Table 2 on a graph paper.


Results and Calculations:

E (V)	0	1	3	5	7	9	11	13
VZ(V)								
VR (V)								
$I_Z = V_R / R$ (mA)								

Table 2

Exercise 2

Dynamic representation of the current-voltage characteristic $l_z = f(V_z)$ of a Z diode.

- 1. Assemble the circuit as shown in fig.3 and apply a sinusoidal voltage Vp-p12 V, f = 50 Hz.
- 2. Display the current-voltage characteristic of the Z diodes ZPD 6.2 V and ZPD 9.1 V on the oscilloscope and enter the graphs into the diagram in fig. 4.
- 3. Record the oscilloscope settings of :

X-deflection: volts/div (DC) & Y-deflection: volts/div (DC, Inverted)

4. Compare the two characteristics and list three differences between them.