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4.3 Linear Independence



Definition LinearIndependence (L.l.) and Linear Dependence (L.D.)

S = {vy, vy, -,V }: aset of vectors in a vector space V

Forcivy + vy + -+ v = 0
(1) If the equation has only the trivial solution (¢c; = ¢, = - = ¢, = 0)
then S (or vq,Vv,, -+, V) is called linearly independent.

(2) If the equation has a nontrivial solution (i.e., not all ¢;’s are zero),
then S (or vq,v,, -+, V) is called linearly dependent.



Example

Testing For Linear Independence

Determine whether the following set of vectors in R’ is L.I. or L.D.
S={v,,v,,v;} =1{(1,2,3),(0,1,2),(-2, 0, 1)}

Solution

cv,+e,v,+ev, =0 =

¢

2¢,+ ¢, +

—2¢,=0
=0

3¢, +2¢c,+ ¢, =0

1
=2
_3

= ¢, =c, =c, =0 (only the trivial solution)

0
1
2

-2
0
1

0
0
0

G.-J. E.

A 4

oo =

(or det(4) =—1+ 0, so there 1s only the trivial solution)

S = O

_—0 O




Example Testing For Linear Independence

Determine whether the following set of vectors in P, 1s L.I. or L.D.

S={V1,V2,V3} :{l+x—2x2,2+5x—x2,x+x2}

Solution
CViTCVytevy; =0

i.e., c;(1+x — 2x?) + ¢,(2+5x — x?) + ¢5(x+x?) = 0+0x+0x2

c42c, =0 [1 2 0]0] 2 010
G.E.
= ofScte; =0 =1 5 1[0 —E5 0 1 YKo

—> This system has infinitely many solutions
(1.e., this system has nontrivial solutions, e.g., ¢,=2, ¢c,= — 1, ¢;=3)

= Sis(or vy, Vv,, v; are) linearly dependent



Example Testing For Linear Independence

Determine whether the following set of vectors in M,,1s L.I. or L.D.

{Vl,vz,v3}={§ HB (I)HE 8}}

S

Solution
2 1 3 0 1 0] [0 0
cVite,vtesvy =10 — “ 0 1+02 2 1 TG 2 0 B 0O O
- ) (2 3 110 1 0 0|0
+3c,+ ¢, =
016203_0 1 0 00 01 00
— Cl — — G.-J.E.>
2¢,42¢,=0 0 2 210 0 0 10
¢t ¢ =0 1 1 0/|0] 0 0 00

= ¢, = ¢, = c;= 0 (This system has only the trivial solution) = § is linearly independent



Theorem A Defining Property of L.D.

AsetS={v,,v,,...,v,}, fork>2,is linearly dependent if and only if at least one of
the vectors v; in S can be written as a linear combination of the other vectors in S.

Proof. (=) ¢, v,tc,v,+...+cv+...4c v, =0

"+ S 1s linearly dependent (there exist nontrivial solutions) = ¢; # 0 for some i

C C. C. C

— 1 -1 1 k
>v,=| -2 v+ - v+ - v | R,

C, C, c, c,

=_1 C,= d (there exits at least this
yenns

=>c,=d,.c =d-.....C,
1 1>%2 20900 nontrivial solution)

l

= § is linearly dependent



Theorem Easily Checked Sets

(a) Afinite set that contains O is linearly dependent.

(b) A set with exactly one vector is linearly independent if and only if that vector
is not 0.

(c) A set with exactly two vectors is linearly independent if and only if neither
vector is a scalar multiple of the other.

Proof.

(a) S={0,v,,v,,...,v, }isL.D.sincel-0+ 0v; +0v, +---+ 0v, = 0.
(b) Follows fromthefactthatcv=0< c=00rv =0.

(c) Follows from the previous theorem and is left as an exercise.



Theorem Checking L.D. From Number of Vectors

LetS = {v,v,, -, .} S R . Ifr >n,thenSisL.D..

Proof The vector equation c¢yv{ + cv, +--+ ¢, = 0 gives a homogeneous

linear System of n equations in r variables. Since r > n, it must have a nontrivial
solution. So, the set S must be L.D..
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Definition Basis

S ={vy, vy, Vv, }: aset of vectors in a vector space V is called a basis if

< . Linearly
paniing (* Bases ) Independent
Sets Sets

Note: A basis S must have enough vectors to span V, but not so many vectors that
one of them could be written as a linear combination of the other vectorsin S.

(1) S is linearly independent, and
(2) S spansV,i.e., span(S) = V.

Example A (Standard) Basis For R*

S ={(1,0,0), (0,1,0), (0,0,1)} forms a basis for R3:

(1) Sis L.l forifc;(1,0,0) + ¢,(0,1,0) + ¢5(0,0,1) = (0,0,0), then c;= c,= c3=0.
(2) span(S) =V, since (xq, x5, x3) = x,(1,0,0) + x,(0,1,0) + x5(0,0,1).



Example A (Standard) Basis For R™

S={e,e,, .., e },wheree, = (1,0,..,0),e,=(0,1,..,0),..,e,=(0,0,..,1)

Example A (Standard) Basis For M,,,xn,

S={ E, | 1<i<m , 1j<n }, and in £, | % =1
other entries are zero
E.g. For M,., we have:

Lo oflo oll1 oflo 1]




Example A (Standard) Basis For P,

S={1,x,x2, ..., x"} E.g. for Py(x): S={1,x,x? x°}

Example A Nonstandard Basis For R?

Show that S = {v,,v,} ={(1,1), (1,—1)} is a basis for R’

Solution | | |
¢, +¢, =u, Because the coefficient matrix of this system

2
(1) For any u = (ul , uz) eR”, ¢V, +¢,V, =0 = _ has a nonzero determinant, the system has
€, =€, = Uy  aunique solution for each u. Thus S spans R

C,+¢C, = 0 Because the coefficient matrix of this system has a nonzero
(2) For C,V, +tC,V, = 0= determinant, we know that the system has only the trivial
¢, —¢, =0 lution. Thus Sis linearly independent

From (1) and (2) we conclude that S 1s a (nonstandard) basis for R



Theorem Uniqueness of Basis Representation of Vectors

Let S = {vq,v,, -+, v, } be a basis for a vector space V, then every vector vin V can
be written in one and only one way as a linear combination of vectorsin S.

Proof

w5 Isabasis = { 8; LSS’piE;nl(iLrSlV)e;’ll}/f independent

wspan(S) =V Let v=cv,tc,v,*...+c,V,
vV=>b,v,+b,v,+...+b v,

= V+(EDv=0=(c,=b)v, T (c;=by)v, + ... +(c,— b,)V,

. § 1s linearly independent = with only the trivial solution

—> coefficients for v, are all zero
=c¢, =b,,c,=b,,...,c, =D, (i.e., unique basis representation)



Theorem Uniqueness of Basis Representation of Vectors

Let S = {vy,v,, -, v, } be a basis for a vector space V, then every set containing
more than n vectors in V is linearly dependent. (In other words, every linearly
independent set contains at most n vectors)

Proof

Let S;={u,u,, ...,u, } , m>n
v span(S) =V
u =c,v,+c,v,+-+c, v,

u =c¢,.Vv, -|—C2mV2 + - '°+Cann



Consider kju,+ku,+...+k u =0
(if k;’s are not all zero, S, 1s linearly dependent)
= d\vitd,v,+...+dv,=0 (d.= c;ktc kyt...+c, k)

e S IS L.I. — di: 0 VZ i.e., Cllkl + Cl2k2 + e Clmkm — O
Cy ke, +Cpoky +o4cy bk, =0

c. .k +c k,++c k =0

.+ This is a homogeneous system with more variables (k,, &, ..., k,), than
equations (n equations), then it must have infinitely many solutions

= ku,tkyu,+...+k,u, =0 has nontrivial (nonzero) solution = S, is L.D.

Note: This theorem tells us that if V has a bas with n vectors then every independent
set must have at most n vectors.



Theorem Number of Vectors in a Basis

If a vector space V' has one basis with n vectors, then every basis for V' has n vectors.

Proof Using the note in the previous slide:

S=4{v, Vv, ...,V
i, V2 o) are two bases for V
S'={u,u,,...,u }

m

3

Si1sabasis V

S'1s aset of L.I. vectors
S'i1sabasis V

S 1s a set of L.I. vectors

}:mﬁn

>N =m

}:ném

J



Definition Dimension

The dimension of a vector space V' 1s defined to be the
number of vectors in a basis for V'

J: a vector space S: a basis for V

= dim(V) = #(S) (the number of vectors in a basis S)

Definition Finite Dimensional Vector Space

* A vector space V is finite dimensional 1f it has a basis wioth a finite number of elements.
* Ifavector space V' 1s not finite dimensional, then it 1s called infinite dimensional.



Notes:

(1) dlm( {0}) = ()  (If ¥ consists of the zero vector alone, the dimension of ¥ is defined as zero)

(2) Given dim(V) = n, for ScV

dim(¥V) =n
. Linearly
S: a spanning set = #(S) >n Spii?smg Indeg:tr;dent
S:a L.l set = #(S)<n

S: a basis = #(S)=n #HSY=n #S)=n #S)<n

(3) Given dim(¥V) =n, if W 1s a subspace of V= dim(W) <n



Example Finding The Dimension From Standard Basis

(1) Vector space R* = standard basis {e,, e,, ..., e}
= dim(R") = n
(2) Vector space M,,,, = standard basis {E;; | 1<i<m , 1<j<n}
and inEl.j {a"f =1 ,
other entries are zero

= dim(M,,,,,) = mn
(3) Vector space P, = standard basis {1, x, x?, ... , x"}
= dim(P,) = n+1

(4) Vector space P, — standard basis {1, x, x, ...}
— dim(P,) = oo




Example Determining The Dimension of a Subspace
Find dimW for each of the following:
(a) W={(d, c—d, c): cand d are real numbers}
(b) W={(2b, b, 0): bis areal number}

Solution
(a) (da C— da C) - C(Oa 19 1) T d(la R 19 O)

=S5={0,1,1),(,-1,0)} (Sis L.I. and § spans )
= S is a basis for W
= dim(W) =#(S) =2
(b) - (2b,b,0)=5(2,1,0)
= 5=1{(2,1,0)} spans Wand S1s L.I.
= S'1s a basis for W

= dim(W) = #(S) = 1



Example Determining The Dimension of a Subspace

Let W be the subspace of all symmetric matrices in M,,,. What 1s the dimension of W?

i b
Solution —_ {a }
b c
a b 1 O 0 1 0 0
A =a +b +c
5 o o 1
1 0|0 1|(0 O :
= 5 = , ; spans W and S'1s L.I.
O 0|1 OO0 1

= Sisabasis for W = dim(W)=#(S)=3




Theorem Methods to identify a basis 1n an n-dimensional space

Let V' be a vector space of dimension 7

(HIf §= {VI,V2,° : -,Vn} 1s a linearly independent set of
vectors 1n V, then S 1s a basis for V'

2)If §= {Vsz»“‘»Vn} spans V, then S is a basis for V/

(Both results are due to the fact that #(.S) = n)

dim(V)=n

Linearly
Bases/ Independent
Sets

Spanning
Sets

#(S) = n
4(S) = n #(S)<n



Definition Coordinate Representation Relative to a Basis

Let B= {v,,V,, ..., v_} be an ordered basis for a vector space " and let
x be a vector 1n J such that

X=¢V,+C,V,+-+C,V, .
¢ The “ordered” basis means the sequence of the vectors in the basis 1s specified

The scalars ¢, c,, ..., ¢ are called the coordinates of x relative to the
basis B. The coordinate matrix of x relative to B 1s a real-number
column matrix whose components are the coordinates of x

¢

[X ]B = sz




Example Coordinates in R™

Find the coordinate matrix of x=(-2, 1, 3) In R’ relative to the standard basis
S=1{(1,0,0),(0,1,0), (0,0, 1)}

Solution
wx=(—2, 1, 3)=-2(1, 0, 0)+1(0, 1, 0)+3(0, 0, 1)

Sl =] 1




Example Finding the Coordinates relative to nonstandard basis in R™

Find the coordinate matrix of x = (1, 2, —1) in R relative to the following (nonstandard)
basis

B'= {u,, u,, uy;}=1{(1,0, 1), (0,-1, 2), (2, 3, - 5)}

Solution
X =cu, +c,u, +cu,

(1L,2,-1)=¢,(1,0,1)+¢,(0,—1,2)+¢,(2,3,-5)

C + 2¢, = 1 1 0 2|¢ 1
-c, + 3¢ = 2 0 -1 3¢ =] 2

¢ + 2 — 5 = -1 1 2 =5 | [-1
el [ 5

[X]; =|c, | =] —8
& 2




» Change of basis problem: You were given the coordinates of a vector relative to one

basis B’ and were asked to find the coordinates relative to another basis B

B={u u.'. B =f{u . u.} (B'istheoriginal basis and B is the
{ b 2}’ { b 2} target basis)

If [u], = {Z} [u}], = Lj ie., u, =au,+bu,, u,=cu,+du,

k / :

Consider anyveV, [v], = { ! } = V=ku, +k,u,
2 =k, (au, +bu,)+k,(cu, +du,
=(ka+k,cu, +(kb+k,d)u,

_|kiat+kye| ra cy|kq
:’["]B_[klmkzd]—[b | [kzl

= [[ui]p [W5]p] Vlgr = 5Py [V]gr

g



In general, if B = {u;,u,,...,u,}and B’ = {uy, u3,...,u;}
gPg = [[uy]g [u3]g ... [un]g]  the transition matrix from B'to B

g'Pp = [[“1]3’ [uy]pr ... [un]Br] the transition matrix from B to B’

lvlp = gPp [V]B’



Theorem The inverse of a transition matrix

If ;P is the transition matrix from a basis B’ to a basis B in R", then
(1) 3Py 1s mvertible
.. . . -1
(2) The transition matrix z.P, from B to B'1s gPp.

Proof B ={uy,u,,...,u,}and B’ = {uy, uj,...,u;}

!

[Vlg = [[uy]g [uz]p ... [unlgl [Vlgr = 5Py [V]p:
Vigr = [[wilpr W2l ... [Walpr| Vg = 5Ps [V]g

Replacing [v] 5/ in the first equation with the second equation
= [V]B — BPB’B’PB[V]B' forallv = BPB’B’PB =]

= pPprisinvertible and gPpr = /Pg = [[“1]3' [usz] 5 ...[un]B,]

-1
= Py isthe transition matrix from B to B’



Theorem Deriving the transition matrix by G.-J. E.

Let B={u, u,, .., u } and B’'={u), u), ..., u/} be two bases
for R". Then the transition matrix ,P, from B'to B can be found

by using Gauss-Jordan elimination on the nx2n matrix |B:B']

as follows | Construct the matrices B and B’ by using ordered basis
.-~ | vectors as column vectors

Note that the target basis is r___£B : B'] G.-J. E. N [[ . P ]
always on the left ' ) n*B" B

Similarly,‘\\the transition matrix ».P, from B to B' can be found

\

via \

“l[B'fB] G.-]. E. >[[nEB’PB]




Example Finding a Transition Matrix

B={(-3,2), (4,-2)} and B'= {(-1, 2), (2,-2)} are two bases for R’

(a) Find the transition matrix from B'to B

(b) Let [v], = m find [v],

(c) Find the transition matrix from B to B’

-1 2
For the original basis: B’ ={ , 2}

-3 4
For the target basis: B = { ) 2}




Solution

(a)

(b)



P = {_1 2} (the transition matrix from B to B')
R l2 03

Check:

PP_3—2 —12_10_1
BEBETE Ny _qil=2 3] |0 1|



Example Coordinate Representation in P3

Find the coordinate matrix of p = 3x°— 2x? + 4 relative to the
nonstandard basis in P, S= {1, 1 +x, 1 + x%, 1 + x°}

Solution
Solve p=a(l)+ b(1+x) + c(1+x?) + d(1+x°)

= p=3(1) + 0(1+x) + (-2)(1+x?) + 3(1+x3)

[p]s —




Example Coordinate Representation in M,

. . . 5 . o
Find the coordinate matrix of x = {7 8} relative to the standard basis in M, ,

Solution

0 3 O W
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