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4.3 Linear Independence



Definition Linear Independence (L.I.) and Linear Dependence (L.D.)

(1) If the equation has only the trivial solution (𝑐1 = 𝑐2 = ⋯ = 𝑐𝑘 = 0)
 then 𝑆 (or 𝐯1, 𝐯2, ⋯ , 𝐯𝑘) is called linearly independent.

(2) If the equation has a nontrivial solution (i.e., not all 𝑐𝑖′s are zero),
 then 𝑆 (or 𝐯1, 𝐯2, ⋯ , 𝐯𝑘) is called linearly dependent.

𝑆 = 𝐯1, 𝐯2, ⋯ , 𝐯𝑘 : a set of vectors in a vector space 𝑉

For 𝑐1𝐯1 + 𝑐2𝐯2 + ⋯ + 𝑐𝑘𝐯𝑘 = 𝟎



Example  Testing For Linear Independence
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Solution

Determine whether the following set of vectors in R
3
 is L.I. or L.D.
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(or det( ) 1 0,  so there is only the trivial solution)A = − 



Example  Testing For Linear Independence

Solution
c1v1+c2v2+c3v3 = 0

i.e., c1(1+x – 2x2) + c2(2+5x – x2) + c3(x+x2) = 0+0x+0x2



c1+2c2       = 0

   c1+5c2+c3  = 0

–2c1– c2+c3  = 0

  This system has infinitely many solutions

      (i.e., this system has nontrivial solutions, e.g., c1=2, c2= – 1, c3=3)

  S is (or v1, v2, v3 are) linearly dependent
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 Determine whether the following set of vectors in P2 is L.I. or L.D.
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Example  Testing For Linear Independence

Solution

      Determine whether the following set of vectors in 𝑀2×2is L.I. or L.D.
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(This system has only the trivial solution)c1 = c2 = c3= 0 S is linearly independent
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Theorem A Defining Property of L.D.

Proof. 

A set S = {v1,v2,…,vk}, for k  2, is linearly dependent if and only if at least one of 
the vectors vi  in S can be written as a linear combination of the other vectors in S.

 is linearly dependent (there exist nontrivial solutions)S  ci  0 for some i
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v v v v v

() c1v1+c2v2+…+civi+…+ckvk = 0

)( Let

(there exits at least this 

nontrivial solution)

 S is linearly dependent

vi = d1v1+…+di-1vi-1+di+1vi+1+…+dkvk

 d1v1+…+di-1vi-1+(–1)vi +di+1vi+1+…+dkvk = 0

 c1 = d1 , c2 = d2 ,…, ci = –1 ,…, ck = dk



Theorem  Easily Checked Sets

Proof. 

(a) A finite set that contains 0 is linearly dependent.
(b) A set with exactly one vector is linearly independent if and only if that vector 

is not 0.
(c) A set with exactly two vectors is linearly independent if and only if neither 

vector is a scalar multiple of the other.

(a)  S = {0, v1,v2,…,vk} is L.D. since 1 ∙ 0 + 0𝑣1 + 0𝑣2 + ⋯ + 0𝑣𝑘 = 0.

(b)  Follows from the fact that 𝑐𝑣 = 0 ⟺ 𝑐 = 0 𝑜𝑟 𝑣 = 0.

(c)  Follows from the previous theorem and is left as an exercise.



Theorem  Checking L.D. From Number of Vectors

Let 𝑆 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑟} ⊆ 𝑅𝑛. If 𝑟 > 𝑛, then 𝑆 is L.D..

Proof  The vector equation 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑟𝑣𝑟 = 0 gives a homogeneous 
linear System of 𝑛 equations in 𝑟 variables. Since 𝑟 > 𝑛, it must have a nontrivial 
solution. So, the set 𝑆 must be L.D.. 



4.4 Coordinates and Basis
4.5 Dimension
4.6 Change of Basis



Definition    Basis

𝑆 = 𝐯1, 𝐯2, ⋯ , 𝐯𝑛 : a set of vectors in a vector space 𝑉 is called a basis if 

 (1) 𝑆 is linearly independent, and 
 (2) 𝑆 spans 𝑉, i.e., 𝑠𝑝𝑎𝑛 𝑆 = 𝑉.  

Spanning

Sets
Bases

Linearly

Independent

Sets

V
Note: A basis 𝑆 must have enough vectors to span 𝑉, but not so many vectors that 
one of them could be written as a linear combination of the other vectors in 𝑆.

Example  A (Standard) Basis For 𝑅3

𝑆 = { 1,0,0 , 0,1,0 , 0,0,1 } forms a basis for 𝑅3:

(1)  𝑆 is L.I. for if 𝑐1 1,0,0 + 𝑐2 0,1,0 + 𝑐3 0,0,1 = (0,0,0), then 𝑐1= 𝑐2= 𝑐3=0.
(2)  span 𝑆 = 𝑉, since (𝑥1, 𝑥2, 𝑥3) = 𝑥1 1,0,0 + 𝑥2 0,1,0 + 𝑥3(0,0,1).



Example  A (Standard) Basis For 𝑅𝑛

𝑆 = {𝒆1, 𝒆2, … , 𝒆𝑛}, where 𝒆1 = (1,0, … , 0), 𝒆2 = (0,1, … , 0), … , 𝒆𝑛 = (0,0, … , 1)

Example  A (Standard) Basis For 𝑀𝑚×𝑛

E.g.   For 𝑀2×2  we have:
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S={ Eij | 1im , 1jn }, and in Eij 
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other entries are zero
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Example  A (Standard) Basis For 𝑃𝑛

S= {1, x, x2, …, xn} E.g.  for P3(x): S={1, x, x2, x3}

Example  A Nonstandard Basis For 𝑅2

2

1 2Show that { , } {(1,1),  (1, 1)} is a basis for S R= = −v v

Solution
1 2 12
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(1) For any ( , ) ,   
c c u

u u R c c
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Because the coefficient matrix of this system 

has a nonzero determinant, the system has 

a unique solution for each u. Thus S spans R
2
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(2) For   
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c c
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Because the coefficient matrix of this system has a nonzero 

determinant, we know that the system has only the trivial 

solution. Thus S is linearly independent

From (1) and (2) we conclude that S is a (nonstandard) basis for R
2



Theorem  Uniqueness of Basis Representation of Vectors

Let 𝑆 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} be a basis for a vector space 𝑉, then every vector 𝑣 in 𝑉 can 
be written in one and only one way as a linear combination of vectors in 𝑆.

Proof





  basis a is  S
(1) span(S) = V

(2) S is linearly independent

 span(S) = V Let v = c1v1+c2v2+…+cnvn

v = b1v1+b2v2+…+bnvn

 v + (–1)v = 0 = (c1– b1)v1 + (c2 – b2)v2 + … + (cn – bn)vn

 is linearly independent  with only the trivial solutionS 

(i.e., unique basis representation) c1 = b1 , c2 = b2 ,…, cn = bn

   coefficients for  are all zeroi v



Theorem  Uniqueness of Basis Representation of Vectors

Let 𝑆 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} be a basis for a vector space 𝑉, then every set containing 
more than 𝑛 vectors in 𝑉 is linearly dependent. (In other words, every linearly 
independent set contains at most n vectors)

Proof

S1 = {u1, u2, …, um} , m > nLet

span( )S V=
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L.I. is S   di = 0   i i.e.,
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Consider k1u1+k2u2+…+kmum= 0

(di = ci1k1+ci2k2+…+cimkm) d1v1+d2v2+…+dnvn= 0 

This is a homogeneous system with more variables (k1, k2, …, km),  than 

equations (n equations), then it must have infinitely many solutions



 k1u1+k2u2+…+kmum = 0  has nontrivial (nonzero) solution  S1 is L.D.

(if ki’s are not all zero, S1 is linearly dependent)

Note: This theorem tells us that if 𝑉 has a bas with 𝑛 vectors then every independent 
set must have at most 𝑛 vectors.



Theorem  Number of Vectors in a Basis

If a vector space V has one basis with n vectors, then every basis for V  has n vectors.

Proof Using the note in the previous slide:

S = {v1, v2, …, vn}

S' = {u1, u2, …, um}
are two bases for V

 is a basis   

'  is a set of L.I. vectors

'  is a basis  

  is a set of L.I. vectors


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   
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S V
m n

S
n m

S V
n m
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Definition    Dimension

Definition    Finite Dimensional Vector Space

V: a vector space S: a basis for V

 dim(V) = #(S) (the number of vectors in a basis S)

The dimension of a vector space V  is defined to be the 

number of vectors in a basis for V

• A vector space V is finite dimensional if it has a basis wioth a finite number of elements.

•  If a vector space V  is not finite dimensional, then it is called infinite dimensional.



Notes:

(1) dim({0}) = 0

(2) Given dim(V) = n, for SV

S: a spanning set       #(S)  n

S: a L.I. set                #(S)  n

S: a basis                   #(S) = n

(3) Given dim(V) = n, if W  is a subspace of V  dim(W)  n 

Spanning

Sets
Bases

Linearly

Independent

Sets

#(S)  n #(S) = n #(S)  n

dim(V) = n

(If V consists of the zero vector alone, the dimension of V is defined as zero)



Example  Finding The Dimension From Standard Basis

(1) Vector space R
n
       standard basis {e1 , e2 ,  , en}

(2) Vector space Mmn   standard basis {Eij | 1im , 1jn}

(3) Vector space Pn   standard basis {1, x, x2,  , xn}

(4) Vector space P∞     standard basis {1, x, x2, }

 dim(R
n
) = n

 dim(Mmn) = mn

 dim(Pn) = n+1

 dim(P∞) = 

and in Eij 
1                       

other entries are zero

ija =





Example  Determining The Dimension of a Subspace

(a) (d, c – d, c) = c(0, 1, 1) + d(1, – 1, 0)

 S = {(0, 1, 1) , (1, – 1, 0)} (S is L.I. and S spans W)

 S is a basis for W

 dim(W) = #(S) = 2

 S = {(2, 1, 0)} spans W and S is L.I.

 S is a basis for W

 dim(W) = #(S) = 1

(2 , ,0) (2,1,0)b b b=(b)

Find dim𝑊 for each of the following:

    (a) W = {(d, c – d, c): c and d are real numbers}

    (b) W = {(2b, b, 0): b is a real number}

Solution



Example  Determining The Dimension of a Subspace

Let W be the subspace of all symmetric matrices in M22. What is the dimension of  W?

Solution
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S spans W and S is L.I. 

 S is a basis for W  dim(W) = #(S) = 3



Theorem   Methods to identify a basis in an n-dimensional space

        Let V  be a vector space of dimension n

         (1) If                                 is a linearly independent set of

                 vectors in V, then S is a basis for V

         (2) If                                spans V, then S is a basis for V

          (Both results are due to the fact that #(S) = n)

Spanning

Sets Bases

Linearly

Independent

Sets

dim(V) = n

#(S)  n

#(S) = n
#(S)  n

 1 2, , , nS = v v v

 1 2, , , nS = v v v



Definition  Coordinate Representation Relative to a Basis

Let B = {v1, v2, …, vn} be an ordered basis for a vector space V and let 

x be a vector in V such that 

.2211 nnccc vvvx +++= 

The scalars c1, c2, …, cn are called the coordinates of x relative to the 

basis B. The coordinate matrix of x relative to B is a real-number 

column matrix whose components are the coordinates of x
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※ The “ordered” basis means the sequence of the vectors in the basis is specified



Example  Coordinates in 𝑅𝑛

Solution

Find the coordinate matrix of  x = (–2, 1, 3) in  R
3 relative to the standard basis

          S = {(1, 0, 0), ( 0, 1, 0), (0, 0, 1)}

     

( 2,  1,  3) 2(1,  0,  0) 1(0,  1,  0) 3(0,  0,  1)= − = − + +x

2
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Example Finding the Coordinates relative to nonstandard basis in 𝑅𝑛

Solution

Find the coordinate matrix of  x = (1, 2, –1) in R3 relative to the following (nonstandard) 

basis

                          B' = {u1, u2, u3}={(1, 0, 1), (0, – 1, 2), (2, 3, – 5)}
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◼ Change of basis problem: You were given the coordinates of a vector relative to one 

basis B' and were asked to find the coordinates relative to another basis B
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⇒ [𝐯]𝐵 =
𝑘1𝑎 + 𝑘2𝑐
𝑘1𝑏 + 𝑘2𝑑

=
𝑎 𝑐
𝑏 𝑑

𝑘1

𝑘2

 = 𝐮1
′

𝐵 𝐮2
′

𝐵  𝐯 𝐵′ = 𝐵𝑃𝐵′ 𝐯 𝐵′



In general, if 𝐵 = 𝐮1, 𝐮2, . . . , 𝐮𝑛  and B′ = 𝐮𝟏
′ , 𝐮2

′ , . . . , 𝐮𝑛
′

𝐵𝑃𝐵′ = [𝐮𝟏
′ ]𝐵 [𝐮2

′ ]𝐵 . . . [𝐮𝑛
′ ]𝐵  the transition matrix from 𝐵′to 𝐵 

𝐵′𝑃𝐵  = [𝐮1]𝐵′  [𝐮2]𝐵′  . . . [𝐮𝑛]𝐵′  the transition matrix from 𝐵 to 𝐵′

𝐯 𝐵 = 𝐵𝑃𝐵′ 𝐯 𝐵′

𝐯 𝐵′ = 𝐵′𝑃𝐵 𝐯 𝐵



Theorem   The inverse of a transition matrix

If BPB' is the transition matrix from a basis B' to a basis B in R
n
, then

         (1) BPB' is invertible 

         (2)  The transition matrix B'PB from B to B' is BPB'

–1

Proof 𝐵 = {𝐮1, 𝐮2, . . . , 𝐮𝑛} and B′ = {𝐮𝟏
′ , 𝐮2

′ , . . . , 𝐮𝑛
′ }

𝐯 𝐵 = [𝐮𝟏
′ ]𝐵 [𝐮2

′ ]𝐵 . . . [𝐮𝑛
′ ]𝐵 𝐯 𝐵′ = 𝐵𝑃𝐵′ 𝐯 𝐵′

𝐯 𝐵′ = [𝐮1]𝐵′  [𝐮2]𝐵′  . . . [𝐮𝑛]𝐵′ 𝐯 𝐵 = 𝐵′𝑃𝐵 𝐯 𝐵

 
Replacing 𝐯 𝐵′  in the first equation with the second equation 

⇒ 𝐯 𝐵 = 𝐵𝑃𝐵′ 𝐵′𝑃𝐵 𝐯 𝐵,  for all 𝑣 ⇒ 𝐵𝑃𝐵′ 𝐵′𝑃𝐵 = 𝐼 

⇒ 𝐵𝑃𝐵′  is invertible and 𝐵𝑃𝐵′
−1

= 𝐵′𝑃𝐵 = [𝐮1]𝐵′  [𝐮2]𝐵′  . . . [𝐮𝑛]𝐵′  

⇒  𝐵𝑃𝐵′
−1

 is the transition matrix from 𝐵 to 𝐵′



Theorem   Deriving the transition matrix by G.-J. E.

Let                                and be two bases

       for R
n
. Then the transition matrix BPB' from B' to B can be found

       by using Gauss-Jordan elimination on the n×2n matrix

       as follows

       Similarly, the transition matrix B'PB from B to B' can be found

       via

 B B

   G.-J. E.

n B BB B I P ⎯⎯⎯→

   G.-J. E.

n B BB B I P 
 ⎯⎯⎯→Note that the target basis is 

always on the left 

1 2{ ,  ,  ...,  }nB = u u u 2{ ,  ,  ...,  }nB'   = 1u u u

Construct the matrices B and B’ by using ordered basis 
vectors as column vectors



Example  Finding a Transition Matrix

B = {(–3, 2), (4,–2)} and B' = {(–1, 2), (2,–2)} are two bases for R
2
 

    (a) Find the transition matrix from B' to B

    (b)   

    (c) Find the transition matrix from B to B'

'

1
Let [ ] , find [ ]

2
B B

 
=  
 

v v

1 2
For the original basis: 

2 2

3 4
For the target basis: 

2 2

B

B

− 
 =  

− 

− 
=  

− 



Solution

       (a)









−

−

−

−

22

21

22

43
     




3 2 1 1
[ ] [ ]

2 1 2 0
B B B BP  

− −     
= = =     

−     
v v

(b)










−

−

12

23

10

01
    



G.-J. E.

B                  B' I          BPB'

3 2

2 1
B BP 

− 
 =  

− 
(the transition matrix from B' to B)



(c)

(the transition matrix from B to B')
1 2

2 3
B BP

− 
 =  

− 










−

−

−

−

22

43

22

21













−

−

32

21

10

01




G.-J. E.

B'              B I         B'PB

Check:

3 2 1 2 1 0

2 1 2 3 0 1
B B B BP P I 

− −     
= = =     

− −     



Example   Coordinate Representation in 𝑃3

Find the coordinate matrix of  p = 3x3 – 2x2 + 4 relative to the

        nonstandard basis in P3, S = {1, 1 + x, 1 +  x2, 1 +  x3}

Solution

           Solve p = a(1) + b(1+x) + c(1+x2 ) + d(1+x3 )

            p = 3(1) + 0(1+x) + (–2)(1+x2 ) + 3(1+x3 )

            [p]S = 



















−

3

2

0

3



Example   Coordinate Representation in 𝑀2×2

Find the coordinate matrix of  x =             relative to the standard basis in M2x2

             

   B = 
   

Solution










87

65










































10

00
,

01

00
,

00

10
,

00

01

 

5 6 1 0 0 1 0 0 0 0
5 6 7 8

7 8 0 0 0 0 1 0 0 1

5

6

7

8

B

x

x

         
= = + + +         
         

 
 
  =
 
 
 
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