4 Vector Spaces

- 4.3 Linear Independence
- 4.4 Coordinates and Basis
- 4.5 Dimension
- 4.6 Change of Basis

4.3 Linear Independence

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$
: a set of vectors in a vector space V

For
$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

- (1) If the equation has only the trivial solution $(c_1 = c_2 = \cdots = c_k = 0)$ then S (or $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$) is called linearly independent.
- (2) If the equation has a nontrivial solution (i.e., not all c_i 's are zero), then S (or $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$) is called linearly dependent.

Determine whether the following set of vectors in R^3 is L.I. or L.D.

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$$

$$c_{1} - 2c_{3} = 0$$

$$c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + c_{3}\mathbf{v}_{3} = \mathbf{0} \implies 2c_{1} + c_{2} + c_{3} = 0$$

$$3c_{1} + 2c_{2} + c_{3} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{\text{G.-J. E.}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow$$
 $c_1 = c_2 = c_3 = 0$ (only the trivial solution)
(or det(A) = -1 \neq 0, so there is only the trivial solution)

Determine whether the following set of vectors in P_2 is L.I. or L.D.

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{1 + x - 2x^2, 2 + 5x - x^2, x + x^2\}$$

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$

i.e.,
$$c_1(1+x-2x^2) + c_2(2+5x-x^2) + c_3(x+x^2) = 0+0x+0x^2$$

- \Rightarrow This system has infinitely many solutions (i.e., this system has nontrivial solutions, e.g., c_1 =2, c_2 =-1, c_3 =3)
- \Rightarrow S is (or \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are) linearly dependent

Determine whether the following set of vectors in $M_{2\times 2}$ is L.I. or L.D.

$$S = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} = \left\{ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \right\}$$

Solution

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0} \qquad \Rightarrow \qquad c_1 \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 $\Rightarrow c_1 = c_2 = c_3 = 0$ (This system has only the trivial solution) $\Rightarrow S$ is linearly independent

Theorem A Defining Property of L.D.

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$, for $k \ge 2$, is linearly dependent if and only if at least one of the vectors \mathbf{v}_i in S can be written as a linear combination of the other vectors in S.

Proof. (
$$\Rightarrow$$
) $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_i \mathbf{v}_i + ... + c_k \mathbf{v}_k = \mathbf{0}$

:: S is linearly dependent (there exist nontrivial solutions) $\Rightarrow c_i \neq 0$ for some i

$$\Rightarrow \mathbf{v}_i = \left(-\frac{c_1}{c_i}\right)\mathbf{v}_1 + \dots + \left(-\frac{c_{i-1}}{c_i}\right)\mathbf{v}_{i-1} + \left(-\frac{c_{i+1}}{c_i}\right)\mathbf{v}_{i+1} + \dots + \left(-\frac{c_k}{c_i}\right)\mathbf{v}_k$$

(
$$\Leftarrow$$
) Let $\mathbf{v}_i = d_1 \mathbf{v}_1 + \ldots + d_{i-1} \mathbf{v}_{i-1} + d_{i+1} \mathbf{v}_{i+1} + \ldots + d_k \mathbf{v}_k$

$$\Rightarrow d_1 \mathbf{v}_1 + \ldots + d_{i-1} \mathbf{v}_{i-1} + (-1) \mathbf{v}_i + d_{i+1} \mathbf{v}_{i+1} + \ldots + d_k \mathbf{v}_k = \mathbf{0}$$

$$\Rightarrow c_1 = d_1 \ , c_2 = d_2 \ , \ldots, \ c_i = -1 \ , \ldots, \ c_k = d_k \ \text{(there exits at least this nontrivial solution)}$$

$$\Rightarrow S \text{ is linearly dependent}$$

Easily Checked Sets

- (a) A finite set that contains 0 is linearly dependent.
- (b) A set with exactly one vector is linearly independent if and only if that vector is not 0.
- (c) A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.

Proof.

- (a) $S = \{0, \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is L.D. since $1 \cdot 0 + 0v_1 + 0v_2 + \cdots + 0v_k = 0$.
- (b) Follows from the fact that $cv = 0 \Leftrightarrow c = 0 \text{ or } v = 0$.
- (c) Follows from the previous theorem and is left as an exercise.

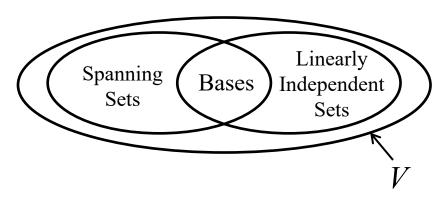
Let
$$S = \{v_1, v_2, \dots, v_r\} \subseteq \mathbb{R}^n$$
. If $r > n$, then S is L.D..

Proof The vector equation $c_1v_1 + c_2v_2 + \cdots + c_rv_r = 0$ gives a homogeneous linear System of n equations in r variables. Since r > n, it must have a nontrivial solution. So, the set S must be L.D..

4.4 Coordinates and Basis4.5 Dimension4.6 Change of Basis

 $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$: a set of vectors in a vector space V is called a basis if

- (1) S is linearly independent, and
- (2) S spans V, i.e., span(S) = V.



Note: A basis S must have enough vectors to span V, but not so many vectors that one of them could be written as a linear combination of the other vectors in S.

Example

A (Standard) Basis For R^3

 $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ forms a basis for R^3 :

- (1) S is L.I. for if $c_1(1,0,0) + c_2(0,1,0) + c_3(0,0,1) = (0,0,0)$, then $c_1 = c_2 = c_3 = 0$.
- (2) span(S) = V, since $(x_1, x_2, x_3) = x_1(1,0,0) + x_2(0,1,0) + x_3(0,0,1)$.

A (Standard) Basis For \mathbb{R}^n

$$S = \{e_1, e_2, ..., e_n\}$$
, where $e_1 = (1,0,...,0)$, $e_2 = (0,1,...,0)$, ..., $e_n = (0,0,...,1)$

Example

A (Standard) Basis For $M_{m \times n}$

S={
$$E_{ij} \mid 1 \le i \le m$$
, $1 \le j \le n$ }, and in E_{ij}
$$\begin{cases} a_{ij} = 1 \\ \text{other entries are zero} \end{cases}$$

E.g. For $M_{2\times 2}$ we have:

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Example

A (Standard) Basis For P_n

$$S = \{1, x, x^2, ..., x^n\}$$
 E.g. for $P_3(x)$: $S = \{1, x, x^2, x^3\}$

Example

A Nonstandard Basis For R^2

Show that $S = \{\mathbf{v}_1, \mathbf{v}_2\} = \{(1, 1), (1, -1)\}$ is a basis for R^2

Solution

(1) For any
$$\mathbf{u} = (u_1, u_2) \in R^2$$
, $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{u}$ \Rightarrow
$$\begin{cases} c_1 + c_2 = u_1 \\ c_1 - c_2 = u_2 \end{cases}$$
 Because the coefficient matrix of this system has a **nonzero determinant**, the system has a **unique solution for each u.** Thus S spans R^2

(2) For
$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0} \Rightarrow \begin{cases} c_1 + c_2 = 0 \\ c_1 - c_2 = 0 \end{cases}$$
 Because the coefficient matrix of this system has a **nonzero** determinant, we know that the system has only the trivial solution. Thus S is linearly independent

From (1) and (2) we conclude that S is a (nonstandard) basis for R^2

Uniqueness of Basis Representation of Vectors

Let $S = \{v_1, v_2, \dots, v_n\}$ be a basis for a vector space V, then every vector v in V can be written in one and only one way as a linear combination of vectors in S.

Proof

Let $S = \{v_1, v_2, \dots, v_n\}$ be a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent. (In other words, every linearly independent set contains at most n vectors)

Proof

Consider $k_1\mathbf{u}_1 + k_2\mathbf{u}_2 + \dots + k_m\mathbf{u}_m = \mathbf{0}$

(if k_i 's are not all zero, S_1 is linearly dependent)

$$\Rightarrow d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \dots + d_n \mathbf{v}_n = \mathbf{0} \ (d_i = c_{i1} k_1 + c_{i2} k_2 + \dots + c_{im} k_m)$$

:
$$S \text{ is L.I.} \Rightarrow d_i = 0 \quad \forall i$$
 i.e., $c_{11}k_1 + c_{12}k_2 + \dots + c_{1m}k_m = 0$ $c_{21}k_1 + c_{22}k_2 + \dots + c_{2m}k_m = 0$ \vdots

$$c_{n1}k_1 + c_{n2}k_2 + \dots + c_{nm}k_m = 0$$

- \therefore This is a homogeneous system with more variables $(k_1, k_2, ..., k_m)$, than equations (*n* equations), then it must have infinitely many solutions
- $\Rightarrow k_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 + \dots + k_m \mathbf{u}_m = \mathbf{0}$ has nontrivial (nonzero) solution $\Rightarrow S_1$ is L.D.

Note: This theorem tells us that if V has a bas with n vectors then every independent set must have at most n vectors.

If a vector space V has one basis with n vectors, then every basis for V has n vectors.

Proof Using the note in the previous slide:

$$S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$$
 are two bases for V

$$S' = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$$

$$S \text{ is a basis } V$$

$$S' \text{ is a set of L.I. vectors} \} \Rightarrow m \leq n$$

$$S' \text{ is a basis } V$$

$$S \text{ is a set of L.I. vectors} \} \Rightarrow n \leq m$$

The dimension of a vector space V is defined to be the number of vectors in a basis for V

V: a vector space S: a basis for V

 \Rightarrow dim(V) = #(S) (the number of vectors in a basis S)

Definition

Finite Dimensional Vector Space

- A vector space V is finite dimensional if it has a basis wioth a finite number of elements.
- If a vector space V is not finite dimensional, then it is called infinite dimensional.

Notes:

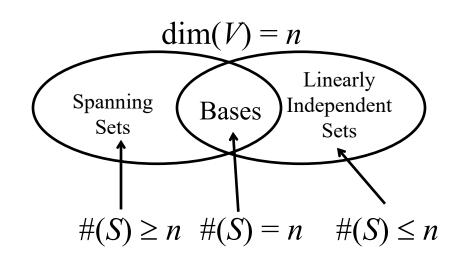
(1) $dim(\{0\}) = 0$ (If V consists of the zero vector alone, the dimension of V is defined as zero)

(2) Given
$$\dim(V) = n$$
, for $S \subseteq V$

S: a spanning set $\Rightarrow \#(S) \ge n$

S: a L.I. set $\Rightarrow \#(S) \leq n$

S: a basis $\Rightarrow \#(S) = n$



(3) Given $\dim(V) = n$, if W is a subspace of $V \Rightarrow \dim(W) \le n$

- (1) Vector space R^n \Rightarrow standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ $\Rightarrow \dim(R^n) = n$
- (2) Vector space $M_{m \times n} \implies$ standard basis $\{E_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$ and in $E_{ij} \begin{cases} a_{ij} = 1 \\ \text{other entries are zero} \end{cases}$ $\implies \dim(M_{m \times n}) = mn$
- (3) Vector space $P_n \Rightarrow \text{standard basis } \{1, x, x^2, \dots, x^n\}$ $\Rightarrow \dim(P_n) = n+1$
- (4) Vector space P_{∞} \Rightarrow standard basis $\{1, x, x^2, ...\}$ $\Rightarrow \dim(P_{\infty}) = \infty$

Find $\dim W$ for each of the following:

(a)
$$W = \{(d, c - d, c): c \text{ and } d \text{ are real numbers}\}$$

(b)
$$W = \{(2b, b, 0): b \text{ is a real number}\}$$

(a)
$$(d, c - d, c) = c(0, 1, 1) + d(1, -1, 0)$$

 $\Rightarrow S = \{(0, 1, 1), (1, -1, 0)\} \text{ (S is L.I. and S spans } W\text{)}$
 $\Rightarrow S \text{ is a basis for } W$
 $\Rightarrow \dim(W) = \#(S) = 2$

(b)
$$\therefore (2b, b, 0) = b(2, 1, 0)$$

 $\Rightarrow S = \{(2, 1, 0)\} \text{ spans } W \text{ and } S \text{ is L.I.}$
 $\Rightarrow S \text{ is a basis for } W$
 $\Rightarrow \dim(W) = \#(S) = 1$

Let W be the subspace of all symmetric matrices in $M_{2\times 2}$. What is the dimension of W?

$$W = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \middle| a, b, c \in R \right\}$$

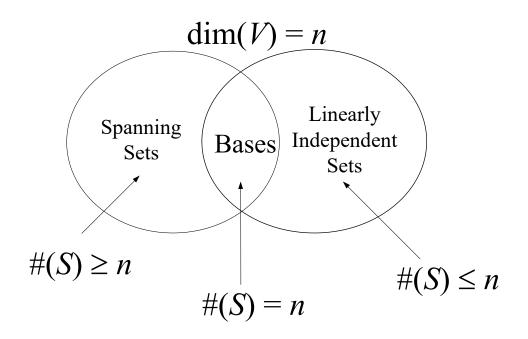
$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ spans } W \text{ and } S \text{ is L.I.}$$

$$\Rightarrow$$
 S is a basis for $W \Rightarrow \dim(W) = \#(S) = 3$

Let V be a vector space of dimension n

- (1) If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set of vectors in V, then S is a basis for V
- (2) If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans V, then S is a basis for V (Both results are due to the fact that #(S) = n)



Let $B = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be an ordered basis for a vector space V and let \mathbf{x} be a vector in V such that

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n.$$

* The "ordered" basis means the sequence of the vectors in the basis is specified

The scalars $c_1, c_2, ..., c_n$ are called the coordinates of \mathbf{x} relative to the basis B. The coordinate matrix of \mathbf{x} relative to B is a real-number column matrix whose components are the coordinates of \mathbf{x}

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Coordinates in \mathbb{R}^n

Find the coordinate matrix of $\mathbf{x} = (-2, 1, 3)$ in \mathbb{R}^3 relative to the standard basis $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$

$$x = (-2, 1, 3) = -2(1, 0, 0) + 1(0, 1, 0) + 3(0, 0, 1)$$

$$\therefore [\mathbf{x}]_{S} = \begin{bmatrix} -2\\1\\3 \end{bmatrix}$$

Example Finding the Coordinates relative to nonstandard basis in \mathbb{R}^n

Find the coordinate matrix of $\mathbf{x} = (1, 2, -1)$ in R^3 relative to the following (nonstandard) basis

$$B' = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3} = {(1, 0, 1), (0, -1, 2), (2, 3, -5)}$$

$$\mathbf{x} = c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + c_{3}\mathbf{u}_{3}$$

$$(1, 2, -1) = c_{1}(1, 0, 1) + c_{2}(0, -1, 2) + c_{3}(2, 3, -5)$$

$$c_{1} + 2c_{3} = 1 \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ c_{2} \\ 1 & 2 & -5 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

$$c_{1} + 2c_{2} - 5c_{3} = -1 \begin{bmatrix} 5 \\ -8 \\ -2 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \\ -2 \end{bmatrix}$$

• Change of basis problem: You were given the coordinates of a vector relative to one basis B' and were asked to find the coordinates relative to another basis B

$$B = \{\mathbf{u}_1, \mathbf{u}_2\}, B' = \{\mathbf{u}_1', \mathbf{u}_2'\}$$
 (B' is the original basis and B is the target basis)

If
$$[\mathbf{u}'_1]_B = \begin{bmatrix} a \\ b \end{bmatrix}$$
, $[\mathbf{u}'_2]_B = \begin{bmatrix} c \\ d \end{bmatrix}$ i.e., $\mathbf{u}'_1 = a\mathbf{u}_1 + b\mathbf{u}_2$, $\mathbf{u}'_2 = c\mathbf{u}_1 + d\mathbf{u}_2$
onsider any $\mathbf{v} \in V$, $[\mathbf{v}]_{B'} = \begin{bmatrix} k_1 \\ 1 \end{bmatrix} \implies \mathbf{v} = k_1\mathbf{u}'_1 + k_2\mathbf{u}'_2$

Consider any
$$\mathbf{v} \in V$$
, $[\mathbf{v}]_{B'} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$ $\Rightarrow \mathbf{v} = k_1 \mathbf{u}_1' + k_2 \mathbf{u}_2'$
 $= k_1 (a \mathbf{u}_1 + b \mathbf{u}_2) + k_2 (c \mathbf{u}_1 + d \mathbf{u}_2)$
 $= (k_1 a + k_2 c) \mathbf{u}_1 + (k_1 b + k_2 d) \mathbf{u}_2$
 $\Rightarrow [\mathbf{v}]_B = \begin{bmatrix} k_1 a + k_2 c \\ k_1 b + k_2 d \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$
 $= [\mathbf{u}_1']_B [\mathbf{u}_2']_B [\mathbf{v}]_{B'} = {}_B P_{B'} [\mathbf{v}]_{B'}$

In general, if $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ and $B' = \{\mathbf{u}_1', \mathbf{u}_2', \dots, \mathbf{u}_n'\}$

$$_BP_{B'}=[[\mathbf{u_1'}]_B\ [\mathbf{u_2'}]_B\dots [\mathbf{u_n'}]_B]$$
 the transition matrix from B' to B

$$_{B'}P_B = [[\mathbf{u}_1]_{B'} [\mathbf{u}_2]_{B'} \dots [\mathbf{u}_n]_{B'}]$$
 the transition matrix from B to B'

$$[\mathbf{v}]_B = {}_B P_{B'} [\mathbf{v}]_{B'}$$

$$[\mathbf{v}]_{B'} = {}_{B'}P_B [\mathbf{v}]_B$$

If ${}_{B}P_{B'}$ is the transition matrix from a basis B' to a basis B in R^{n} , then

- (1) $_{B}P_{B'}$ is invertible
- (2) The transition matrix ${}_{B'}P_{B}$ from B to B' is ${}_{B}P_{B'}^{-1}$

Proof
$$B = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$$
 and $B' = \{\mathbf{u}'_1, \mathbf{u}'_2, ..., \mathbf{u}'_n\}$
 $[\mathbf{v}]_B = [[\mathbf{u}'_1]_B [\mathbf{u}'_2]_B ... [\mathbf{u}'_n]_B] [\mathbf{v}]_{B'} = {}_B P_{B'} [\mathbf{v}]_{B'}$
 $[\mathbf{v}]_{B'} = [[\mathbf{u}_1]_{B'} [\mathbf{u}_2]_{B'} ... [\mathbf{u}_n]_{B'}] [\mathbf{v}]_B = {}_{B'} P_B [\mathbf{v}]_B$

Replacing $[\mathbf{v}]_{B'}$ in the first equation with the second equation

$$\Rightarrow [\mathbf{v}]_B = {}_B P_{B'B'} P_B [\mathbf{v}]_B$$
, for all $v \Rightarrow {}_B P_{B'B'} P_B = I$

$$\Rightarrow {}_{B}P_{B'}$$
 is invertible and ${}_{B}P_{B'}^{-1} = {}_{B'}P_B = \left[[\mathbf{u}_1]_{B'} [\mathbf{u}_2]_{B'} \dots [\mathbf{u}_n]_{B'} \right]$

$$\Rightarrow {}_{B}P_{B'}^{-1}$$
 is the transition matrix from B to B'

Let $B = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ and $B' = \{\mathbf{u}_1', \mathbf{u}_2', ..., \mathbf{u}_n'\}$ be two bases for R^n . Then the transition matrix ${}_BP_{B'}$ from B' to B can be found by using Gauss-Jordan elimination on the $n \times 2n$ matrix [B:B'] as follows

Construct the matrices B and B' by using ordered basis vectors as column vectors

Note that the target basis is always on the left

$$-[B:B'] \xrightarrow{\text{G.-J. E.}} [I_n:_B P_{B'}]$$

Similarly, the transition matrix $_{B'}P_{B}$ from B to B' can be found via

$$[B':B] \xrightarrow{\text{G.-J. E.}} [I_n:_{B'}P_B]$$

$$B = \{(-3, 2), (4,-2)\}$$
 and $B' = \{(-1, 2), (2,-2)\}$ are two bases for R^2

- (a) Find the transition matrix from B' to B
- (b) Let $[\mathbf{v}]_{B'} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, find $[\mathbf{v}]_{B}$
- (c) Find the transition matrix from B to B'

For the original basis:
$$B' = \begin{bmatrix} -1 & 2 \\ 2 & -2 \end{bmatrix}$$

For the target basis:
$$B = \begin{bmatrix} -3 & 4 \\ 2 & -2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} -3 & 4 & \vdots & -1 & 2 \\ 2 & -2 & \vdots & 2 & -2 \end{bmatrix} \xrightarrow{G.-J. E.} \begin{bmatrix} 1 & 0 & \vdots & 3 & -2 \\ 0 & 1 & \vdots & 2 & -1 \end{bmatrix}$$

$$B \qquad B' \qquad I \qquad BP_{B'}$$

$$\therefore {}_{B}P_{B'} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$$
 (the transition matrix from B' to B)

(b)
$$[\mathbf{v}]_{B} = {}_{B}P_{B'}[\mathbf{v}]_{B'} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 2 \vdots -3 & 4 \\ 2 & -2 \vdots & 2 & -2 \end{bmatrix} \xrightarrow{G.-J. E.} \begin{bmatrix} 1 & 0 \vdots -1 & 2 \\ 0 & 1 \vdots -2 & 3 \end{bmatrix}$$

$$B' \qquad B \qquad I \qquad {}_{B'}P_{B}$$

$$\therefore_{B'} P_B = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$$
 (the transition matrix from *B* to *B'*)

Check:

$${}_{B}P_{B'B'}P_{B} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Find the coordinate matrix of $p = 3x^3 - 2x^2 + 4$ relative to the nonstandard basis in P_3 , $S = \{1, 1 + x, 1 + x^2, 1 + x^3\}$

Solve
$$p = a(1) + b(1+x) + c(1+x^2) + d(1+x^3)$$

$$\Rightarrow p = 3(1) + 0(1+x) + (-2)(1+x^2) + 3(1+x^3)$$

$$[p]_S = \begin{bmatrix} 3 \\ 0 \\ -2 \\ 3 \end{bmatrix}$$

Find the coordinate matrix of $x = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ relative to the standard basis in M_{2x2}

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

$$x = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = 5 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 6 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 7 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 8 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \end{bmatrix}_{B} = \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$$