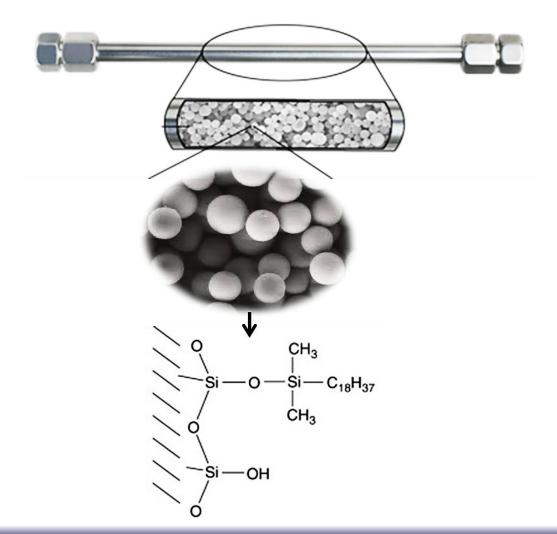


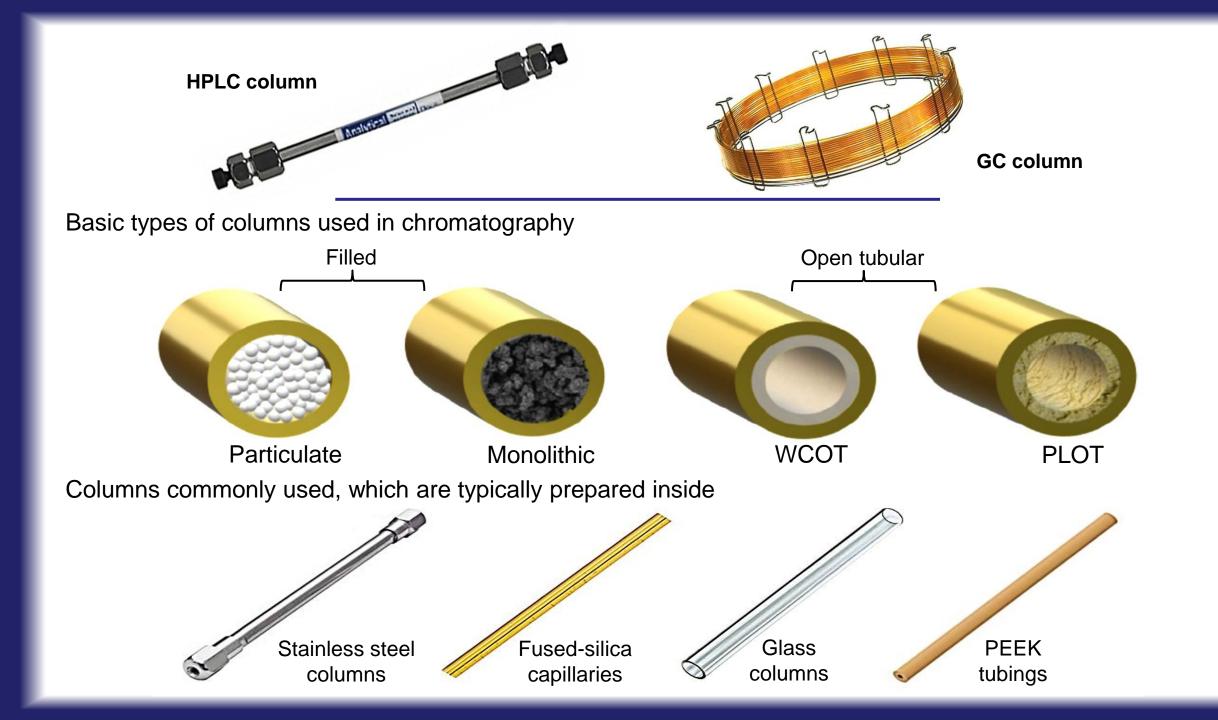
Chem 651

Advanced Studies in Instrumental Analysis

Advances in Chromatography Stationary Phases

Ahmad Aqel Ifseisi Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building: 05, Office: 2A149, Lab: 2A127 Tel. 014674198, Fax: 014675992 Web site: https://faculty.ksu.edu.sa/aifseisi E-mail: aifseisi@ksu.edu.sa ahmad3gel@gmail.com

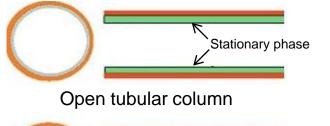


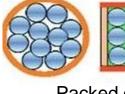

Stationary Phase

Although it is usually the smallest part, the column is the most important part in any chromatographic system. The column is the only device in the separation system which actually separates an injected mixture.

Column packing materials are the media producing the separation, and properties of this media are of primary importance for successful separations. The selectivity, capacity and efficiency of the column are all affected by the nature of the packing material or the materials of construction.

Materials chemistry and polymer science are highly rich in options, reactions and modifications. Therefore, stationary phases faced various developments and can be still improved.





Great varieties of different columns are currently available on the market. Five distinct characteristics could be used for column classification:

(1) Type of packing materials

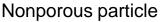
particulate; non-particulate (interconnected, one-piece or continuous phase); porous; nonporous; core-shell; packed; open-tubular; monolith; etc.

000000000

Packed column

Monolithic column

Stationary phase



Stationary phase

400

ticle Porous layer

Completely porous

(2) Type of base material

silica SiO₂; polymeric; alumina Al_2O_3 ; zirconia ZrO₂; carbon-based; etc.

(3) Stationary phase geometry

surface area; interaction sites, pore size or diameter; pore volume; pore size distribution; permeability; particle size; particle shape; particle size distribution; porosity; etc.

(4) Surface chemistry

type of bonded ligands; functional groups; bonding density; carbon content; etc.

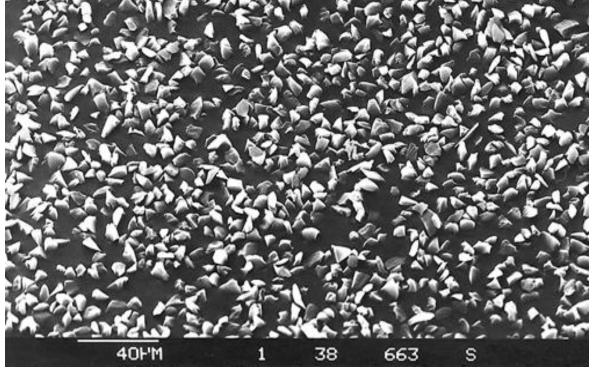
(5) Stability and rigidity

surface reactivity; chemical stability, physical stability; mechanical stability; stability under pressure; stability in common LC solvents; pH stability; stability to hydrolysis in acidic and basic media; stability at elevated mobile phase flow rate; column temperature; structural rigidity; re-usability; etc.

All these parameters are interrelated in their influence on the chromatographic performance of the column. The quality of a separation column is a subjective factor, which is dependent on the types of analytes and even on the chromatographic conditions used for the evaluation of the overall quality.

In conclusion, all these characteristics could be classified by either **physical** or **chemical** properties of the stationary phases.

Irregularly shaped silica


1st generation

-Synthesis via *SIL-GEL* condensation; grinded and sieved.

-Irregular material.

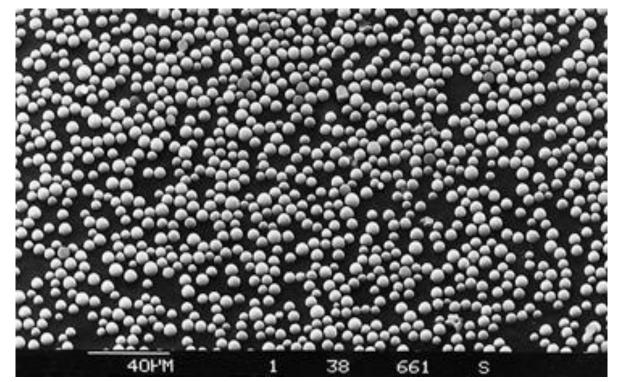
-Contaminated with metal ions (Fe^{2+/3+}, Na⁺, Ca²⁺, Al³⁺, ~ 25-75 ppm).

-In use for preparative LC (FLASH, large scale).

POLYGOSIL[®] Particle size: 7 µm, SEM micrograph

Spherical silica

2nd generation

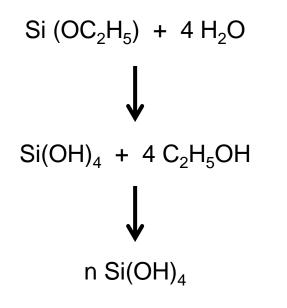

-Synthesis via SIL-GEL condensation.

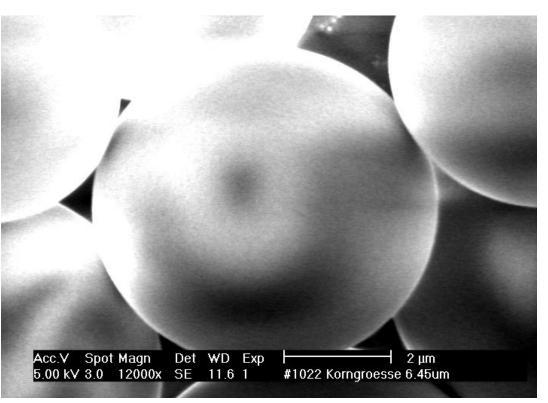
-Spherical material.

-Contaminated with metal ions (Fe^{2+/3+}, Na⁺, Ca²⁺, Al³⁺, ~ 25-75 ppm).

-Higher efficiency than irregular silicas in packed HPLC columns.

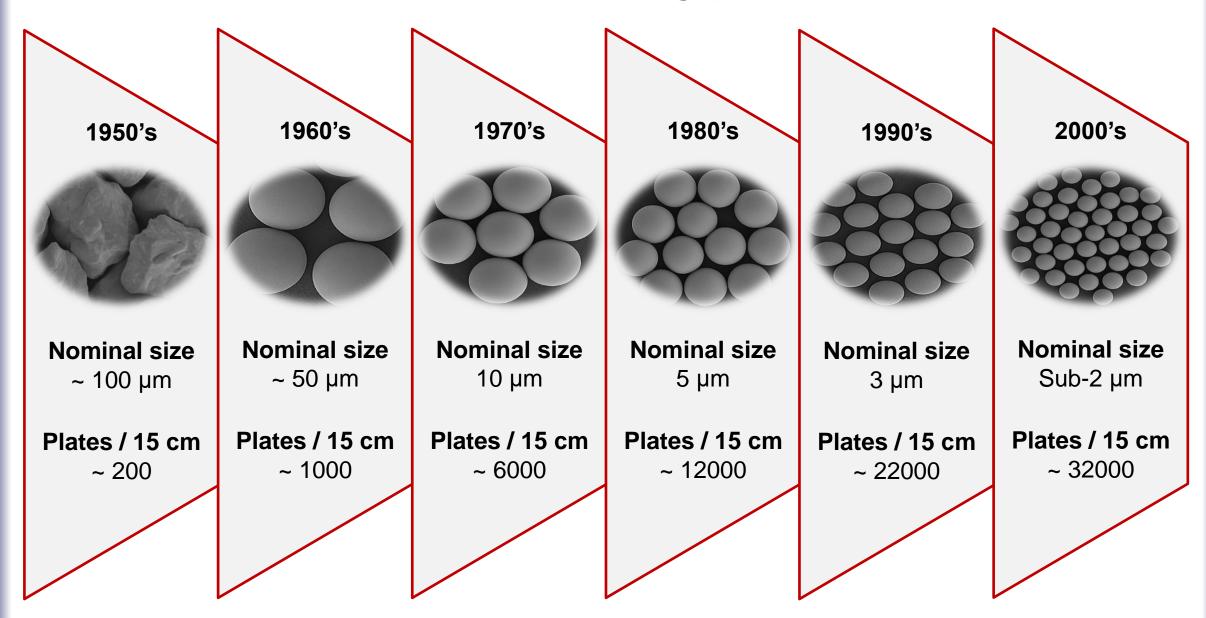
e.g. colloidal silica solution is sprayed into fine droplets and subsequently dried in a hot air stream.

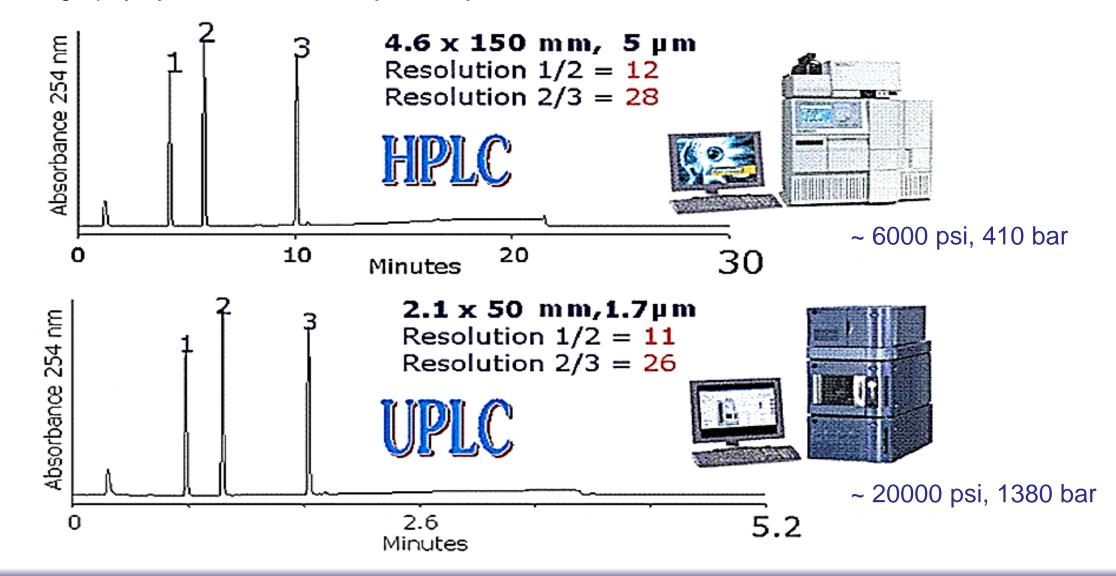



NUCLEOSIL[®] particle size: 7 µm, SEM micrograph

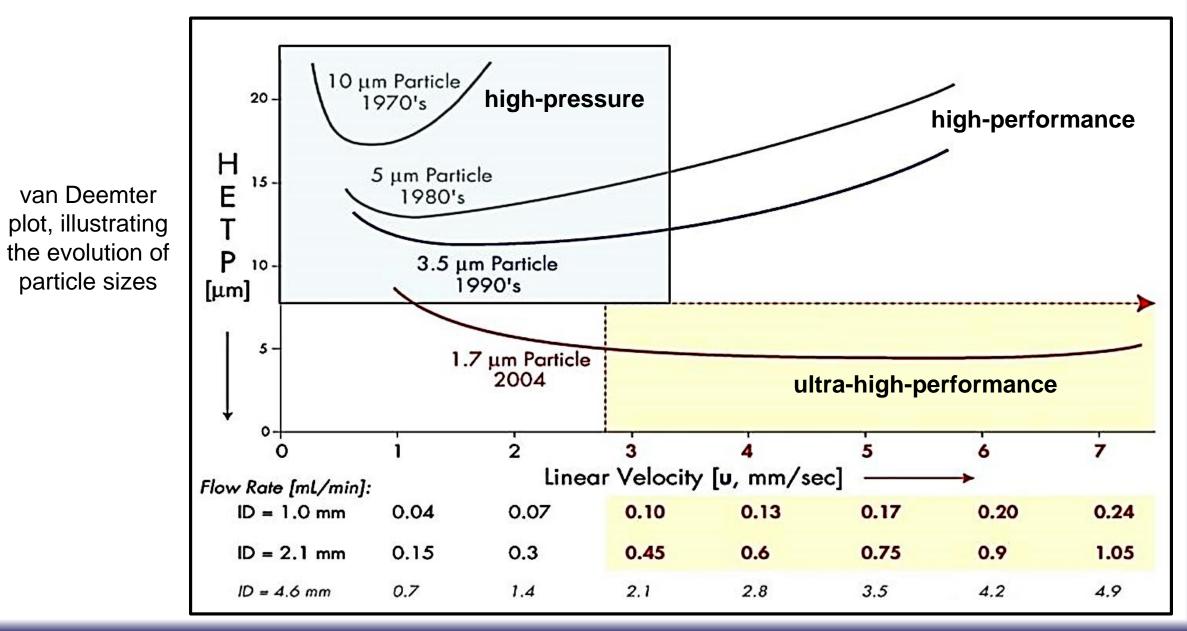
Spherical silica

3rd generation

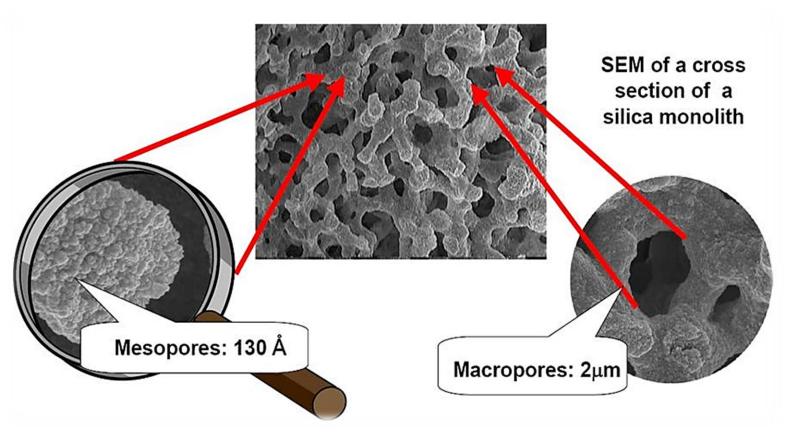

-Synthesis via *Sol-Gel* condensation of alkoxysilanes. -Spherical material, very homogeneous surface, high mechanical stability. -Very low concentration of metal ions, ultra-pure (< 10 ppm).



NUCLEODUR[®] particle size: 5 µm, SEM micrograph


Trend toward smaller stationary phases particle sizes

Modern **HPLC** systems have been improved to work at much higher pressures, and therefore be able to use much smaller particle sizes in the columns (< 2µm). These are ultra performance liquid chromatography systems or **UPLC's (UHPLC)**.


Evolution of particle technology

Monolith material

4th generation

Monoliths are a single block piece of continuous materials made of highly porous rods with two types of bimodal pore structure distribution (macropores and mesopores).

Stationary Phase Chemistry

Common packings and bonded phases in liquid chromatography

Stationary phase	Typical modes and applications				
Silica (unmodified)	Polar compounds in general (NP)				
Alumina (unmodified)	Similar to silica; can be adjusted for acidic, basic, or neutral analytes (NF				
Polymeric	Used at very high or very low pH, where the silica-based phases mindegrade (RP)				
Amino: Si-(R)-NH ₂	Can be used as a weak ion-exchange phase; ionizable compound phenols, petroleum fractionation, sugar, saccharides, drugs, aromatic (NP or RP; depending on R)				
Cyano: Si-(R)-CN	Low hydrophobicity, alternative to silica, broad spectrum of mixtures with different polarities; polar organics, peptides, protiens, drugs, metabolite and pesticides (NP or RP; depending on R)				
Diol: Si-(R)-CHOH-CH ₂ -OH	Less acidic than silica, complex mixtures, antibiotics, proteins, peptides (NP or RP; depending on R)				
Phenyl: Si-(R)-C ₆ H ₅	Aromatic and moderately polar compounds (RP)				
C ₁₈ (or RP-18): -Si-(CH ₂) ₁₇ -CH ₃	General purpose; hydrocarbons, drugs, metabolites, pesticides, peptides, organics specially acids (RP)				
C ₈ (or RP-8): -Si-(CH ₂) ₇ -CH ₃	Similar to C ₁₈ ; generally, less hydrophobic (RP)				
C_2 (or RP-2): -Si-CH ₂ -CH ₃	Less retention than C_8 or C_{18} ; applications are similar, also used for purification and preparative (RP)				

A longer carbon chain means a less polar stationary phase and a higher retention of non-polar solutes.

Phase	Specification	Characteristics*		Stability	Structure	Application	Similar phases**	Separation principle · Retention mechanism	
C ₁₈ / Cs Gravity	octadecyl phase, high density coating multi-endcapping C ₁₈ Gravity: 18% C · USP L1 C ₈ Gravity: 11% C · USP L7	$A \frac{C_{18}}{C_8}$ $B \frac{C_{18}}{C_8}$ $C \frac{C_{18}}{C_8}$ $C \frac{C_{18}}{C_8}$	00000 00((00(00(pH stability 1 – 11, suitable for LC/MS	NUCLEODUR® (Si-O2)n	in general compounds with ionizable functional groups such as basic pharmaceu- ticals and pesticides for C8 Gravity generally shorter retention times for nonpolar compounds	NUCLEOSIL® C ₁₈ HD Waters Xterra® RP ₁₈ / MS C ₁₈ ; Phenomenex Luna C18 (2), Synergi TM and Max RP; Zorbax Extend C18; Inertsil ODS III; Purospher RP-18; Star RP-18 NUCLEOSIL® C ₈ HD; Waters Xterra® RP ₈ / MS C ₈ ; Phe- nomenex Luna C8; Zorbax Eclipse; XDB-C8	only hydrophobic interactions (van der Waals interactions)	SK(CH ₄) ₂ H ₂ C ^H C ^H H ₂ C ^H
C ₁₈ Isis	specially crosslinked surface modification endcapping	A B C	0000(00 00000	pH stability 1 – 10, suitable for LC/MS	NUCLEODUR®	high steric selectivity, thus suited for separation of positional and structural isomers, planar/nonplanar molecules	NUCLEOSIL® C ₁₈ AB Inertsil ODS-P; YMC Pro C18RS	steric interactions and hydrophobic interactions	×
C ₁₈ Pyramid	C ₁₈ modification with polar endcapping 14% C + USP L1	A B C	0000 00(stable against 100% aqueous eluents, pH stability 1 – 9, suitable for LC/MS	NUCCLEODUR® (Si-O_2)n	basic pharmaceutical in- gredients, very polar com- pounds, organic acids	Phenomenex Aqua; YMC AQ; Waters Atlantis® dC18	hydrophobic interactions and polar interactions (H bonds)	
phinx RP	bifunctional RP phase, propylphenyl and C ₁₈ ligands; endcapping 15% C; USP L1 and L11	A B C	000 00(0		NUCCLEODUR®N (Si-O2)n	compounds with aromatic and multiple bond systems	no similar phases	π - π interactions and hydrophobic interactions	
C ₁₈ ec C ₈ ec	octadecyl / octyl phase, medium density coating endcapping C ₁₈ ec: 17.5% C · USP L1 C ₈ ec: 10.5% C · USP L7	$\begin{array}{c} A \\ C_{18} \\ C_{8} \\ B \\ \hline C_{18} \\ C_{8} \\ C \\ \hline C_{18} \\ C_{8} \end{array}$	0000 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0		NUCCLEODUR (1-0.5) (51-0.5) (51-0.5) (10-6) (10-6) (10-6)	robust C18 / C8 phase for routine analyses	NUCLEOSIL [®] C ₁₈ Spherisorb [®] ODS II; Hypersil ODS; Waters Symmetry [®] C18; Inertsil ODS II; Kromasil C18; LiChrospher RP 18 NUCLEOSIL [®] C ₈ ec / C ₈ Spherisorb [®] C8; Hypersil MOS; Waters Symmetry [®] C8; Kromasil C8; LiChrospher RP 8	only hydrophobic interactions (van der Waals interactions) some residual silanol interactions	SICHJJ, CH, SICHJ, HAC N
HILIC	zwitterionic ammonium sulfonic acid modification 7% C	A B C	0 00000 -	pH stability 2 – 8.5, suitable for LC/MS	NUCLEODUR® (51-02) (51-02) (50 (50 (50 (50)) (50)) (50) (50) (50)	hydrophilic compounds such as organic polar acids and bases, polar natural compounds	Merck Sequant ZIC®-HILIC; Sielc Obelisc™	ionic / hydrophilic interactions, elec- trostatic interac- tions	H,C, , , , , , , , , , , , , , , , , , ,
CN CN-RP	cyano (nitrile) phase for NP and RP separations 7% C + USP L10	A B C	0 0000	pH stability 1 – 8, stable towards highly aqueous mobile phases	NUCLEODUR® (51-0;) (51-0;) (9-16; (10)8; 0-16; (10)8; 0-16;	polar organic compounds (basic drugs), molecules containing π electron systems	NUCLEOSIL® CN / CN-RP	$\pi-\pi$ interactions, polar interac- tions (H bonds), hydrophobic interactions	
NH ₂ NH ₂ -RP	2.5% C + USP 18	A B C	0 0000	pH stability 1 - 8, stable towards highly aqueous mobile phases	NUCLEODUR® (Si-O2)n 90-6 14 44 44	sugars, sugar alcohols and other hydroxy com- pounds, DNA bases, polar compounds in general	NUCLEOSIL [®] NH ₂ / NH ₂ -RP	polar /ionic interactions, hydrophobic interactions	NH. O
SiOH	unmodified high purity silica USP L3	A B C	- n.a.	pH stability 2 - 8	ducteodur® (Si-O ₂) n ფ- წ ფ- ფ	polar compounds in general	unmodified NUCLEOSIL®	polar /ionic interactions	SIOH

