King Saud University

College of Engineering

IE – 341: "Human Factors Engineering"

Spring – 2025 (2nd Sem. 1446H)

Manual Materials Handling (Chapter 8) part 2 – Case Studies Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

Part 1:

- What is MMH?
- MMH Activities
- MMH Effect on Health
- NIOSH Lifting Equation
- Multiplier Values
- Lifting Index

Part 2 (this part):

- Case Studies
 - o <u>Case 1: Effect of Frequency Factor on RWL</u>
 - o Case 2: Effect of Horizontal Distance on RWL
 - o Case 3: Effect of Vertical Distance on RWL

Case 1: Effect of Frequency Factor on RWL **Problem Statement**: Analyze the following work task. A worker lifts 10-kg boxes from the conveyor to the cart, ten times every minute for two hours.

Case 1: Effect of Frequency Factor on RWL Solution: First, calculate the recommended weight limit (RWL) for the task

- Determine the weight of the load. Weight = 10 kg
- 2. Assess the six components of lifting task.

H (Horizontal Distance)	20 cm
V (Vertical Distance)	75 cm
D (Lifting/ carrying Distance)	0 cm
A (Angle)	90°
F (Frequency)	6 sec
C (Coupling/quality of grip)	fair

Case 1: Effect of Frequency Factor on RWL 3. Select appropriate multiplier factors for each lifting component from the appropriate tables

							H (Horizontal Distance)	20 cm	НМ	1
		HN VN	/ (25 / 1-	5/H) (.003 V-75	5)		V (Vertical Distance)	75 cm	VM	1
E. Time	DM .82 + (4.5/D) AM 1– (.0032A)		D (Lifting/carrying Distance)	0 cm	DM	1				
F = Time Between Lifts	<u>S</u> ≤ 1 hr.	Lifting Whi <u>Standing</u> (V ≥ ⁻ <mark>>1 & ≤ 2 hr.</mark>	FMC = GraspCM Factor:Lifting While ading (V \geq 75 cm)Good (handles)1.001.00& $\leq 2 \text{ hr.}$ >2 & $\leq 8 \text{ hr.}$ Fair1.000.95		Stooping 1.00 0.95	A (Angle)	90°	AM	0.71	
≥5 min	1.00	0.95	0.85	Poor	0.90	0,90			ENA	0.00
2 min 1 min	0.97	0.92	0.81				F (Frequency)	6 Sec		0.26
30 sec	0.91	0.84	0.65							
15 sec	0.84	0.72	0.45							
10 sec 6 sec	0.75 0.45	0.50	0.27 0.13				grip)	fair	СМ	1

≥5 min 2 min 1 min 30 sec 15 sec 10 sec 6 sec

Case 1: Effect of Frequency Factor on RWL 4. Determine the Recommended Weight Limit for the task:

RWL =
$$23 \text{ kg} * 1 * 1 * 1 * 0.71 * 0.26 * 1$$

= 4.25 kg

- 5. Compare weight of the load against determined weight limit for the task: ≤1.00
 - weight of load: L (10 kg) > RWL (4.25 kg)
 - LI (lifting index) = L / RWL = 10 / 4.25 = 2.35 (i.e. 2 < LI ≤= 3 ⇒ lifting is "highly risky")

6. Conclusion: Task is Dangerous (not safe)

Case 1: Effect of Frequency Factor on RWL • Check results using NIOSH Lifting Eqn Calculator:

Inputs

Results

Measurement System

Metric

	Origin	Destination		Origin	Destinatio
Horizontal Location	20	20	Recommended	5.00 hz	4.0510
Vertical Location 0	75	75	(RWL)	о.ав к <u>р</u>	4.20 Kg
Travel Distance ()	0	Q	Frequency Ind.	23.00	16.33 kg
Angle of Asymmetry 🕕	0	30	RWL (FIRWL)	ĸg	
Coupling 🕕	Far	Fair	(LI)	1.67	2.35
Frequency	10	10	Frequency Ind.	0.43	0.61
Avg. Load 🔍	10	10	(FILI)	0.45	0.01
Max Load	110	10		-	
Duration 🔘	Moderate (1-2 hours)	Moderate (1-2 hours)		Origin	Dest.
			HM	1.00	1.00
	Calculate		VM	1.00	1.00
Clear	Print	Save	DM	1.00	1.00
	_		AM	1.00	0.71
About the NIOSL	CM	1.00	1.00		
About the MIOSP	a Linung Equation		EM	0.26	0.26

The NIOSH Lifting Equation is a tool used by occupational health and safety professionals to assess the manual material handling risks associated with

Case 1: Effect of Frequency Factor on RWL

- 7. Recommendations:
- Assess which component(s) contribute(s) most to the risk
 - the <u>critical factor</u> is FM ⇒ it is required to reconsider the frequency of lifting and/or duration of task
- Shorten the frequency of lifting by:
 - a. reducing the frequency of incoming boxes (i.e. increasing F) and/or
 - b. shortening the time of the task to 1 hour, and/or
 - c. assigning additional workers to task

F = Time						FM	
Between Lifts		Lifting While <u>Standing</u> (V ≥ 75 cm)					
	≤ 1	hr.	>1	<mark>&</mark> ≤ 2 hr.	>2	& ≤ 8 hr.	
≥5 min	1.00			0.95		0.85	
2 min	0.9	97		0.92		0.81	
1 min	0.94			0.88		0.75	
30 sec	0.91			0.84		0.65	
15 sec	0.84			0.72		0.45	
10 sec	0.75		0.50			0.27	
6 sec	0.4	5		0.26		0.13	

Case 1: Effect of Frequency Factor on RWL 7. Recommendations (Cont.):

• 9

Case 1: Effect of Frequency Factor on RWL

- 8. Redesign the Task
- Assess the six components in the redesigned task
- Determine new RWL:

RWL = 23 kg * 1 * 1 * 1 * 0.71 * 0.75 * 1= 12.25 kg

- Compare weight of the box against determined weight limit for redesigned task:
 - weight of load (10 kg): now < RWL (12.25 kg)
 - Also, new LI = L / RWL = 10 / 12.25 = 0.82 (i.e. LI < 1)
- Conclusion: most workers can perform the task safely (why most?)

	≤1.00	
	1.01 - 1.50	
u	1.51 - 2.00	
	2.01 - 3.00	
	> 3.00	

• 10

Case 1: Effect of Frequency Factor on RWL Check results using NIOSH Lifting Eqn Calculator:

Inputs Aeasurement System				Results		
Metric •				-		
	Origin		Destination		Origin	Destination
Horizontal Location	20	20		Recommended	17.25	10.07.1-0
Vertical Location ()	.75	76		(RWL)	kg	12.25 Kg
Travel Distance ()	0	0		Frequency Ind.	23.00	16.33 kg
Angle of Asymmetry 🕕	0	90		Lifting Index	~9	
Coupling	Fair		air -)	. (LI)	0.58	0.82
Frequency 🕕	6	. 6		Frequency Ind. Lifting Index	0.43	0.61
Avg. Load 🕕	10	10		(FILI)	0.40	
Max Load 🔘	10	10			14667	
Duration ()	Short (1 hour)	• s	holf (1 hour)		Origin	Dest.
		-		HM	1.00	1.00
	Calculate			VM	1.00	1.00
Clear	Print		Save	DM	1.00	1.00
				AM	1.00	0.71
About the NIOSI	Lifting Equation			CM	1.00	1.00

0.75

FM

0.75

mais to assess the man

Case 1: Effect of Frequency Factor on RWL NIOSH Lifting Eqⁿ Calculator printable results:

Name: sherbo Company: KSU - IE Dept.

Job: Effect of Frequency Factor on RWL

NIOSH Lifting Equation Calculator

			Ori	gin		Destinatio	n		
Horizontal Location						20	20		
Vertical Location						75			
Travel Di	stance		0			0			
Angle of Asymmetry			0			90	90		
Coupling			Fair			Fair	Fair		
Frequenc	зy		6			6	6		
Avg. Loa	d		10			10			
Max Load	k		10			10			
Duration			Short (1 hour)			Short (1 hour)			
	Origin	Destinatio	n			Origin	Dest.		
RWL	17.25 kg	12.25 kg			НМ	1.00	1.00		
FIRWL	23.00 kg	16.33 kg			VM	1.00	1.00		
LI	0.58	0.82			DM	1.00	1.00		
FILI	0.43	0.61			AM	1.00	0.71		

CM

FΜ

1.00

0.75

1.00

0.75

•12

LIFTING ANALYSIS WORKSHEET DEPARTMENT JOB DESCRIPTION JOB TITLE ANALYST'S NAME DATE STEP 1. Measure and record task variables Object Weight Hand Location Vertical Asymmetric Angle (deg.) Frequency Rate Duration Object Distance Coupling (kg) Origin Origin Destination lifts/min Dest Hrs L(AVG) L(MAX) Η V Η V D А F С А 90 10 10 20 75 20 75 0 0 6 1 Fair STEP 2. Determine the multipliers and compute the RWLs RWL = HM DM LC х х VM х х AM FM х CM х x **1.0** x **1.0** x **1.0** x x 1.0 0.75 17.25 kg ORIGIN RWL = 23 x 1.0 12.25 kg 1.0 _X 1.0 _X 0.71 0.75 x 1.0 DEST. RWL = 23 1.0 x х х STEP 3. Compute the LIFTING INDEX **10 kg** ORIGIN LIFT INDEX OBJECT WEIGHT = 0.58 RWL 17.25 kg 10 kg DESTINATION LIFT INDEX OBJECT WEIGHT = 0.82 RWL 12.25 kg

Case 2: Effect of Horizontal Dist. on RWL Problem Statement:

- **Analyze** the following work task.
- A worker lifts 15-kg boxes from the table to the shelf, five times an hour.
- Notice that there is a barrier between the worker and the box.

Case 3: Effect of Vertical Distance on RWL Problem Statement:

- **Analyze** the following work task.
- A worker lifts a 15-kg load of loosely-piled pieces of metal from the floor to the table, five times an hour.

References

- Revised NIOSH Equation for the Design and Evaluation of Manual Lifting Tasks. Thomas R. Walters et al. Ergonomics 36(7): 749-776,1993.
- 2. Applications Manual for the Revised NIOSH Lifting Equation. Thomas R. Walters, Vern Putz-Anderson, Arun Garg. US Department of Health and Human Services: Public Health Services. Cincinnati, OH, 1994.
- 3. OSHA Technical Manual. Section VII: Chapter 1: Back Disorders and Injuries. Online at:

www.osha.gov/dts/osta/otm/otm_vii/otm_vii_1.html

4. Applications Manual For the Revised NIOSH Lifting Equation. Centers for Disease Control & Prevention. Thomas R. Waters, Ph.D., Vern Putz-Anderson, Ph.D., Arun Garg, Ph.D. Centers for Disease Control & Prevention. Publication date: 01/01/1994. Online at:

<u>https://wonder.cdc.gov/wonder/prevguid/p0000427/p00</u> 00427.asp#head005001002000000 •16

References

5. A Step-by-Step Guide to Using the NIOSH Lifting Equation for Single Tasks. Mark Middlesworth. Ergonomics Plus. Online at: <u>http://ergo-plus.com/niosh-lifting-equationsingle-task/</u>