

CHEM 344 ORGANIC REACTION MECHANISM

FOR CHEMISTRY' STUDENTS, COLLEGE OF SCIENCE

PRE-REQUISITES COURSE; CHEM 241

CREDIT HOURS; 2(2+0+0)

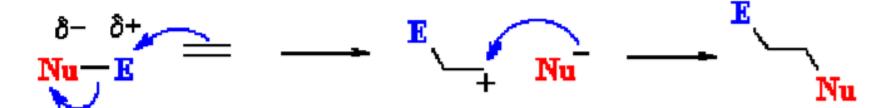
Prof. Mohamed El-Newehy

Dr. Zainab Almarhoon

Dr. Monirah A. Al-Shaikh

http://fac.ksu.edu.sa/melnewehy

https://fac.ksu.edu.sa/zalmarhoon


https://faculty.ksu.edu.sa/ar/mshaikh

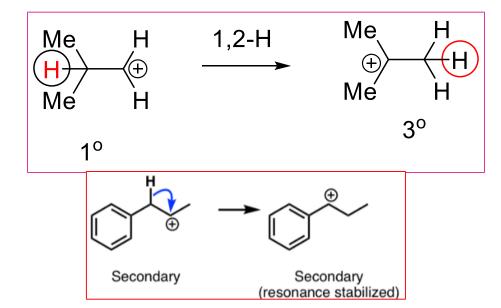
Chemistry Department, College of Science, King Saud University

Addition to Carbon–Carbon Double bond Electrophilic Addition Reactions

ELECTROPHILIC ADDITION REACTION

- Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C≡C into a range of important functional groups.
- Conceptually, addition is the reverse of elimination
- What does the term "electrophilic addition" imply?
 A electrophile, E⁺, is an electron poor species that will react with an electron rich species (C=C)
 An addition implies that two systems combine to a single entity.

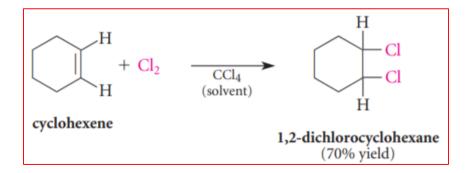
- Electrophilic addition reaction involves two major steps:
 - (1) Addition of the electrophile to the nucleophilic π bond to give carbocation intermediate,
 - (2) Reaction of the carbocation with a nucleophile.
- Simultaneous formation of the two σ bonds


ELECTROPHILIC ADDITION REACTION

FORMATION AND STABILITY OF CARBOCATION

 \circ **Protonation of an olefin;** Intermediate cations are often produced by addition of a proton or a Lewis acid to a π bond.

$$H \xrightarrow{CH_2} H \xrightarrow{CH_3}$$


- Carbocation rearranges to another carbocation of equal or greater stability.
 - 1,2-Hydride Shift

1,2-methyl shift

HALOGENATION OF ALKENES

A) ADDITION OF CHLORINE AND BROMINE

- The products of these reactions are <u>vicinal dihalides</u> "compounds with halogens on adjacent carbons".
 - Bromine and chlorine are the two halogens used mostly in halogen addition.
 - Fluorine is so reactive that it not only adds to the double bond but also rapidly replaces all the hydrogens with fluorines, often with considerable violence.
 - Diiodides are unstable and decompose to the corresponding alkenes and I₂.
 - These reaction run at low temperature, and Dark (Avoid Radicals).
 - Inert solvents such as methylene chloride (CH₂Cl₂) or carbon tetrachloride (CCl₄) are used as these solvents dissolve both halogens and alkenes.
 - In fact, this discharge of color is a useful qualitative test for alkenes.

MECHANISM

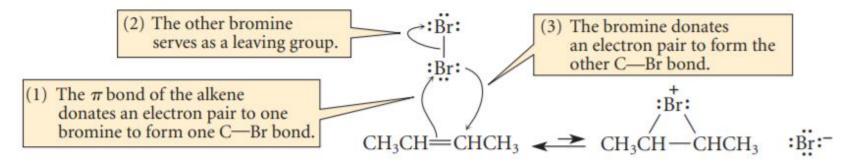
- Addition of bromine to alkene involves a reactive intermediate called a bromonium ion.
- Carbocations are not actual intermediates in most halogen additions.

Step 1,

Heterolytic cleavage of polarized Br-Br bond occurs and Br with the positive charge forms a cyclic intermediate "bromonium ion" with the two carbons from the alkene.

Step 2,

Bromide anion attacks either carbon of the bridged bromonium ion from the back side of the ring.

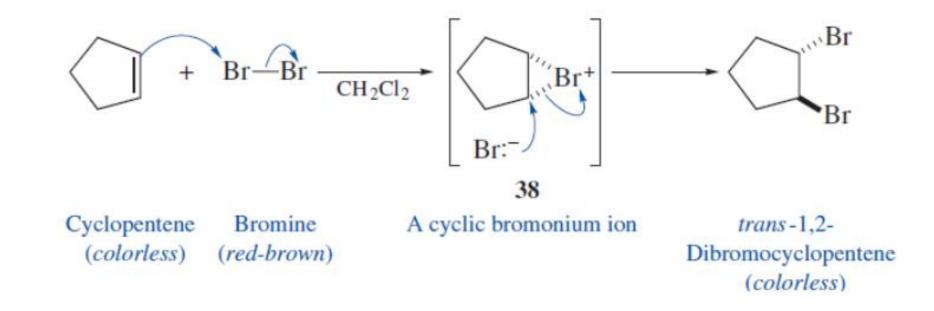

MECHANISM

- The ring opening up with the two halogens on opposite sides as each other.
- Anti stereochemistry;
 - The two bromine atoms come from opposite faces of the double bond.
 - The product is that the bromines add on trans to each other.
- The halide ion can attack any carbon from the opposite side of the ring it creates a mixture of steric products.
- Optically inactive starting material produce optically inactive achiral products; a racemic mixture.

EXAMPLE 1

o Step 1,

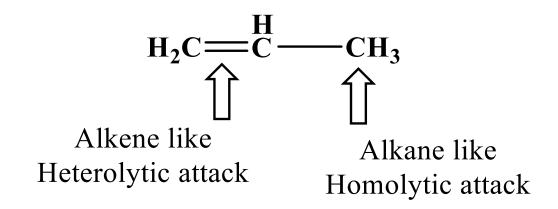
The electrons of the π -bond are donated to one of the bromines, the other bromine acts as a leaving group, and a carbocation is formed.



Step 2,

The carbocation undergoes a Lewis acid-base association reaction with the neighboring bromine. (intramolecular (internal) Lewis acid-base association reaction)

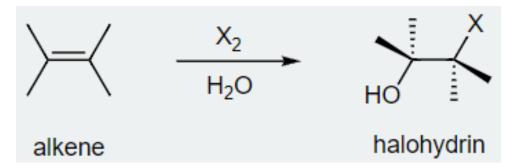
EXAMPLE 2


 The reaction of bromine with cyclopentene is stereospecific and proceeds by antiaddition.

SUMMARY

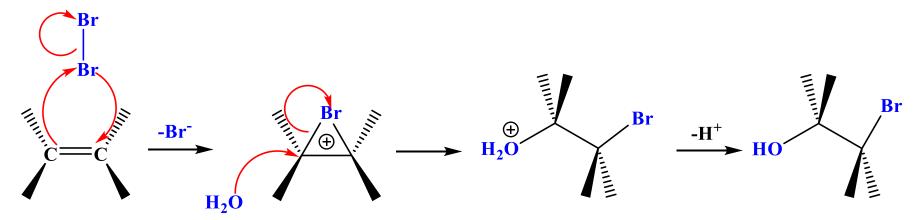
- Overall transformation : C=C to X-C-C-X.
- Reagent: normally the halogen (e.g. Br_2) in an inert solvent like methylene chloride, CH_2CI_2 .
- Regioselectivity: not relevant since both new bonds are the same, C-X.
- Reaction proceeds via cyclic halonium ion.
- Stereoselectivity: anti since the two C-X bonds form in separate steps one from X_2 the other X^- .

ELECTROPHILIC ADDITION vs. FREE- RADICAL SUBSTITUTION


- The propylene molecule has two sites where the halogen can attack, the double bond and the methyl group.
 - Alkanes undergo substitution by halogen at high temperatures and generally in the gas phase conditions favor to form free radicals.
 - Alkenes undergo addition of halogen at low temperatures and generally in liquid phase conditions favor to form heterolytic reactions.

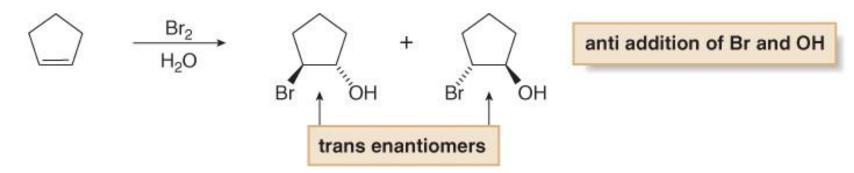
$$H_2C=CH-CH_3 + Cl_2 \xrightarrow{600 \text{ °C}} H_2C=CH-CH_2Cl + HCl$$

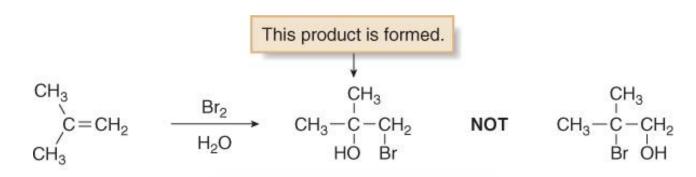
HALOGENATION OF ALKENES


B) HALOHYDRIN FORMATION

- The addition of hypohalous acid (HO-X) such as hypobromous acid, HO-Br, or hypochlorous acid, HO-Cl to an alkene to give a 1,2-halo alcohol, called a halohydrin.
- \supset Bromohydrin and chlorohydrin are examples of halohydrins (where X = Br or CI).

MECHANISM


- 1) Reaction of the alkene with Br₂ yields a bromonium ion intermediate.
- 2) Water acts as a nucleophile, using a lone pair of electrons to open the bromonium ion ring and form a bond to carbon.
 - Since oxygen donates its electrons in this step, it now has the positive charge.
- 3) Loss of a proton from oxygen then gives H_3O^+ and the neutral bromohydrin addition product.

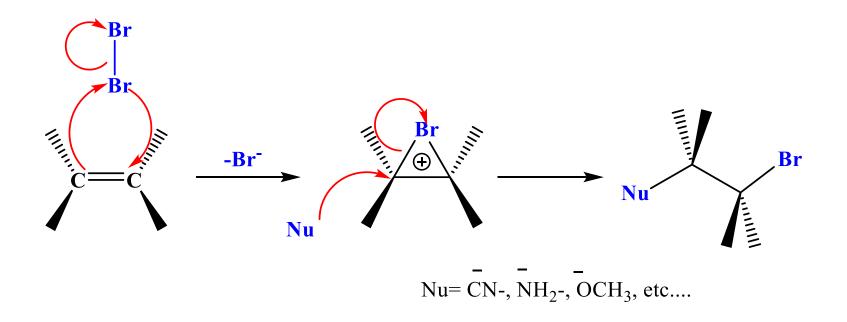

Nucleophilic Solvents (H₂O) can open Bromonium ion

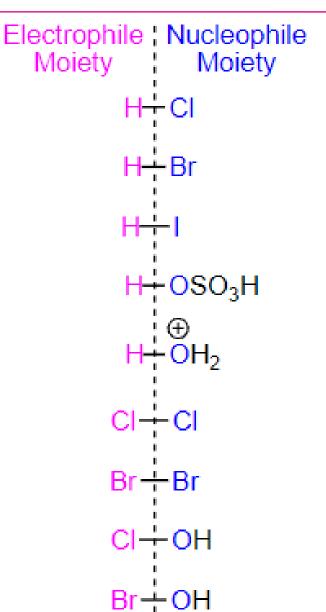
EXAMPLES

Symmetric alkene; anti addition of Br and OH

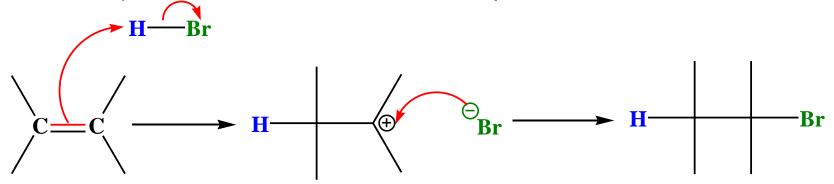
- Unsymmetric alkene; The reaction is highly Regioselective.
- The reaction of water with the bromonium ion can give two possible products.

The electrophile (Br⁺) ends up on the less substituted C.


EXAMPLES

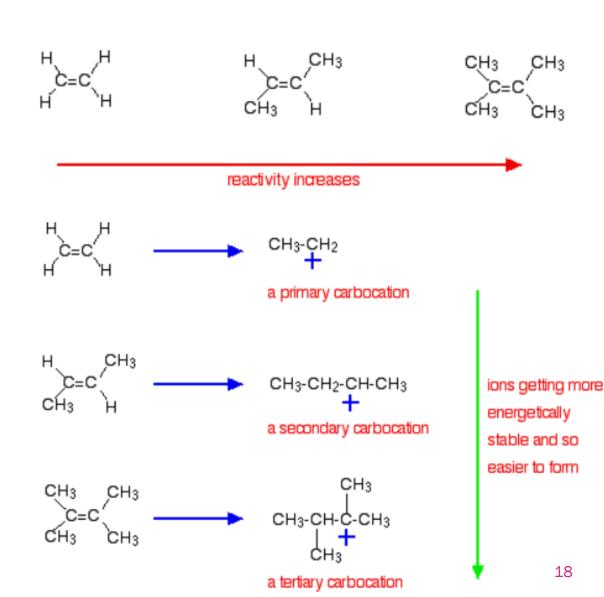

The bond between this carbon and the bromine is so long and weak that this species
is essentially a carbocation containing a weak carbon-bromine interaction.

 Water reacts with the bromonium ion at the tertiary carbon, and the weaker bond to the leaving group is broken, to give the observed regioselectivity.

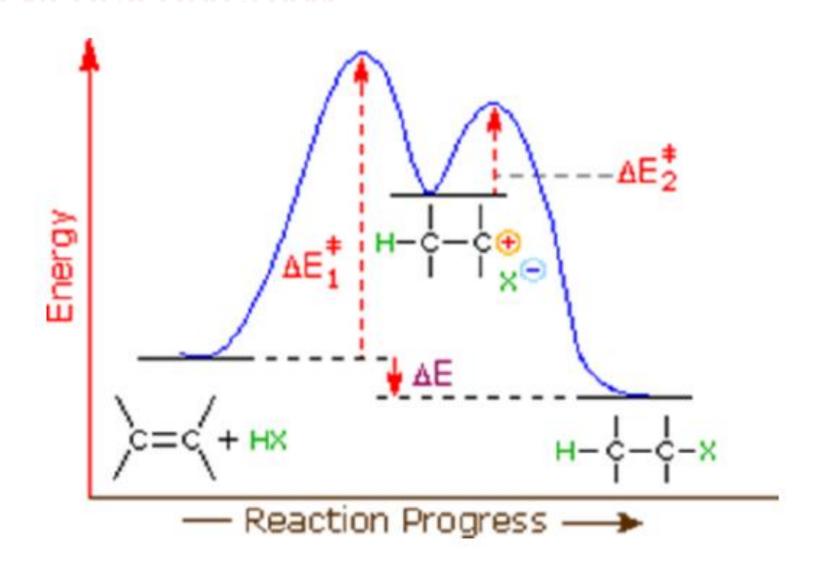

MECHANISM

- Water is available at a higher concentration than the bromine ion,
- Water is also a better nucleophile than the bromine ion.
- The better a nucleophile, the more likely it is to attack.

- O All of the halides (HI > HBr > HCl > HF) can participate in this reaction with different rates due to the H-X bond getting weaker as X gets larger (poor overlap of orbitals)s.
- This reaction works well with HBr and HCl.
- \circ HI can also but used by reacting potassium iodide (KI) with phosphoric acid (H₃PO₄).
- Overall reaction;
 - The π -bond of the alkene is broken to form two single, σ -bonds.
 - π Bond (Nucleophile) Protonate \rightarrow Carbocation Intermediate.
 - Carbocation Captured by Br (Nucleophile) → HBr Added.
 - HBr (or other HX) Addition in Two Overall Steps.



REACTION RATES


Variation of rates when you change the alkene

- The more important reason, is the stability of the intermediate ion formed during the reaction.
- Two-step electrophilic addition mechanism
- The first step of the mechanism is the ratedetermining step.
- This electrophilic addition is a second order reaction.

Rate = k[Alkene][HX]

REACTION ENERGY DIAGRAM

ADDITION TO SYMMETRICAL ALKENES

With ethene and hydrogen chloride, you get chloroethane.

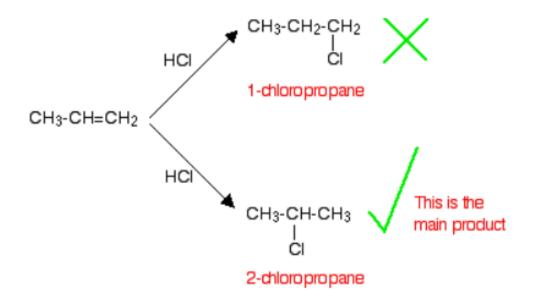
$$H_2C=CH_2$$
 + HCI \longrightarrow H_3C-CH_2CI

With but-2-ene you get 2-chlorobutane:

$$H_3C-C=C-CH_3 + HCI \longrightarrow H_3C-CH_2-C-CH_3$$

Mechanism

Step 1) Electrophilic Attack


The 2 π electrons from the double bond attack the H (electrophile) in the HX makes one of the carbons become an electron deficient "carbocation intermediate (sp² hybridized carbon)".

Step 2: Nucleophilic attack by halide anion

The formed carbocation now can act as an electrophile and accept an electron pair from the nucleophilic halide anion.

ADDITION TO UNSYMMETRICAL ALKENES

Regioselectivity of Hydrogen Halide Addition: Markovnikov's Rule

- If HCl adds to an unsymmetrical alkene like propene; there are two possible ways it could add.
- However, in practice, there is only one major product according to Markovnikov's Rule;

"When a compound HX is added to an unsymmetrical alkene, the hydrogen becomes attached to the carbon with the most hydrogens attached to it already."

ADDITION OF HX TO ALKENE

Markovnikov's Rule

Mechanism for Markovnikov's Rule; Stability of Carbocation

Protonation of double bond occurs in direction that gives the more stable of two possible carbocations.

Primary carbocation is less stable: not formed

ADDITION OF HX TO ALKENE

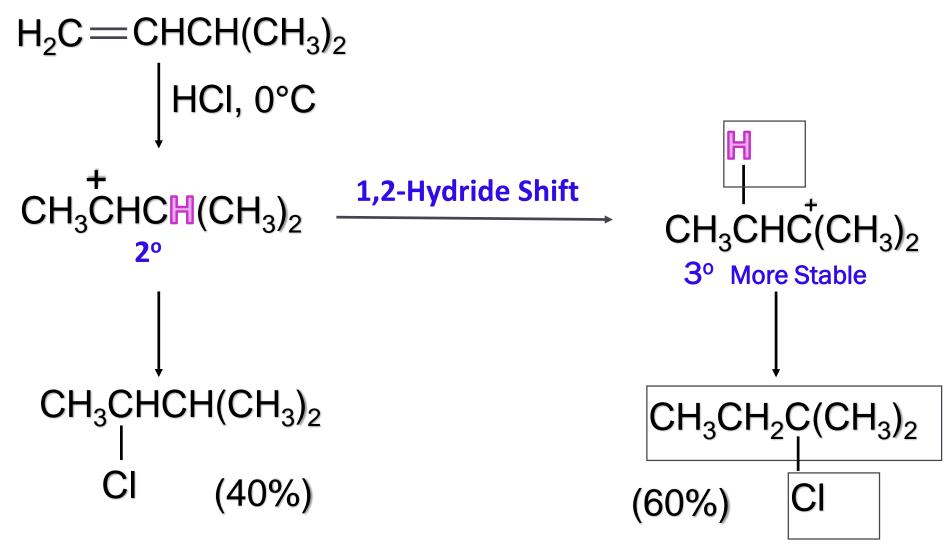
Markovnikov's Rule

Mechanism for Markovnikov's Rule; Stability of Carbocation

Protonation of double bond occurs in direction that gives the more stable of two possible carbocations.

$$\begin{array}{c} H \\ \hline \\ CH_3 \end{array} \begin{array}{c} HCl \\ \hline \\ 0^{\circ}C \end{array} \end{array}$$
 1-Methylcyclopentene

$$H$$
 CH_3

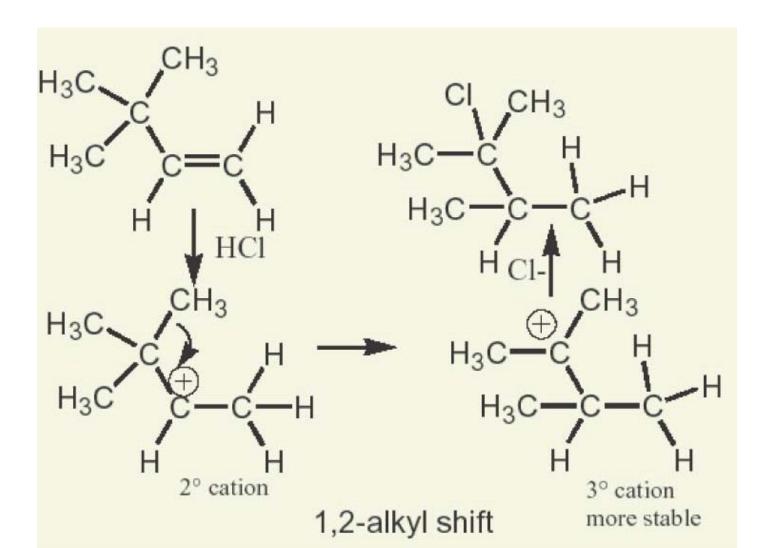

Secondary carbocation is less stable: not formed

$$\begin{array}{c} H \\ H \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$$

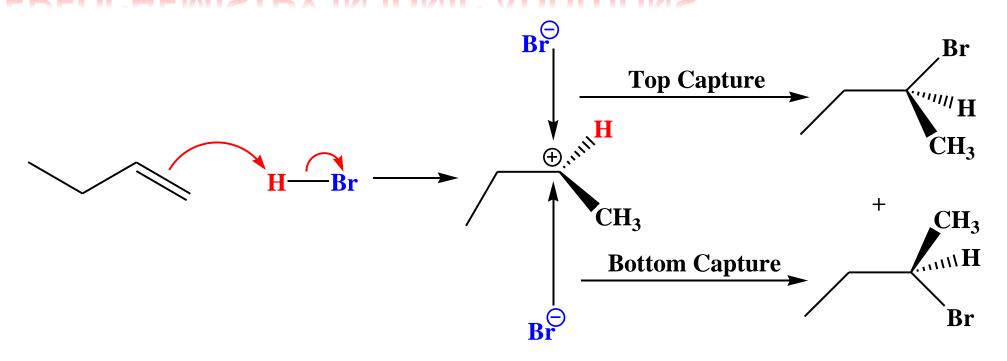
ADDITION OF HX TO ALKENE

Markovnikov's Rule

Carbocation Rearrangements in Hydrogen Halide Addition to Alkenes



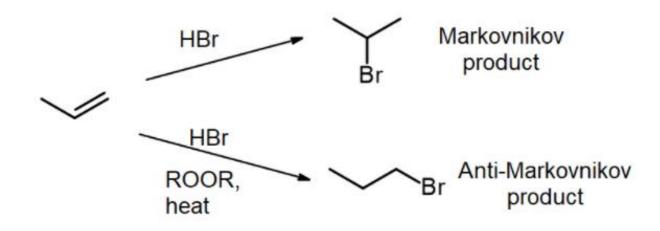
ADDITION OF HX TO ALKENE


Markovnikov's Rule

Carbocation Rearrangements in Hydrogen Halide Addition to Alkenes

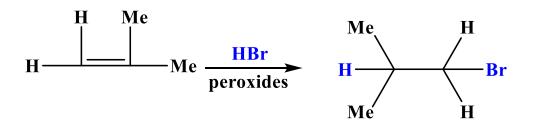
1,2- Methyl Shift

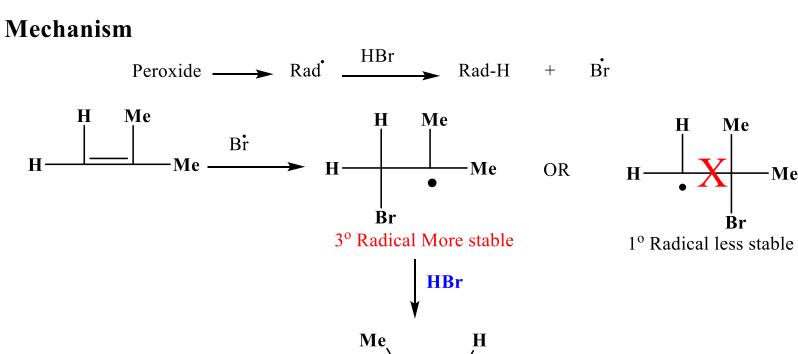
STEREOCHEMISTRY IN IONIC ADDITIONS



- Just as We Saw in S_N1: C⁺ Has TWO FACES
- Top and Bottom Attack Give <u>Two Stereochemical Products</u>
- R and S Enantiomers Formed as a Racemic Mixture (50:50)

ANTI-MARKOVNIKOV HBR ADDITION:


ADDITION OF HX TO ALKENE


"Free Radical Addition"

- HBr adds to an unsymmetrical alkene to form an alkyl halide forming "Markovnikov product"
- When HBr heated in the presence of a dialkyl peroxide (often written as ROOR), a radical mechanism takes over forming "anti-Markovnikov product"- due to the socalled "peroxide effect".

"Free Radical Addition"

H-

Me

-Br

H

ADDITION OF H₂O TO ALKENE

HYDRATION OF ALKENES

Addition of water (H-OH) across a double bond to give an alcohol

1) Acid catalyzed hydration- Markovnikov addition of H-OH

- Acid catalysts are used in high temperature industrial processes: ethylene is converted to ethanol
- Carbocation Rearrangements.
- Similar Reaction: Acid Catalyzed Dehydration

ADDITION OF H₂O TO ALKENE

HYDRATION OF ALKENES

2) Oxymercuration- Markovnikov addition H-OH

- No Carbocation Rearrangements.
- 3) Hydroboration- Anti-Markovnikov addition of H-OH, Syn addition of H-OH

ACID CATALYZED HYDRATION; Mechanism

Step 1:

An acid/base reaction; Protonation of the alkene to generate the more stable carbocation.

The π electrons act pairs as a Lewis base.

Step 2:

Attack of the nucleophilic (H₂O) on the electrophilic carbocation creates an oxonium ion.

Step 3:

An acid/base reaction; Deprotonation by a base generates the alcohol and regenerates the acid catalyst

OXYMERCURATION-DEMERCURATION

 Addition of water follows Markovnikov's rule with no rearrangement for the carbon carbocation due to the formation of cyclic intermediate

- Net Reaction: Markovnikov Addition of H₂O to Alkene.
- Both Reactions Quite Rapid; Alcohol Yields Usually > 90%
- Strong acids are not required
- Carbocation rearrangements are avoided because no discreet carbocation intermediate forms.

OXYMERCURATION-DEMERCURATION; Mechanism

OXYMERCURATION

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3}\text{C} - \text{CH} = \text{CH}_{2} \xrightarrow{\text{(1) Hg(OAc)}_{7}/\text{THF-H}_{2}\text{O}} & \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{OH} \\ \text{3,3-Dimethyl-1-butene} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{OH} \\ \text{OH} \\ \text{3,3-Dimethyl-2-butanol} \\ \text{(94\%)} \\ \end{array}$$

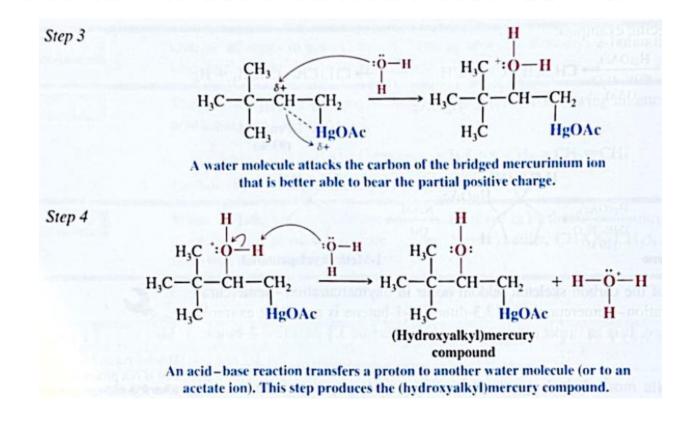
Step 1

$$Hg(OAc)_2 \Longrightarrow \overset{+}{H}gOAc + OAc^-$$

Mercuric acetate dissociates to form a HgOAc cation and an acetate anion.

Step 2

$$\begin{array}{c} CH_{3} \\ H_{3}C - C - CH = CH_{2} + \underset{CH_{3}}{\overset{+}{\text{HgOAc}}} \longrightarrow H_{3}C - \underset{CH_{3}}{\overset{CH_{3}}{\overset{\delta+}{\text{HgOAc}}}} \\ CH_{3} & \underset{\delta+}{\overset{+}{\text{HgOAc}}} \end{array}$$


3,3-Dimethyl-1-butene

Mercury-bridged carbocation

The alkene donates a pair of electrons to the electrophilic HgOAc⁺ cation to form a mercury-bridged carbocation. In this carbocation, the positive charge is shared between the 2° (more substituted) carbon atom and the mercury atom. The charge on the carbon atom is

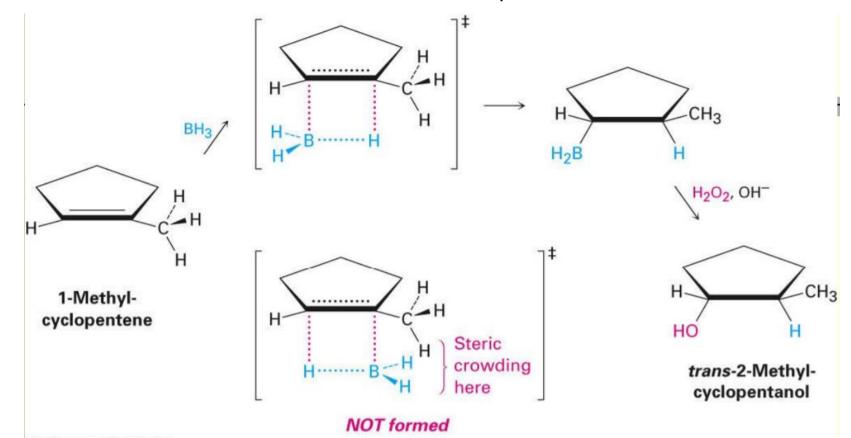
OXYMERCURATION-DEMERCURATION; Mechanism

OXYMERCURATION

DEMERCURATION

$$C = C \xrightarrow{\text{Hg(O}_2\text{CCF}_3)_2/\text{THF-ROH}} C \xrightarrow{\text{RO}} C \xrightarrow{\text{NaBH}_4, \text{OH}^-} C \xrightarrow{\text{RO}} C \xrightarrow{\text{RO}}$$

HYDROBORATION-OXIDATION


- The reaction proceeds in an Anti-Markovnikov manner; (Good for 1° Alcohols)
- In the alkene double bond;
 - Hydrogen (from BH₃ or BHR₂) attaches to the more substituted carbon.
 - Boron attaches to the least substituted carbon.
- This process does not require any activation by a catalyst.
- o Oxidation: H_2O_2 , NaOH Oxidize to Trialkylborate Ester.

HYDROBORATION-OXIDATION

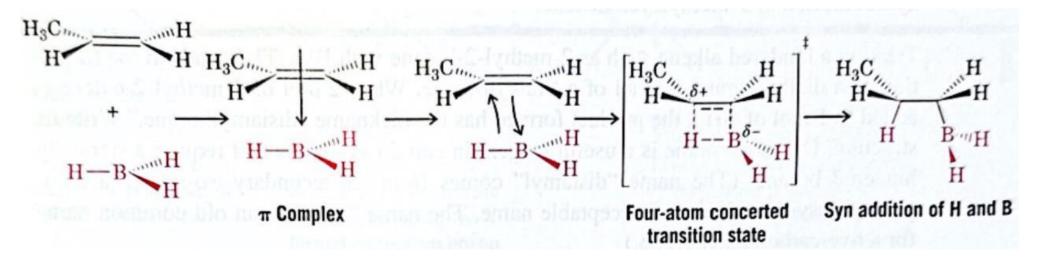
- Regiochemistry is opposite to Markovnikov orientation
 OH is added to carbon with most H's
- H and OH add with syn stereochemistry, to the same face of the alkene (opposite of anti addition),
- STEREOSPECIFIC

HYDROBORATION-OXIDATION

- Borane (BH₃) is electron deficient and is a Lewis acid and Alkene is Lewis base
- Transition state involves anionic development on B
- The components of BH₃ are added across C=C
- More stable carbocation is also consistent with steric preferences

HYDROBORATION-OXIDATION; Mechanism

Step 1: Hydroboration of alkene

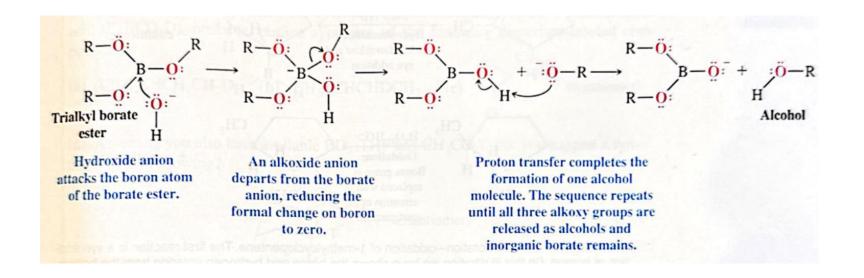

In this first step the addition of the borane to the alkene is initiated and proceeds as a concerted reaction because bond breaking and bond formation occurs at the same time.

More Less substituted substituted carbon carbon
$$H_3CCH=CH_2 \longrightarrow H_3CCH-CH_2 \xrightarrow{H_3CCH=CH_2} H \xrightarrow{H_3CCH-CH_2} H \xrightarrow{H_3CCH_2} H \xrightarrow$$

The boron atom becomes attached to the less substituted carbon atom of the double bond.

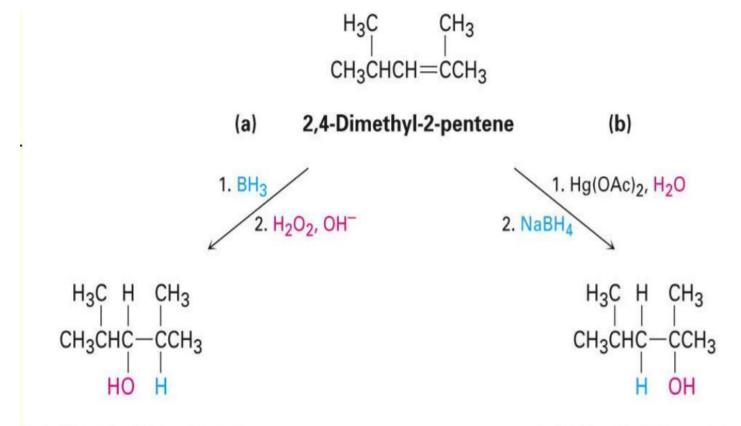
HYDROBORATION-OXIDATION; Mechanism

Both electronic and steric factors account for the anti-markovinkov orientation of the addition.


Step 2: Oxidation and hydrolysis of trialkylborane

$$R_3B \xrightarrow{H_2O_2, \text{ aq. NaOH, 25°C}} 3 R - OH + B(ONa)_3$$

HYDROBORATION-OXIDATION; Mechanism


$$R = B + \vdots \ddot{O} - \ddot{O} - H \longrightarrow \begin{bmatrix} R \\ R - \ddot{B} - \ddot{O} - H \end{bmatrix} \longrightarrow R = \ddot{O} - R + \vdots \ddot{O} - H \xrightarrow{\text{Repeat sequence twice}} R - \ddot{O} - R$$

$$R = B + \vdots \ddot{O} - \ddot{O$$

HYDROBORATION-OXIDATION & OXYMERCURATION

- Hydroboration/oxidation occurs with syn stereochemistry and gives the anti Markovnikov addition product
- Oxymercuration gives the Markovnikov product.

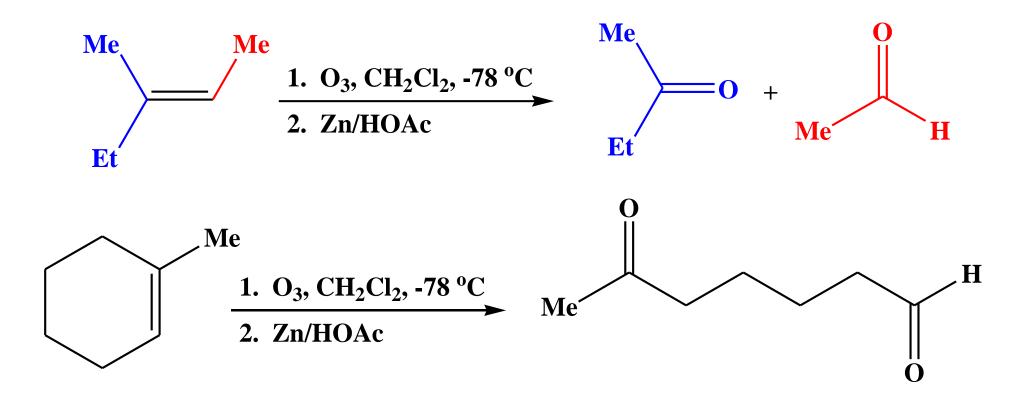
OZONOLYSIS: ALKENE CLEAVAGE

- \circ Ozonolysis is a method of oxidative cleaving alkenes using ozone (O₃).
- The process allows for carbon-carbon double bonds to be replaced by double bonds with oxygen.
- This reaction is often used to identify the structure of unknown alkenes by breaking them down into smaller, more easily identifiable pieces.

MECHANISM

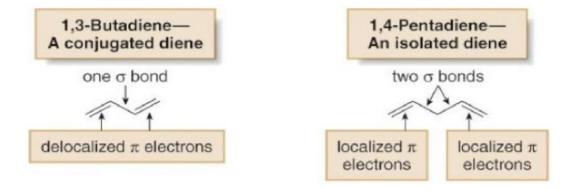
Step 1:

Initial electrophilic addition of ozone to the Carbon-Carbon double bond forming the unstable *molozonide intermediate*, which breaks apart to form a carbonyl and a carbonyl oxide molecule.

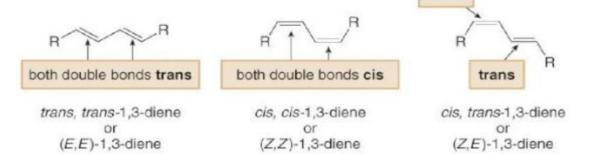

Step 2:

The carbonyl and the carbonyl oxide rearranges and reforms to create the stable ozonide intermediate.

A reductive workup could be performed to convert the ozonide molecule into the desired carbonyl products.

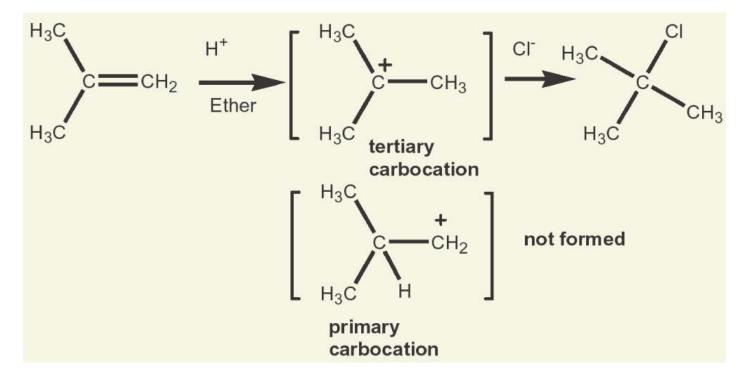

OZONOLYSIS

EXAMPLES

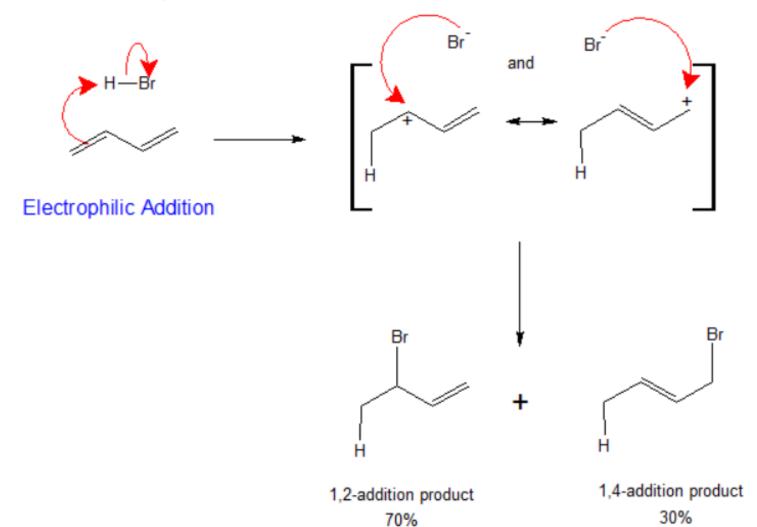


CONJUGATED DIENES

- Compounds have more than one double bond.
- If they are separated by only one single bond they are conjugated.
- The conjugated diene 1,3-butadiene has properties that are very different from those of the nonconjugated diene, 1,5-pentadiene


Three stereoisomers are possible for 1,3-dienes with alkyl groups bonded to each end carbon of the diene.

ALLYLIC CARBOCATIONS


- The allyl carbocation is another example of conjugated system.
- Conjugation stabilizes the allyl carbocation and making it more stable than a normal primary carbocation.
- With conjugated dienes the allylic carbocation intermediately generated has different resonance forms.

CONJUGATED DIENES

EXAMPLE

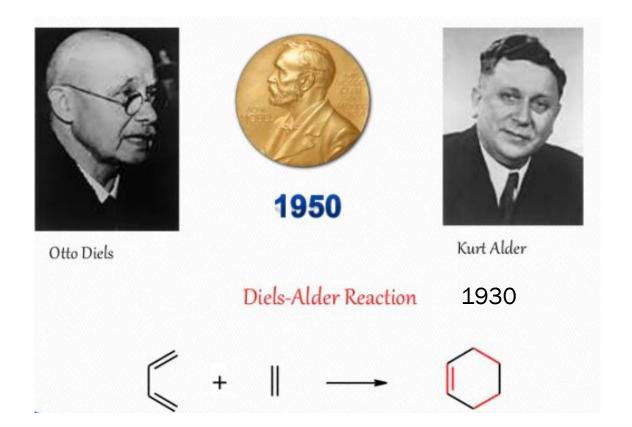
Addition of HBr to 1,3-butadiene: 1,2-addition & 1,4-addition

EXAMPLE

Addition of Br₂ to 1,3-butadiene:

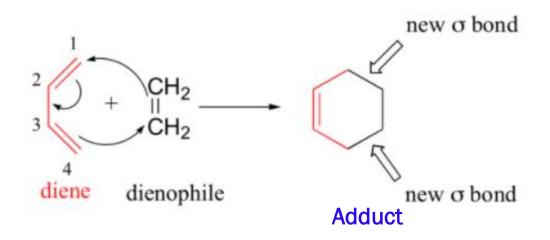
$$H_2C = CH - CH = CH_2$$
 $H_2C = CH - CH = CH_2$
 $1,2$ -addition

 $BrCH_2 - CH - CH = CH_2$
 $3,4$ -dibromo-1-butene


 $1,4$ -addition

 $BrCH_2 - CH = CH - CH_2Br$
 $1,4$ -dibromo-2-butene

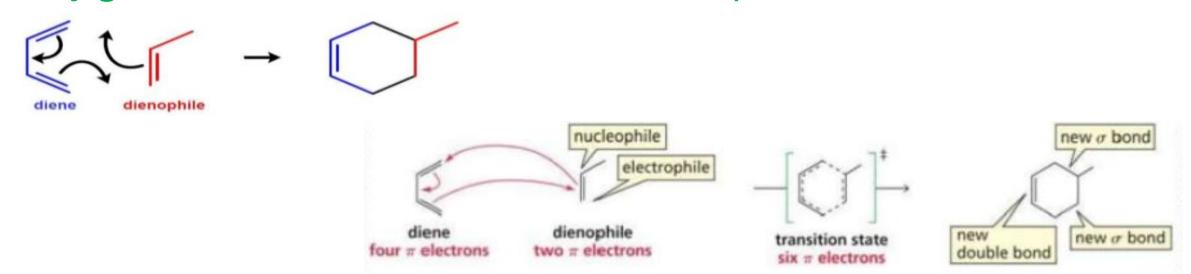
 The 1,2-addition product is favored because its secondary allylic carbocation intermediate is more stable


CYCLOADDITION TO CONJUGATED DIENES: THE DIELS-ALDER REACTION

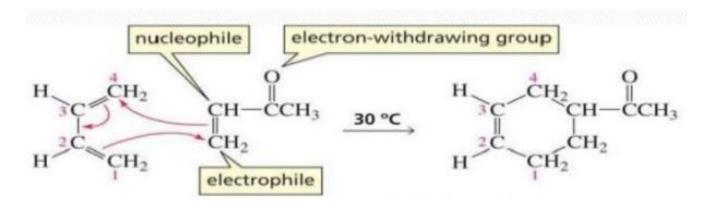
- \circ Polyenes (including dienes) can undergo a variety of pericyclic reactions "the π -electrons rearrange to form new bonds".
- o In a cycloaddition, one π -system is "added across" another π -system (often on a different molecule), creating a ring.

CYCLOADDITION TO CONJUGATED DIENES: THE DIELS-ALDER REACTION

- Diels-Alder reaction is one of the most important pericyclic reaction and is a type of cycloaddition.
 - This is a [4+2] cycloaddition; meaning that one reactant contributes 4π -electrons while the other contributes 2π -electrons.
 - A Diels-Alder reaction must involve a diene and dienophile "alkene (or alkyne)".
 - A Diels-Alder adduct (<u>add</u>ition prod<u>uct</u>) contains formation of cyclohexene ring by addition of the dienophile to the diene.


- The formation of the ring involves *no intermediate* (concerted formation of two bonds)
- Two π -bonds are converted to two sigma-bonds.
- Six-membered ring is formed

CYCLOADDITION TO CONJUGATED DIENES:


MECHANISM

THE DIELS-ALDER REACTION

A conjugated diene reacts with a double-bonded dienophile.

Dienes are electron-rich; dienophiles are electron poor.

$$CH_2 = CH - CCH_3 \longleftrightarrow CH_2 - CH = CCH_3$$
resonance contributors of the dienophile

CYCLOADDITION TO CONJUGATED DIENES: THE DIELS-ALDER REACTION

MECHANISM

 Reaction is facilitated by a combination of electron-withdrawing substituents on one reactant and electron-releasing substituents on the other.