King Saud University

College of Engineering
IE - 341: "Human Factors"

Spring - 2016 (2 ${ }^{\text {nd }}$ Sem. 1436-7H)
 Visual Displays of Dynamic Information (Chapter5)

Lesson Overview

- Uses of Dyna mic Information
- Qua ntitative Visual Displays
- Qualitative Visual Displays

Uses of Dynamic Information

- Dynamic information: i.e. changing info;e.g:
o Natural phenomena (e.g. temperature, pressure)
o Vehicle speed
o Traffic lights
o Frequency, intensity of sounds, etc.
- Dynamic displays:
o Displaysused to display dynamic information
o Types of dyna mic displays, type of info. presented:
- Quantitative: precise numeric value of some variable (e.g. "pressure is 125 psi")
- Qualitative: approximate value/rate of change/change in direction (e.g. "pressure is inc reasing")
- Status/ check: determines if readings are normal (e.g. "pressure is nomal")
- Representationall: situa tion a wa reness; e.g. radar display predicts where plane will be in 5 or 10 minutes

Quantitative Visual Displays

- Types of variables in QVD's:
o Changing/dynamic variables(e.g. temp., pressure)
o Static variables(rare): length, weight of objects
- Basic Design of Quantitative Displays
o Mechanic al displays (see next slide)
- Fixed scale with moving pointer (analog): a-e
- Moving scale with fixed pointer (analog): f-i
- Digital display: j
- Electronic displays (see slide 6)
- Analog scales: k,l
- Digital scale: m

Mechanical

Displays

1. Analog Displays

2. Digital Display
 $2 \sqrt{79 / 4 / 3}$

FIXED SCALE, MOVING POINTER

Increase

Decrease
(o) Cricular scales

(b) Circular scale with positive and negative values

(c) Semicircular or curved scale

(d) Vertical scale

(e) Horizontal scole

MOVING SCALE, FIXED POINTER

(g) Open-window scales

(h) Vertical scale

(1) Horizontal
scale

Electronic

Displays

1. Analog Displays

(k) Circular

(/) Horizontal
2. Digital

Display

(m) Digital

Cont. Quantitative Visual Displays

Comparison of Different Designs (Stud ies)

- Digital displays preferred vs. a nalog when:

1. a precise numeric (quantitative) value is required
2. values shown rema in visible long enough to be read (i.e. not continuously changing)

- Analog displays preferred vs. digital when:
o fixed-scale moving-pointerdisplays: useful when the values change frequently / continuously \Rightarrow limited time in reading values if digital displays were used
o when important to know direction or rate of value change (qualitative reading)

Cont. Quantitative Visual Displays Cont Comparison of Different Designs

- Fixed scale w/ moving pointervs. moving scale w/ fixed pointer

1. Generally: fixed scale is preferred vs. moving scale
2. If numerical increase is related to a nother natural interpretation (e.g. more orless, up and down):

- easier to interpret straight line (horizo ntal or vertic al sc a les) or themometerscale with a moving pointer
- pointer position relative to zero/null adds value

3. Don't mix different types of pointer-sc ale indic ators when used for related functions

- this avoids reversal errors in reading

4. Direction of motion of moving element is clearer if manual control moves pointer (rather than scale)
5. For slight variable movements/changes in quantity \Rightarrow more clear if a moving pointer is used

Cont. Quantitative Visual Displays
 Cont Comparison of Different Designs

- Moving scale w/ fixed pointervs.
fixed scale w/ moving pointer

1. Moving scale preferred (due to small panel space) when range of values: too great to show on small scale; e.g.:

- moving rectangularopen-window scales
- moving horizontal and vertical scales

2. Also when a numerical value is needed to be readily available, a moving scale appearing in an open window can be read more quickly (which?)

- Circ ular/Semic irc. sc a les vs. vertic al/horizo ntal
o Circular/Semicirc. Scales generally preferred (a, b, c)
o Vertical/horizontal preferred (d,e) when relating to null or viewing more/less, up/down (see slide 8)

Cont. Quantitative Visual Displays: Basic Features of Quantitative Displays

- Scale range:
o Numerical difference bet. highest \& lowest values on scale
- Numbered interval:
o Numericaldifference bet. adjacent \#'s on scale
- Graduation interval:
o Numericaldifference bet. smallest scale markers
- Scale unit
o Smallest unit to which scale is to be read (note, not necessarily = graduation interval)

Cont. Quantitative Visual Displays Specific Features of Conventional Quant Displays

- Ability of people to make visual disc riminations in QVD's is influenced by the following spec ific features:

1. Numeric Progressions of Scales
2. Length of Scale Unit
3. Design of Scale Markers
4. Scale Markers and Intepolation
5. Design of Pointers
6. Combining Scale Features
7. Scale Size and Viewing Distance

- Note, above features disc ussed here for mechanical scales, yet much of this applies also to electronic displays

Cont. Quantitative Visual Displays Spec ific Features of Conventional Quant Displays

1. Numeric Progressions of Scales

- Every quantitative scale has numeric progression system, inc luding
o Graduation interval: bet. adjacent markers
o Numbered interval: major scale markers
- Numberprogressions:
o Progression by $1 \mathrm{~s}(0,1,2,3, \ldots)$ is easiest to use:
- Major markers: 0,10,20,30,....,
- with intermediate markers: 5,15,25,35,....,
- with minor markers at individual numbers
- Progression by 5 is also satisfactory
o Progression by 25 is moderate.
- Decimals make scales more diffic ult to use:
o If used, zero before decimal should be omitted
- Unusual progressions (3s, 8s etc): a void

Cont. Quantitative Visual Displays Spec ific Features of Conventional Quant Displays

2. Length of Scale Unit

Defn: length on scale representing smallest numeric value to which the scale is to be read
o e.g. force is to be measured to nearest 10 Newtons,

- On scale: 10 N is to correspond to 1.3 mm
o \Rightarrow length of scale unit $=1.3 \mathrm{~mm}$
- length of scale unit should allow distinctions between values with optimum relia bility in terms of human sensory \& perc eptual skills:
o research suggests values between: 1.3-1.8 mm
o Larger values are needed when instruments are used in non-ideal conditions
- e.g. low vision, poor illumination, limited time, etc)

Cont. Quantitative Visual Displays Spec ific Features of Conventional Quant Displays

2. Cont Length of Scale Unit

- recom. format for quantitative scale given length of scale unit (?), graduation markers

Basic sketches, measurements in inches (parenthsiical values in centimeters)

Actual size

$|1111| \ldots 1 \mid$

|III\|II|
(a) Normal viewing condition
(b) Low illumination

Cont. Quantitative Visual Displays Specific Features of Conventional Quant Displays

3. Design of Scale Markers

- recommended to include a scale markerforeach scale unit to be read
- Conventional progression scheme (last slide), based on:
o Majormarkers: 1, 10, 100, etc.
o minor markers: 0.1, 1, 10, etc. (example?)

4. Scale Markers and Interpolation

- If scales: much compressed (>last slide) \Rightarrow scale markers: crowded \Rightarrow reading accuracy \downarrow
o Such case: use a scale requiring interpolation
o Interpolation: estimation of values between markers
- For high accuracy reading of scale:
o markershould be placed at every scale unit
o Requires: a largerscale or a closerviewing distance

Cont. Quantitative Visual Displays Specific Features of Conventional Quant. Displays

5. Design of Pointers

- Recommendations for pointer design:
o pointed pointers (tip angle of about 20°)
o have the pointertip meet, but not overlap, the smallest scale markers
o have the color of the pointer extend from the tip to the center of the scale
o have the pointerclose to the surface of the scale to avoid parallax (see below)

Cont. Quantitative Visual Displays Specific Features of Conventional Quant. Displays

6. Combining Scale Features

- mentioned features of quantitative scales: are integrated into relatively standard formats
o e.g. slide 14: used for circular, semi-circular scales
- Note, above features: only general (non-rigid) guidelines
- e.g.'s of poor scale designs:
- Ampere scale:
- Shortness of scale units
- Inadequate intermediate markers
o Kilowatt scale (left):
- Name 5 corrections?

Cont. Quantitative Visual Displays Specific Features of Conventional Quant. Displays

7. Scale Size and Viewing Distance

- previous guidelines: for normal viewing dista nce: 28 in. (71cm)
- If display viewed from farther distances \Rightarrow
o featureshave to be enlarged to maintain the same visual angle (VA) at the eye
- To maintain same VA for any viewing distance x: use this formula to find properdimension :
o Dimension at x [in] =
Dimension @ 28 in * (x [iin] / 28)
o Example: find @ 100 cm from scale (viewed in normal viewing conditions):
- Minimum length of scale unit
- VA
- Minimum Snellen ac uity required to read scale

Qualitative Visual Displays

- Objective of displays used for qualitative info:
o Approx. value of continuously changing variable
- e.g. pressure, temperature, speed, etc.
o Rate of change/change in direction of variable
- Quantitative basis of Qualitative Reading

1. Determining status/ c ondition of variable in terms of specific predetermined range(s)

- e.g. gauge of engine: cold, nomal, or hot

2. Maintain a desirable range of approximate values

- e.g. speed range between 50-55 mph (80-88 kmh)

3. Observing trends/rates of change

- e.g. a implane a scending or descending; or N, S, E, W

Cont. Qualitative Visual Displays Cont. Quant Basis of Qualitative Reading
o Note, sc a les best a pplic a ble for qua nt. ta sk not necessa rily best a pplicable for qualit. task (below)
o Can you a nalyze table below?

TABLE 5-1
 TIMES FOR QUALITATIVE AND QUANTITATIVE READINGS WITH THREE TYPES OF SCALES

- Average reading time, s

Type of scale
Qualitative
Quantitative
Open-window
Circular
Vertical
115
102
107
113
101
118

Cont. Qualitative Visual Displays Design of Qualitative Scales

- Values: sliced into limited number of ranges
- Coding forranges/readings on qualit. scales:

1. Color codes for ranges (right)
2. Shape coding for specific ranges of values

- advise: take advantage of natural compatible associations people have bet. coding features and intended meanings

Cont. Qualitative Visual Displays Cont Design of Qualitative Scales

2. Cont. Shape coding

o Experiment conducted:

- Purpose: determine best association between shapes and meaning of different military plane readings
- 140 subjects
- 7 shapes vs. 7 meanings
- \%ge correct responses shown in ()

Caution (56\%)
(c)

Mixture-lean (54\%)
(d)

Mixture-rich (66\%)

Danger-upper limit (74\%) Danger-lower limit (32\%) (f)

Dangerous vibration (88\%)
(g)

Cont. Qualitative Visual Displays
 Cont Design of Qualitative Scales

- Use of strictly Qua ntita tive displays:
o involves identifying quantitative value, and
o involvesassigning value read to one of possible ranges of values that represent the categories
- Use of strictly Qua lita tive displays
o directly conveys meaning of display indic ator
- Use of Quantita tive + Qualitative displays:
o Indicate trend, direction, rate of change (qualit.)
o Indic ate also: quant. reading (if values included)
o Examples:
- Last slide
- Carspeed gauge (numbers + indic ation at 120 kmh)
- Other examples?

Cont. Qualitative Visual Displays

Check Reading

- instrument that checks if reading is nomal
- this is achieved using quant. scale
- normal condition is represented by an exact orvery narrow values (not range)
o e.g. to determine if voltage is $\sim 110 \mathrm{~V}$ or $\sim 220 \mathrm{~V}$
- requirescaution to display normal reading clearly
- research suggests nomal reading should be aligned (forcircularscales) at:
o 9o'clock position (next slide)
- 12 o'clock position (also acceptable)

Cont. Qualitative Visual Displays

Cont Check Reading

- when several check reading devices used \Rightarrow deviant device should stand out (see below)
- "gestalt": human tendency to perceive complex configuration as complete entity
$0 \Rightarrow$ odd entity becomes immediately clear
- e.g.below: lines between dialsadds to "gestalt"
- lower configuration also acceptable (lessclear)

Cont. Qualitative Visual Displays

Status Indic ators

- Qualita tive info. can indic ate sta tus of system
o e.g. check reading: nomal or abnomal
- e.g. automobile themometer. cold/normal/hot
- status indicators: show -only- separate, disc rete conditions(comp. to check reading)
o e.g.on/off
o e.g. traffic lights: stop/caution/go
- Note, scales that show only check reading can be converted to statusindicators
- Common uses:
o light indicators (varying color, position)
- e.g. traffic lights: red (top), yellow (middle), green (bot.)
o also used with stove controls (on/off)

Cont. Qualitative Visual Displays Signal and Waming Lights

- Fla shing/steady state lights used for:
- Waming (e.g. highways)
o Identification (e.g. aircrafts at night)
o Navigation aids, beacons
- Attracting attention (e.g. on instrument panel)
- Factors affecting detecta bility of lights

1. Size, Luminance, and Exposure time
2. Color of Lights
3. Flash Rate of Lights

Cont. Qualitative Visual Displays Cont Signal and Waming Lights

1. Size, Luminance, and Exposure Time

- Detecting fla shing light depends on combinon: size, luminance, exposure time
- assize of light \uparrow and/or asexposure time $\uparrow \Rightarrow$ luminance required to just detect light \downarrow
o "just detect": can be detected 50% of the time (i.e. luminance threshold)
o foroperational use:
- luminance should be at least double these to be detected 99% of the time

Cont. Qualitative Visual Displays

Cont Signal and Waming Lights

2. Color of Lights

- background color+ambient illumination \Rightarrow
o influence ability of people to detect and respond to lights of different colors
- With good signal brightness contrast + dark background
- color has minimal importance in attracting attention
- With low signal-to-background brightness contrast:
o red signal is recommended,
- followed by green, yellow, and white

Cont. Qualitative Visual Displays
 Cont Signal and Waming Lights

3. Fash Rate of Lights

- flash rate should be «30 times/sec
- $\geq 30 \Rightarrow$ light a ppears steady \Rightarrow "flic ker-fusion"
- Recommended to attract attention, use:
- flash rates of about 3-10 per second
o duration of at least 0.05 s
- Recommended for highways and flyways, use:
- 60-120 fla shes per minute (1-2 per second)
- Varying flashing lights
- mostly: single/fixed fla shing light used
- some applications: lights with different fla sh rates
- e.g. tail lights showing rate of deceleration: carbrakes
- Keep in mind: humanscan differentiate -maximum of- three different flash rates clearly (remember: J ND ?)

References

o Human Factors in Engineering and Design. Mark S. Sanders, Emest J. McCormick. 7th Ed. Mc Graw: New York, 1993. ISBN: 0-07-112826-3.
o Slides by: Dr. Khaled Al-Saleh; online at http://faculty.ksu.edu.sa/alsaleh/default.aspx

