MECHANICS OF METAL CUTTING

Topics to be covered

- □ Tool terminologies and geometry
- ☐ Orthogonal Vs Oblique cutting
- □ Turning Forces
- □ Velocity diagram
- Merchants Circle
- □ Power & Energies

Need for calculating forces, velocities and angles during machining??

- We need to determine the cutting forces in turning for Estimation of cutting power consumption, which also enables selection of the power source(s) during design of the machine tools.
- Structural design of the machine fixture tool system.
- Evaluation of role of the various machining parameters (tool material and geometry) on cutting forces to make machining process more efficient and economical.
- Condition monitoring of the cutting tools and machine tools.

Heat Generation Zones

Tool Terminology

Cutting Geometry

Material Removal Rate

$$MRR = vfd$$

Roughing(R)

$$f = 0.4 - 1.25 mm / rev$$

$$d = 2.5 - 20mm$$

Finishing(F)

$$f = 0.125 - 0.4 mm / rev$$

$$d = 0.75 - 2.0$$
mm

$$v_R << v_F$$

METAL CUTTING

Metal Cutting is the process of removing unwanted material from the workpiece in the form of chips

ORTHOGONAL CUTTING

- >Cutting Edge is normal to tool feed.
- ➤ Here only two force components are considered i.e. cutting force and thrust force. Hence known as two dimensional cutting.
- >Shear force acts on smaller area.

OBLIQUE CUTTING

- Cutting Edge is inclined at an acute angle to tool feed.
- ➤ Here only three force components are considered i.e. cutting force, radial force and thrust force. Hence known as three dimensional cutting.
- >Shear force acts on larger area.

Assumptions (Orthogonal Cutting Model)

- The cutting edge is a straight line extending perpendicular to the direction of motion, and it generates a plane surface as the work moves past it.
- ☐ The tool is perfectly sharp (no contact along the clearance face).
- ☐ The shearing surface is a plane extending upward from the cutting edge.
- ☐ The chip does not flow to either side
- ☐ The depth of cut/chip thickness is constant uniform relative velocity between work and tool
- Continuous chip, no built-up-edge (BUE)

TERMINOLOGY

TERMINOLOGY

≽α: Rack angle

>β: Frictional angle

≽φ: Shear angle

>F_t: Thrust Force

F_c: Cutting Force

泽_s: Shear Force

>F_n: Normal Shear Force

汗: Frictional Force

>N: Normal Frictional Force

>V: Feed velocity

Wc: Chip velocity

Ws: Shear velocity

Forces For Orthogonal Model

Orthogonal Cutting Model (Simple 2D mechanistic model) Chip thickness t c Velocity V Rake Angle tool Chip depth of cut Clearance Angle Shear Angle Workpiece

Mechanism: Chips produced by the shearing process along the shear plane

Orthogonal Cutting

$$r = \frac{t_o}{t_c} = \frac{l_s \sin \phi}{l_s \cos(\phi - \alpha)}$$

$$\tan \phi = \frac{r \cos \alpha}{1 - r \sin \alpha}$$

$$\gamma = \frac{AC}{BD} = \frac{AD + DC}{BD} = \tan(\phi - \alpha) + \cot \phi$$

As
$$Sin\phi = \frac{t_o}{AB}$$
 and $Cos(\phi-\alpha) = \frac{t_c}{AB}$

Chip thickness ratio (r) =
$$\frac{\mathbf{t}_0}{\mathbf{t}_c} = \frac{\sin \phi}{\cos(\phi - \alpha)}$$

Experimental Determination of Cutting Ratio

Shear angle ϕ may be obtained either from photo-micrographs or assume volume continuity (no chip density change):

Since $t_0 \mathbf{w}_0 \mathbf{L}_0 = t_c \mathbf{w}_c \mathbf{L}_c$ and $\mathbf{w}_0 = \mathbf{w}_c$ (exp. evidence)

Cutting ratio ,
$$\mathbf{r} = \frac{\mathbf{t}_0}{\mathbf{t_c}} = \frac{\mathbf{L}_c}{\mathbf{L}_0}$$

i.e. Measure length of chips (easier than thickness)

Shear Plane Length and Angle ϕ

Workpiece

Shear plane length AB =
$$\frac{t_0}{\sin\phi}$$

Shear plane angle $(\phi) = Tan^{-1} \left[\frac{rcos\alpha}{1-rsin\alpha} \right]$

or make an assumption, such as ϕ adjusts to minimize cutting force: $\phi = 45^0 + \alpha/2 - \beta/2$ (Merchant)

From mass continuity: $Vt_0 = V_c t_c$

$$V_c = Vr$$
 and $V_c = V \frac{\sin \phi}{\cos (\phi - \alpha)}$

From the Velocity diagram:

$$V_s = V \frac{\cos \alpha}{\cos(\phi - \alpha)}$$

(2D Orthogonal Cutting)

Generally we know: Tool geometry & type Workpiece material

and we wish to know:

F = Cutting Force

 $F_c = Thrust Force$

 F_t = Friction Force

N' = Normal Force

 F_s = Shear Force

 $F_n = Force Normal$

to Shear

Free Body Diagram

(2D Orthogonal Cutting)

- \star F_s , Resistance to shear of the metal in forming the chip. It acts along the shear plane.
- $\star F_n$, 'Backing up' force on the chip provided by the workpiece. Acts normal to the shear plane.
- ❖ N, It at the tool chip interface normal to the cutting face of the tool and is provided by the tool.
- ❖ F, It is the frictional resistance of the tool acting on the chip. It acts downward against the motion of the chip as it glides upwards along the tool face.

CONSTRUCTION OF MERCHANT'S CIRCLE

Knowing F_c , F_t , α and ϕ , all other component forces can be calculated.

Force Circle Diagram

(Merchants Circle)

- Forces considered in orthogonal cutting include
 - Cutting, friction (tool face), and shear forces
- Cutting force, F_c acts in the direction of the cutting speed V, and supplies the energy required for cutting
 - Ratio of F_c to cross-sectional area being cut (i.e. product of width and depth of cut, t_0) is called: specific cutting force
- Thrust force, F_t acts in a direction normal to the cutting force
- These two forces produces the resultant force, R
- On tool face, resultant force can be resolved into:
 - Friction force, F along the tool-chip interface
 - Normal force, N to ⊥ to friction force

It can also be shown that (β is friction angle)

$$F = R \sin \beta \Rightarrow N = R \cos \beta$$

- Resultant force, R is balanced by an equal and opposite force along the shear plane
- It is resolved into shear force, F_s and normal force, F_n
- Thus, $F_s = F_c \cos \phi F_t \sin \phi$ $F_n = F_c \sin \phi + F_t \cos \phi$
- The magnitude of coefficient of friction, μ is

$$\mu = \frac{F}{N} = \frac{F_t + F_c \tan \alpha}{F_c - F_t \tan \alpha}$$

- The toolholder, work-holding devices, and machine tool must be stiff to support thrust force with minimal deflections
 - If F_t is too high \Rightarrow tool will be pushed away from workpiece
 - this will reduce depth of cut and dimensional accuracy
- The effect of rake angle and friction angle on the direction of thrust force is

$$F_t = R\sin(\beta - \alpha)$$

- Magnitude of the cutting force, F_c is always positive as the force that supplies the work is required in cutting
- However, F_t can be +ve or -ve; i.e. F_t can be upward with a) high rake angle, b) low tool-chip friction, or c) both

Forces from Merchant's Circle

```
Friction Force F = F_c \sin \alpha + F_t \cos \alpha
```

Normal Force
$$N = F_c \cos \alpha - F_t \sin \alpha$$

$$\mu = F/N$$
 and $\mu = tan\beta$ (typically 0.5 - 2.0)

Shear Force $F_s = F_c \cos \phi - F_t \sin \phi$

Force Normal to Shear plane $F_n = F_c \sin \phi + F_t \cos \phi$

$$R = \sqrt{F_c^2 + F_t^2} = \sqrt{F_s^2 + F_n^2} = \sqrt{F^2 + N^2}$$

Stresses

On the Shear plane:

Normal Stress =
$$\sigma_s$$
 = Normal Force / Area = $\frac{F_n}{AB w}$ = $\frac{F_n sin \phi}{t_o w}$

$$Shear \ Stress = \tau_s = Shear \ Force \ / \ Area = \frac{F_s}{AB \ w} = \frac{F_s sin \phi}{t_o w}$$

On the tool rake face:

$$\sigma = Normal Force / Area = \frac{N}{t_c w}$$
 (often assume $t_c = contact length)$

$$\tau = Shear Force / Area = \frac{F}{t_c w}$$

Power

 Power (or energy consumed per unit time) is the product of force and velocity. Power at the cutting spindle:

Cutting Power
$$P_c = F_cV$$

 Power is dissipated mainly in the shear zone and on the rake face:

Power for Shearing
$$P_s = F_sV_s$$

Friction Power $P_f = FV_c$

•Actual Motor Power requirements will depend on machine efficiency E (%):

Motor Power Required
$$= \frac{P_c}{E} \times 100$$

Material Removal Rate (MRR)

Material Removal Rate (MRR) = $\frac{\text{Volume Removed}}{\text{Time}}$

Volume Removed = Lwt_0

Time to move a distance L = L/V

Therefore,
$$MRR = \frac{Lwt_o}{L/V} = Vwt_o$$

MRR = Cutting velocity x width of cut x depth of cut

Specific Cutting Energy

(or Unit Power)

Energy required to remove a unit volume of material (often quoted as a function of workpiece material, tool and process:

$$U_t = \frac{Energy}{Volume\ Removed} = \frac{Energy\ per\ unit\ time}{Volume\ Removed\ per\ unit\ time}$$

$$U_{t} = \frac{Cutting \ Power \ (P_{c})}{Material \ Removal \ Rate \ (MRR)} = \frac{F_{c}V}{Vwt_{o}} = \frac{F_{c}}{wt_{o}}$$

Specific Energy for shearing
$$U_s = \frac{F_s V_s}{Vwt_o}$$

Specific Energy for friction
$$U_f = \frac{FV_c}{Vwt_o} = \frac{Fr}{wt_o} = \frac{F}{wt_c} = \tau$$

Specific Cutting Energy

Decomposition

- 1. Shear Energy/unit volume (Us) (required for deformation in shear zone)
- 2. Friction Energy/unit volume (Uf) (expended as chip slides along rake face)
- 3. Chip curl energy/unit volume (Uc) (expended in curling the chip)
- 4. Kinetic Energy/unit volume (Um) (required to accelerate chip)

$$\mathbf{U_t} = \mathbf{U_s} + \mathbf{U_f} + \mathbf{U_c} + \mathbf{U_m}$$

Cutting Forces and Power measurement

Measuring Cutting Forces and Power

- Cutting forces can be measured using a force transducer, a dynamometer or a load cell mounted on the cutting-tool holder
- It is also possible to calculate the cutting force from the power consumption during cutting (provided mechanical efficiency of the tool can be determined)
- The *specific energy* (*u*) in cutting can be used to calculate cutting forces

Cutting Forces and Power

Power

- Prediction of forces is based largely on experimental data (right)
- Wide ranges of values is due to differences in material strengths
- Sharpness of the tool tip also influences forces and power
- Duller tools require higher forces and power

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by 1.25)

Material	Specific energy W·s/mm ³
Cast irons	1.1-5.4
Copper alloys	1.4-3.2
High-temperature alloys	3.2-8
Magnesium alloys	0.3-0.6
Nickel alloys	4.8-6.7
Refractory alloys	3–9
Stainless steels	2–5
Steels	2–9
Titanium alloys	2–5