Manufacturing Engineering Technology in SI Units, 6th Edition

Chapter 25:

Machining Centers, Machine Tool Structures and Machining

Economics

Chapter Outline

- □ <u>Introduction</u>
- Machining Centers
- Machine-tool Structures
- <u>Vibration and Chatter in Machining Operations</u>
- High-speed Machining
- Hard Machining
- Ultraprecision Machining
- Machining Economics

- Limitations of machining/material removal operations:
- Wasted material (although may be small)
- Longer time (vs. forming/shaping): cutting/non-cutting
- 3. Require more energy (vs. forming/shaping)
- 4. Adverse effects on surface quality / properties of product
- Importance of machining (despite above):
- Producing complex workpiece shapes (e.g. internal features)
- 2. High dimensional accuracy / surface finish

- Costs/factors involved with machining:
- Machine tools, work-holding devices, fixtures and cutting tools
- Labor and overhead
- Setting up time (machine for operation)
- 4. Material handling and movement (e.g. loading blank, unloading machine part)
- 5. Gaging for dimensional accuracy and surface finish
- 6. Cutting times and non-cutting time

Minimizing Machining Cost per Piece

- Important in all manufacturing processes to minimize:
 - Machining cost per piece, C_p
 - Machining *time* per piece, T_p
- Various approaches exist (using software)
- Important: input data must be accurate and up to date to be reliable
- We show here simple/popular method of analyzing machining cost in turning operation

Cont. Minimizing Machining Cost per Piece

Total machining cost per piece, C_p , in turning is

$$C_p = C_m + C_s + C_l + C_t$$

 $C_m = Machining cost$

 C_s = Cost of setting up for machining—including mounting the cutter, setting up fixtures, and preparing the machine tool for the operation

 C_I = Cost of loading, unloading, and machine handling

C_t = Tooling cost, often only about 5% of the total cutting operation. Consequently, using the least expensive tool is not always an effective way of reducing machining costs

 Following slides: discuss each of these costs in more detail

Cont. Minimizing Machining Cost per Piece

$$C_p = C_m + C_s + C_l + C_t$$

Machining cost per piece, C_m , is given by:

$$C_m = T_m \big(L_m + B_m \big)$$

- \blacksquare T_m : machining time per piece
- $lue{L}_m$: labor cost of production personnel per hour
- \blacksquare B_m : burden rate (aka overhead charge), including:
 - Depreciation
 - Maintenance
 - Indirect labor, etc.
- The **setup cost**, C_s , is fixed amount (in \$) per piece

Cont. Minimizing Machining Cost per Piece

$$C_p = C_m + C_s + C_l + C_t$$

Loading/unloading, machine-handling **cost**, C_l , per piece:

$$C_l = T_l \big(L_m + B_m \big)$$

- \blacksquare T_l : time required to,
 - load/unload part
 - change speeds
 - change feed rates, etc.
- \Box L_m and B_m : see last slide

Cont. Minimizing Machining Cost per Piece

$$C_p = C_m + C_s + C_l + C_t$$

 \Box The **tooling cost**, C_t , per piece:

$$C_t = \frac{1}{N_i} \left[T_c (L_m + B_m) + D_i \right] + \frac{1}{N_f} \left[T_i (L_m + B_m) \right]$$

- $lue{N}_i$: numbered of parts machined per insert
- \square N_f : numbered of parts that can produced per insert face
- T_c : time required to change the insert
- T_i : time required to index the insert
- D_i : depreciation of insert (in \$)

Cont. Minimizing Machining Cost per Piece

The time required to produce one part is

$$T_p = T_l + T_m + \frac{T_c}{N_i} + \frac{T_i}{N_f}$$

- T_m : calculated for each particular operation
- Example: for turning:

Example: for turning:
$$T_m = \frac{L}{fN} = \frac{\pi LD}{fV}$$

• L: length of cut

- f: feed
- N: angular speed (rpm) of the workpiece
- D: workpiece diameter
- V: cutting speed (note, appropriate units must be used)

Cont. Minimizing Machining Cost per Piece

- From the Taylor tool-life equation,
- $T = \left(\frac{C}{V}\right)^{1/N}$
- *T*: time (*min*) to reach a certain flank wear (before regrinding/changing insert)
- The number of pieces per insert face:
- Number of pieces per insert:

 $N_i = mN_f = \frac{mT}{T_m}$

- m: number of faces actually used
 - Note, *m*: not necessarily number of faces per insert
 - Reason: not all faces are used before insert is discarded
- \square Combining T and T_m in N_i :

$$N_i = \frac{mfC^{1/m}}{\pi LDV^{(1/n)-1}}$$

Cont. Minimizing Machining Cost per Piece

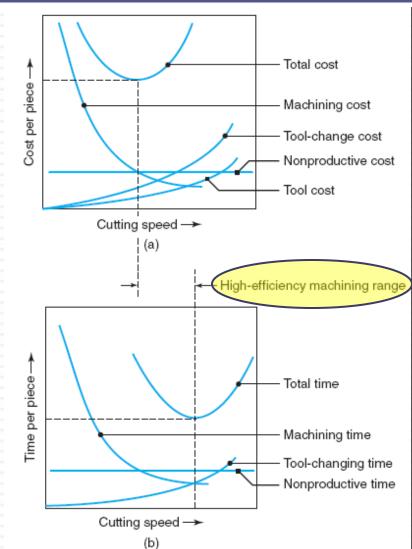
- \square We now seek to determine optimum $V(V_o)$ and $T(T_o)$
- \square First we find V_o and T_o for **min. cost**, C_p
- \square We differentiate C_p with respect to V and set it to zero,

$$\Rightarrow V_0 = \frac{\frac{\partial C_p}{\partial V} = 0}{\left(\frac{1}{n} - 1\right)^n \left\{\frac{1}{m} \left[T_c \left(L_m + B_m\right) + D_i\right] + T_i \left(L_m + B_m\right)\right\}^n}$$

$$T_0 = \left(\frac{1}{n} - 1\right) \frac{1}{m} \left[T_c \left(L_m + B_m\right) + D_i\right] + T_i \left(L_m + B_m\right)}{L_m + R_m}$$

Cont. Minimizing Machining Cost per Piece

- \square Again we seek to determine optimum $V(V_o)$ and $T(T_o)$
- \square Now we find V_o and T_o for max. prodon, i.e. min. T_p
- \square We differentiate T_p with respect to V and set it to zero,


$$\frac{\partial T_p}{\partial V} = 0$$

$$\Rightarrow V_0 = \frac{C}{\left[\left(\frac{1}{n} - 1 \right) \left(\frac{T_c}{m} + T_i \right) \right]^n}$$

$$T_0 = \left(\frac{1}{n} - 1\right) \left(\frac{T_c}{m} + T_i\right)$$

Cont. Minimizing C_p per Piece

- \square Qualitative plot of C_p /piece
 - Note, C_p also depends on req. surface finish: better S.F. \Rightarrow higher C_p
 - Note, $V_o = V @ C_{p,min}$
- Qualitative plot of T_p /piece
 (i.e. production rate)
 - Note, $V_o = V @ T_{p,min}$
 - Range bet. Two V_o 's is: "high-efficiency machining range"

Cont. Minimizing Machining Cost per Piece

- Final notes
 - Important to have accurate data, since small changes in V greatly affect $C_{p,min}$ and $T_{p,min}$ (see last slide)
 - Previous analysis can be done for all manufacturing processes:
 - E.g. Cost/part in sand casting uses
 - E.g. Cost/part in powder metallurgy, etc.