
Relationship Between Biofilm Formation and Antimicrobial
Resistance in Gram-Negative Bacteria
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Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings.
The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health
problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a
mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and
biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found
between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed,
gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazo-
bactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no
relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition,
compared with other reported data, the isolates in the present study showed higher rates of antimicrobial
resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance
biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not
show a trend to being greater biofilm producers than non-multiresistant isolates.
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Introduction

The rise in the emergence and spread of antimicrobial
resistance among the different microorganisms (bacteria,

fungi, virus, and parasites) is one of the most important health
problems worldwide today. Resistance to antibiotics is in-
creasing at both community and hospital levels, being espe-
cially relevant in hospital settings, in which strong selective
pressure favors the selection, persistence, and maintenance of
resistant, multidrug-resistant (MDR) and even pan-resistant
strains (resistant to all the current groups of antibiotics for
therapeutic use) causing antibiotic treatment failure, increased
mortality, and morbidity, and having a significant impact on the
cost of medical treatment and prevention of bacterial infectious
diseases.1,2 It has been estimated that the annual cost due to
antimicrobial-resistant Staphylococcus aureus infections is
about $4.6 billion only in the United States of America.3

Bacterial resistance to antibiotics is primarily the con-
sequence of a variety of phenomena such as alteration of
the target of the drug, impermeability of the bacteria to the

antibiotic, and genetically associated changes (mutational
events, genetic transfer of resistance genes through plas-
mids, and mutations of target genes).4 However, this is not
the only reason for antimicrobial treatment failure. In fact,
the ability to form communities called biofilms embedded in
an exopolysaccharide matrix is one of the mechanisms of
resistance used by bacteria to survive in the presence of an
antibiotic.5 In this state, bacteria can be up to 1,000-fold
more resistant to antibiotics than those in a planktonic
state.6–8 Several studies recommend combined antibiotic
therapy as the treatment of choice in biofilm-associated in-
fections caused by Gram-negative bacteria, with macrolides
(erythromycin, clarithromycin, and azithromycin) being the
main antibiotics chosen due to their high antibiofilm activ-
ity in vitro and in vivo.9 However, antibiotic treatment of
biofilm-associated infections requires further study, since
the selection of a specific treatment is difficult because of
the wide variability of the microorganisms involved.

Several studies have demonstrated that low doses of cer-
tain antibiotics can induce biofilm formation indicating that
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biofilm regulation includes the presence of antibiotics.
However, the correlation between biofilm formation and
antibiotic resistance is currently unclear and remains under
investigation.10,11

Previous studies carried out in our laboratory showed a
relationship between the acquisition of resistance (specifi-
cally resistance to quinolones) and the ability to form bio-
film12 among uropathogenic Escherichia coli (UPEC). It
was found that a decrease in biofilm formation was mainly
due to a decrease of type 1 fimbriae expression.13 However,
more studies are needed to elucidate this relationship in
other bacteria.

Thus, the aim of this study was to analyze the possible
relationship between the ability to form biofilm and anti-
microbial resistance among susceptible, resistant, and MDR
Gram-negative clinical isolates from different hospitals in
Catalonia.

Materials and Methods

Bacteria

Four hundred eight bacterial isolates were collected from
four Catalan hospitals (Hospital Clinic of Barcelona, Hos-
pital Universitario de Bellvitge, Hospital del Mar, and
Hospital Universitario Mutua de Terrassa) over a 6-month
period from 2016 to 2017. Among these, 142 were E. coli,
117 Klebsiella pneumoniae, and 149 were Pseudomonas
aeruginosa. The bacteria were isolated from blood, urine,
and respiratory (including, sputum, and tracheal aspirate)
samples and processed at the corresponding Microbiology
Laboratory. All the isolates were confirmed by matrix-
assisted laser desorption ionization–time-of-flight mass
spectrometry (MALDI-TOF) and were stored in skim milk
(BD) at -80�C. The samples used in our study were sourced
through institutional tissue repositories.

Analysis of antimicrobial resistance

Resistance profiles were determined using the standard
Kirby-Bauer disk diffusion method following the Clinical and
Laboratory Standards Institute (CSLI) guidelines.14 E. coli
ATCC 25922 and P. aeruginosa ATCC 27853 strains were
used as controls. The antimicrobial agents tested were:
amikacin (30 mg), amoxicillin/clavulanic acid (30 mg), cef-
tazidime (30 mg), cefepime (30 mg), imipenem (10 mg), mer-
openem (10mg), trimethoprim–sulfamethoxazole (30 mg),
gentamicin (10 mg), tobramycin (10 mg), ciprofloxacin (5 mg),
chloramphenicol (30 mg), aztreonam (15mg), piperacillin/
tazobactam (100/10 mg), fosfomycin (200 mg), tigecycline
(15 mg) and colistin (10 mg).

Biofilm formation

Biofilm formation was analyzed using a modified proto-
col previously described by O’Toole et al.15 Briefly, all
isolates were cultured in aerobic conditions in Luria Bertani
(LB) agar (Condalab) for 24 hr at 37�C to obtain single
colonies. These colonies were established by the direct
colony suspension method in LB broth for 24 hr at 37�C
with shaking at 180 rpm.

The biofilm formation assay was tested in 96-well mi-
crotiter plates using an appropriate medium, M63 medium
in E. coli strains, and LB for P. aeruginosa and K. pneu-

moniae, both mediums supplemented with 0.25% glucose.
The plates were inoculated with the overnight culture di-
luted 1:100 in fresh medium and incubated for 24 hr at 37�C
or 24 hr at 30�C in case of E. coli strains, both in static
conditions. The final volume of liquid in each well was
200mL. All plates include a sterility control (culture me-
dium without inoculum) and a growth control (control me-
dium with inoculum). To avoid evaporation, all plates were
covered with adhesive foil lids.

The biofilm formation assay for P. aeruginosa was per-
formed using the Calgary protocol as described previous-
ly.16 The bacterial biofilm was formed by immersing the
pegs of a modified polystyrene microtiter lid into a 96-well
microtiter plate containing 200mL of the overnight culture
diluted 1:100 in fresh LB medium (catalog no. 445497;
Nunc TSP system, Nunc, Roskilde, Denmark).

Biofilm quantification

After incubation, liquid culture was carefully removed
and washed once with 210mL of PBS and dried at 65�C until
complete desiccation. Biofilms were stained with 200 mL of
1% (v/v) solution of Crystal Violet (CV) stain and incubated
10 min at room temperature. Afterward, CV stain was com-
pletely removed, washing once with 210mL of PBS, and
heat fixed at 65�C for 60 min.

The CV was eluted by the addition of 200 mL of 33%
glacial acetic acid. The optical density (OD) was measured
at 580 nm using a Microplate reader (EPOCH 2 microplate
reader; BioTek, VT).

Biofilm classification

In this study, the heterogeneity in the biomass of the
samples requires definition of a cutoff value that would di-
vide the samples in non-adherent, weakly, moderately, and
strongly adherent. For this reason, all samples were tested in
triplicate and calculated the OD average using negative
controls (medium without inoculum). The cutoff value was
defined for each species. For easier interpretation of the
results, strains were classified into the following categories
using an adaptation of a previous study.17

The isolates were categorized in quartiles according to OD
value using GraphPad Prism 5. The quartile below 25% per-
centile was classed as non-adherent (OD580 = 0.0640, 0.1605,
and 0.3145 for E. coli, K. pneumoniae, and P. aeruginosa,
respectively). If their biomass absorbances were compressed
between 25% percentile and median (0.1920, 0.2560, and
0.5560 for E. coli, K. pneumoniae, and P. aeruginosa, re-
spectively), they were classed as weakly adherent. Value
between the median and 75% percentile (0.4165, 0.3765, and
0.8080 for E. coli, K. pneumoniae, and P. aeruginosa, re-
spectively) were classified as moderately adherent, and the
isolates with OD over 75% percentile were deemed as strong
biofilm producer. According to OD, value of positive control
of each microorganism was categorized as strong biofilm.

Statistical analysis

Chi-square test and Spearman rank correlation test per-
formed by SPSS 24.0 (for Windows) were used to study the
association and correlation between biofilm formation and
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antimicrobial susceptibility categories and the respective
origin of microorganisms.

Results

Approximately 40% of all the isolates studied were re-
sistant to ciprofloxacin. In addition, 50% of the E. coli
isolates were resistant to cotrimoxazole, 36% of K. pneu-
moniae were resistant to ceftazidime, and about 30% of the
P. aeruginosa isolates were resistant to imipenem, mer-
openem, aztreonam, and fosfomycin (Fig. 1). According to
the number of antibiotic families to which the isolates were
resistant, they were classified into susceptible (S; not re-
sistant to any family), resistant (R; resistant to 1–2 cate-

gories), MDR (resistant to three or more antibiotic families),
and extensively drug resistant (XDR; non-susceptible to at
least one agent in all but two or fewer antimicrobial cate-
gories [i.e., bacterial isolates remained susceptible to only
one or two categories]). Thus, 35% of all the isolates were S,
35% were R, and 30% were MDR (data not shown). Among
the E. coli isolates, 29% were S, 41% R, and 30% MDR. In
the case of K. pneumoniae, 29%, 33%, and 38% were S, R,
and MDR, respectively. Finally, 41%, 31%, 19%, and 9% of
P. aeruginosa isolates were S, R, MDR, and XDR (Fig. 1).

On analysis of the antimicrobial resistance of each species
according to the type of sample (blood, respiratory, and ur-
ine), several differences were found. K. pneumoniae isolates
collected from blood were less resistant to fosfomycin than

FIG. 1. Percentages of isolates resistant to the different antibiotics used in the treatment of each microorganism (A:
Escherichia coli, B: Klebsiella pneumoniae, and C: Pseudomonas aeruginosa). MDR, multidrug-resistant and XDR, ex-
tensively drug resistant.
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those collected from sputum and urine (1.7% vs. 9.4% and
13.7%, respectively). P. aeruginosa isolates collected from
respiratory were, in general, more resistant to all the anti-
microbial agents studied in common in the three species than
their counterparts isolated from blood and urine (Table 1).

We studied the ability of all the isolates collected to form
biofilm in vitro and found that 49.3% were able to do so,
30.3% of the E. coli, 37.6% of K. pneumoniae, and 76.5% of
P. aeruginosa isolates, respectively. No significant differ-
ences were found in the frequency of biofilm-forming iso-
lates in relation to each type of sample (blood, sputum, and
urine). However, some trends were observed. For example,
in the case of E. coli, the isolates collected from respiratory
were less biofilm forming than those collected from blood or
urine On the other hand, the P. aeruginosa isolates collected
from respiratory were more biofilm forming than those from
the other types of samples (Fig. 2).

Relationships between the ability to form biofilm and an-
timicrobial resistance were scarce and differed for each spe-
cies. In the case of K. pneumoniae, the isolates resistant to
colistin showed a strong capacity to form biofilm than the
susceptible isolates ( p = 0.026) and the biofilm formation was
strong in P. aeruginosa isolates susceptible to ciprofloxacin
than in their resistant counterparts ( p = 0.041) (Table 2).

Finally, there was no significant relationship between
global resistance or multidrug resistance and biofilm for-
mation. However, the P. aeruginosa isolates susceptible to

Table 1. Percentage of Susceptibility of Microorganism Isolates from Blood, Respiratory,

and Urine Against Different Antimicrobials Commonly Used in This Study

Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa

S% R% p q S% R% p q S% R% p q

Ceftazidime Blood 26.8 4.2 16.2 9.4 13.4 2.7
Respiratory 35.2 1.4 20.5 7.7 59.1 3.4
Urine 31.7 0.7 0.054 -0.186 36.8 9.4 0.267 -0.148 15.4 6 0.002* 0.142

Imipenem Blood 100 0 25.6 0 10.1 6
Respiratory 100 0 16.5 1.7 51 11.4
Urine 100 0 a a 46.2 0 0.075 -0.050 13.4 8.1 0.033* 0.03

Gentamicin Blood 28.2 2.8 22.2 3.4 10.7 5.4
Respiratory 28.2 8.5 25.6 2.6 51 11.4
Urine 27.5 4.9 0.175 0.063 36.8 9.4 0.344 0.103 14.8 6.7 0.152 0.007

Ciprofloxacin Blood 16.9 14.1 16.2 9.4 10.7 5.4
Respiratory 16.2 20.4 18.8 9.4 45.6 16.8
Urine 20.4 12 0.174 -0.071 29.1 17.1 0.936 0.011 12.8 8.7 0.335 0.063

Aztreonam Blood 26.8 4.2 17.1 8.5 13.5 2.7
Respiratory 35.5 2.1 20.5 7.7 55.4 6.8
Urine 31 1.4 0.206 -0.137 34.2 12 0.762 -0.062 17.6 4.1 0.471 0.032

Piperacillin/
tazobactam

Blood 31 0 20.5 5.1 14.1 2

Respiratory 35.9 0.7 18.8 11 55 7.4
Urine 32.4 0 0.418 -0.002 43.6 2.6 0.003* -0.216 17.4 4 0.606 0.063

Fosfomycin Blood 31 0 23.9 1.7 8.1 8.1
Respiratory 36.6 0 18.8 9.4 49 13.4
Urine 31 1.4 0.120 0.148 32.5 13.7 0.027* 0.180 12.1 9.4 0.005* -0.004

Colistin Blood 28.9 2.1 23.1 2.6 14.8 1.3
Respiratory 35.9 0.7 27.4 0.9 59.7 2.7
Urine 31.7 0.7 0.360 -0.099 41 5.1 0.403 0.045 18.8 2.7 0.262 0.067

*Bold numbers are statistically significant ( p < 0.05).
a, no statistics have been calculated; R, resistant; S, susceptible; r, Spearman rank correlation coefficient.

Table 2. Relationship Between Biofilm Formation

and Antimicrobial Resistance

Antimicrobials

p (>0.05)

E. coli K. pneumoniae P. aeruginosa

Amikacin ND ND 0.561
Gentamicin 0.133 0.826 0.254
Tobramycin ND ND 0.607
Amoxicillin/

clavulanic
0.351 0.713 ND

Piperacillin/
tazobactam

0.397 0.118 0.128

Ceftazidime 0.109 0.396 0.580
Cefepime ND ND 0.161
Imipenem 1 0.572 0.861
Meropenem ND ND 0.775
Ciprofloxacin 0.06 0.898 0.041a

Fosfomycin 0.113 0.148 0.935
Aztreonam 0.780 0.310 0.428
Colistin 0.639 0.026a 0.128
Chloramphenicol 0.448 0.3 ND
Tigecycline 0.669 0.098 ND
Cotrimoxazole 0.783 0.667 ND

aBold numbers are statistically significant ( p < 0.05).
ND, not determined.
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all the antibiotics studied or resistant to only one antimi-
crobial category tended to be more biofilm forming than the
MDR and XDR (Fig. 3).

Discussion

Gram-negative microorganisms are a significant cause of
infection in both community and nosocomial settings.18 The
emergence of microorganisms resistant to multiple antibi-
otics used in the treatment of infections has become an
important health problem worldwide. The present study
analyzed three species of microorganisms included among
the ESKAPE pathogens: K. pneumoniae and P. aeruginosa,
as well as E. coli isolates.

The percentage of isolates resistant to the different anti-
biotics studied was higher in comparison with other studies
(Table 3).

It was of note that the hospitals participating in this study
showed higher rates of ciprofloxacin resistance ranging from
37% to 45% compared with other studies reporting a rate of
resistance of less than 29%. The high percentage of resistance
found among the isolates collected from blood in the hospitals
participating in the study could be due to the fact that patients
had received antimicrobial treatment before the sample was
obtained. It is also well known that the misuse of antibiotics

leads to selective pressure that favors the acquisition of re-
sistance. We evaluated the possible relationship between an-
timicrobial resistance and the ability to form biofilm among the
collected isolates. No relationship was found between multi-
drug resistance and biofilm formation, but similar to other
studies19 we found a comparable level of biofilm production in
both multidrug- and nonmultidrug-resistant isolates with no
significant differences between the two groups. High rates of
biofilm-producing K. pneumoniae have been reported in MDR
strains, mainly Extended Spectrum Betalactamases producers
harboring blaCTX-M genes.20

However, there are reports regarding relationships between
biofilm formation and resistance to specific antibiotics. Thus,
the acquisition of quinolone resistance has been related to a
decrease in biofilm production in both UPEC and Salmonella
typhimurium.12,21 In the present study, we also found this
relationship between quinolone resistance and biofilm for-
mation in P. aeruginosa, with the susceptible isolates showing
a greater capacity to form biofilm than the resistant isolates.
However, there are discrepancies among the different studies
in the literature. One example of this is the study of the effect
of meropenem resistance on biofilm formation. Several
studies found that the strains resistant to meropenem showed
Gram-negative bacteria to have a greater capacity to form
biofilm22 in contrast to other studies that found an inverse

FIG. 2. Relationship between origin of microorganism and biofilm-forming capacities. (A) E. coli, (B) K. pneumoniae,
and (C) P. aeruginosa.
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relationship between meropenem resistance and biofilm
formation among other Gram-negative bacteria, such as Aci-
netobacter baumannii.23 Resistance to imipenem has been
associated with less biofilm production in P. aeruginosa iso-
lates,24 although we did not observe this association. This is
the first time that a relationship between gentamicin resistance
and biofilm formation has been reported in E. coli.

In conclusion, the acquisition of specific antimicrobial
resistance can compromise or enhance biofilm formation in
several species of Gram-negative bacteria. However, MDR
strains did not tend to have greater biofilm production than
non-multiresistant isolates. Further studies are needed to
determine how the acquisition of gentamicin resistance af-
fects biofilm formation.

FIG. 3. Distribution of
biofilm formation of isolate
with different resistance
phenotype. The distribution
was separate in quartiles ac-
cording to OD580 value. The
OD range of positive control
biofilm is between 0.81. OD,
optical density.
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