

أسلوب تقييم البرامج ومراجعتها (Critical path method) وطريقة المسار الحرج (Critical path method) مقدمة .

عادة ما تقوم الشركات الكبيرة بعمل مشاريع ضخمة ومعقدة، هذه المشاريع الكبيرة تتطلب العديد من العمليات والخطوات المتعاقبة أو المتوازية لإنجازها. فمثلا عند صنع منتج جديد لينزل في الأسواق فإن هناك الكثير من الخطوات والعمليات التي يجب أن يمر بها المنتج الجديد هذا. فالمنتج الجديد يحتاج إلى بحوث سابقة وتطوير، اختبار المنتج، بحوث تسويقية، كيفية التغليف، وهكذا.

لذا فإن التحكم في تخطيط وتنفيذ المشروع بالوسائل القديمة أصبح مستحيلا. وفي هذه الحالة سيكون تركيز الإدارة المهتمة بتنفيذ المشروع في معرفة الوقت الذي سينتهي فيه إكمال ذلك المشروع. وحيث انه يوجد كثير من المتغيرات والأحداث التي تؤثر على وقت نهاية المشروع، فإنه بالأهمية بمكان أن يوجد عندنا "كمدراء مشاريع مثلا.." وسيلة اتخاذ قرارات تساعدنا على الإجابة على الأسئلة التالية:

- 1 متى نتوقع أن ينتهي المشروع؟
- 2 ما هو التأثير الكلي على المشروع إذا حدث تأخر في أي من العمليات أو الخطوات؟
 - 3 ما هو الاحتمال أن يتم المشروع في وقته الذي خطط له؟
- 4 كم من التكاليف الإضافية ممكن أن نتحملها إذا أردنا أن نعجل بالمشروع قبل الوقت المحدد؟

أسلوب تقييم البرامج ومراجعتها Program evaluation and review"

"Titical path method وطريقة المسار الحرج technique "PERT"

"CPM" هما وسيلتين من وسائل التخطيط و التحكم في تنفيذ المشاريع الكبيرة وتستخدم للإجابة على الأسئلة السابقة. و لنجاح تلك الوسيلتين في التخطيط والتحكم فقد استُعملت في كثير من المشاريع العملاقة والحكومية والتجارية.

بدأ تطبيق أسلوب تقييم ومراجعة المشروعات (PERT) وطريقة المسار الحرج (CPM) منذ أواخر الخمسينيات في تخطيط المشروعات الكبيرة ومتابعة تنفيذها. ويعتمد أسلوب تقييم ومراجعة البرامج على تقسيم المشروع إلى عدد من الأنشطة التي تسبق و مجموعة من الأنشطة التي تتبع زمنيا و مجموعة من الأنشطة التي تنفذ في نفس الوقت، ويهتم هذا الأسلوب بالوقت المتوقع لإنهاء المشروع، ويمكن أن يدخل العنصر الاحتمالي في تقدير أوقات تنفيذ أنشطة المشروع، وتهتم طريقة المسار الحرج (CPM) بالإضافة إلى عنصر الوقت بعنصر التكلفة حيث يمكن تخفيض زمن تنفيذ المشروع بزيادة تكلفة تنفيذ بعض الأنشطة و تحديد الخطط البديلة لتخفيض زمن

تنفيذ المشروع بأقل تكلفة ممكنة. وقد تم تطوير أسلوب تقييم ومراجعة البرامج وطريقة المسار الحرج (CPM) و اندماجها وذلك في إطار ما يسمى بتحليل شبكات الأعمال Network Analysis.

- أنشطة المشروع

ينظر إلى أي مشروع على انه مجموعة من العمليات المتعاقبة والمتوازية، كل عملية من العمليات تسمى نشاطا. كل نشاط من الأنشطة يتطلب إنفاق شي من الوقت والموارد المالية.

ومن هنا كان تعريف النشاط (Activity) على انه عملية أو مهمة تتطلب أنفاق بعض الوقت والموارد ليتم إنجازها.

مثال:

لبناء مدرسة من المدارس فإن الأنشطة اللازم عملها هي التالي:

- A. عمل مخطط معماري
 - B. حفر القواعد
 - C. صب الأعمدة
- D. بناء العظم أو الهيكل
 - E. صب الأدوار
 - F. أعمال الكهرباء
 - G. أعمال السباكة
- H. الأعمال الداخلية والأعمال الأخرى من نوافذ و أبواب ودهان

H. الا عمان الداكلية والا عمان الاكرى من لواقد و ابواب ودهان كل من هذه الأنشطة يتطلب وقتا من الزمن ويتطلب موارد من عمال ومواد أولية و أموال. رمزنا لكل نشاط بحرف من الحروف للتسهيل، فنقول نشاط B و فكذا... فمثلا عمل مخطط معماري هو النشاط A ، وحفر القواعد هو النشاط B و هكذا... بعض الأنشطة ممكن أن تبدأ في وقت واحد ، والبعض قد تبدأ بعد انتهاء أنشطة سابقة. فمثلا لا نستطيع بناء العظم قبل الانتهاء من صب الأعمدة . لذلك فإنه لكل نشاط أو مهمة يجب أن يحدد بالضبط الأنشطة السابقة (Predecessor activities) . تعريف : الأنشطة السابقة (Predecessor activities) و هي الأنشطة التي يجب إتمامها أو لا ليبدأ نشاط معين.

لذلك فإن النشاط السابق للنشاط D " بناء العظم والهيكل " هو النشاط C . ونحن هنا لا ننظر إلى جميع الأنشطة التي يجب أن تسبق ، إنما ننظر إلى النشاط أو الأنشطة السابقة مباشرة. فمثلا اكتمال النشاط D معناه أن الأنشطة السابقة D و D جميعها قد اكتمل. لذلك لا نقول أن الأنشطة السابقة للنشاط D هي الأنشطة D و

G و G لا يعتمد على G و G لان G لا يعتمد على G و G لان G لا يعتمد على G و G

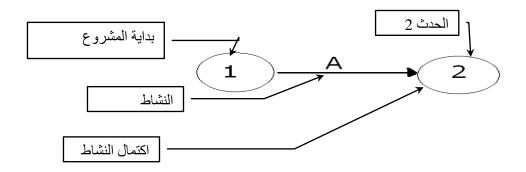
وإذا أردنا معرفة وقت اكتمال المشروع فإنه يجب معرفة المدة " المتوقعة" لإنجاز كل نشاط.

تعريف: الوقت المتوقع هو عبارة عن المدة الزمنية اللازمة لإنجاز أي نشاط من الأنشطة. وتقاس عادة بالساعات ، الأيام ، الشهور ، السنوات ، أو بأي وسيلة أخرى مناسبة. ولكن يجب توحيد الوحدة المستخدمة للقياس في جميع الأنشطة. وبمعرفة الأنشطة ، الأنشطة السابقة ، والمدة المتوقعة لكل نشاط فإنه يمكن معرفة الوقت المتوقع الإجمالي لإنهاء المشروع باستخدام PERT .

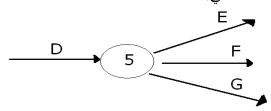
و بما أن كُل نشاط لا يمكن أن يبدأ حتى ينتهي النشاط أو الأنشطة السابقة له فإنه يمكن تعريف الحدث "event" على انه:

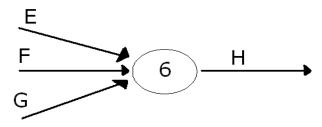
هو نقطة أو لحظة من الوقت التي يتم فيها اكتمال مجموعة معينة من الأنشطة. في المثال السابق ، النشاط H لا يمكن أن يبدأ ألا بعد انتهاء النشاط F ، F ، E عندما يقع هذا الحدث فإنه يبدأ النشاط H. لذلك ممكن أن نرمز للأحداث هذه بالأرقام العربية التالية، مثلا حدث E ، حدث E ، وهكذا..... فحدث E يكون بداية المشروع والحدث الأخير هو نهاية المشروع (أي أن جميع الأحداث قد انتهت).

شبكة أو خريطة PERT


تعرف شبكة أو خريطة PERT على إنها عبارة عن رسم بياني أو نموذج شكلي يوضح تعاقب الأنشطة والحوادث اللازمة لإنهاء مشروع ما. هذه الشبكة تساعد المدير ومتخذ القرار في الشركة من رؤية الأنشطة والحوادث اللازمة لإنهاء المشروع بسهولة.

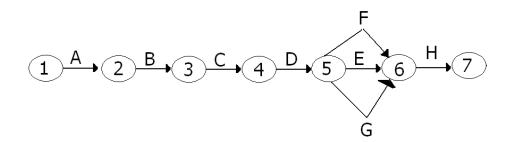
قاعدة: يجب تمثيل الأنشطة باسهم " ____ " و الأحداث بدوائر " 🔘 ".


فمثلا الشكل التالي يوضح بداية المشروع بالنشاط A:


ويمكن توضيح الفرق بين الحدث والنشاط كالتالي:

وبالمثل فإن الأنشطة $F \cdot E \cdot G$ و $G \cdot G \cdot G$ لا يمكن أن تبدأ حتى ينتهي النشاط $G \cdot G \cdot G$ هذا ممكن تمثيله بالشكل التالى:

كذلك النشاط H لا يمكن أن يبدأ حتى تنتهي الأنشطة F ، F ، و هذا يمكن تمثيله بالشكل التالي:

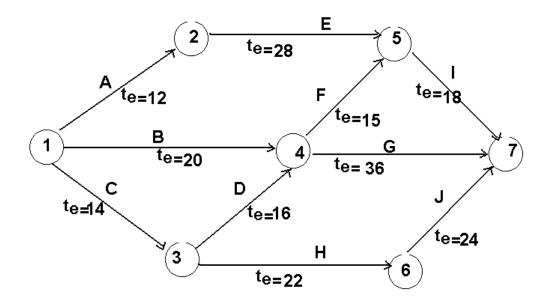


وعموما هناك حدث في بداية ونهاية كل نشاط.

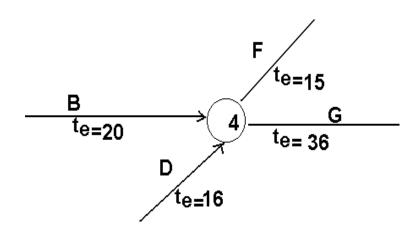
و الأن دعنا نرسم شبكة PERT لمشروع المدرسة السابق. الأنشطة والأنشطة السابقة هي كما في الجدول التالي:

الأنشطة السابقة	الوصف	النشاط
لا يوجد	عمل مخطط معماري	A
A	حفر القواعد	В
В	صب الأعمدة	C
С	بناء العظم أو الهيكل	D
D	صب الأدوار	Е
D	أعمال الكهرباء	F
D	أعمال السباكة	G
G, E, F	الأعمال الداخلية والأعمال الأخرى من نوافذ و	Н
	أبواب ودهان	

يمكن رسم شبكة PERT التي توضح العلاقة السابقة بالشكل التالي:


في الشبكة السابقة وضعنا 7 أحداث رئيسية للمشروع ، حدث 1 هو بداية المشروع ، بينما حدث 7 هو اكتمال المشروع.

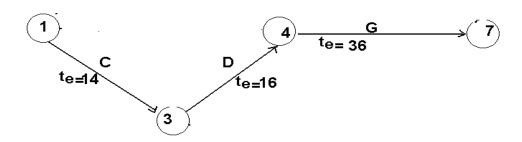
ألان دعنا ننتقل إلى مثال أصعب قليلا.


الجدول التالي يوصح كل نشاط والأنشطة السابقة والمدة المتوقعة الخاصة بشركة سدير و المطَّلوب رسَّم المشكلة و تحديد الأوقات المبكرة والمتأخرة للأنشطة و الأحداث و الأوقات الفائضة وحساب المسار الحرج و الوقت المتوقع للانتهاء:

المدة المتوقعة Expected duration	الأنشطة السابقة	النشاط
(t_e)		
12	لا يوجد	A
20	لا يوجد لا يوجد	В
14	لا يوجد	C
16	C	D
28	A	Е
15	D, B	F
36	D, B	G
22	С	Н
18	E, F	I
24	Н	J

وبذلك تكون شكل شبكة PERT

حيث أن الأنشطة G و I و I همي آخر الأنشطة فإنها يجب أن تتم فإنهم يجب أن تنتهي بالحدث T (هذه الأنشطة ليست سابقة لأي نشاط) : كذلك لان الأنشطة G ، F كأنشطة سابقة فإن الأنشطة G ، G و النشاط G ، G تبدأ من حيث انتهي الحدث G .


كما يلاحظ أننا وضعنا المدة المتوقعة لإنهاء كل نشاط بجوار النشاط الخاص به وذلك للتسهيل.

المسارات أو الطرق (Paths) في شبكة

من الأسئلة المهمة التي يجب أن نجيب عليها هو متى نتوقع الانتهاء بالكامل من المشروع ، ومن إحدى الطرق التي تساعدنا على ذلك هو معرفة المدة المتوقع أخذها لإنهاء جميع المسارات.

تعريف المسار (Path):

هو عبارة عن نشاطات متتابعة والتي تربط بين حدث البداية (الحدث 1) وحتى حدث النهاية (في مثالنا الحالي الحدث 7، هو حدث النهاية). الشكل التالي يعطي مثالا لأحد المسارات.

الجدول التالي يوضح جميع المسارات الممكنة والمدة المتوقعة لكل مسار:

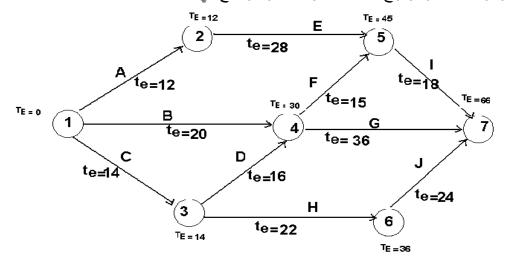
"Duration" المدة	المسار "Path"	رقم المسار Path''
		Number"
58=18+28+12	A-E-I	1
53=18+15+20	B-F-I	2
56=36+20	B-G	3
63=18+15+16+14	C-D-F-I	4
66=36+16+14	C-D-G	5
60=24+22+14	C-H-J	6

مثلا المسار السابق، يتكون من الأنشطة C-D-G و كذلك الأحداث 1 ، 3 ، 4 ، 7 و مثلا المسار السابق، يتكون من الأنشطة 66 يوما . ولكن اكتمال الأنشطة C-D-G لا يعنى اكتمال

المشروع، وذلك لأنه يجب أن تنتهي جميع الأنشطة . ولكن إذا أخذنا المدة المتوقعة لإكمال جميع المسارات (كل واحد على حدة) وكما فعلنا في الجدول السابق فإن أطول مسار من المسارات يكون هو المدة المتوقعة للإنتهاء. لذلك فإن المسار رقم 5 هو المسار الذي يتطلب وقتا أطول "66 يوما " ومنه نقول أن المدة اللازمة لإكمال المشروع هي 66 يوما من بداية المشروع.

في الحياة العملية من الصعب أيجاد جميع المسارات وحسابها ، ومن ثم معرفة الوقت اللازم لإكمال المشروع. ولكن أسلوب PERT هو أسلوب أكثر سهولة و أفضل طريقة علمية لحل المشاكل الكبيرة.

"Expected time of completion" الوقت المتوقع للانتهاء


من الأسئلة المهمة هو معرفة الوقت المتوقع لإنهاء كل نشاط وكل حدث، والتي بناء

عليها يأتي التعريف التالي: تعريف $T_{\rm E}$ ترمز لأبكر لحظة من الزمن والتي يكتمل فيها نشاط معين. وبالمثل فإن $T_{
m E}$ ترمز إلى أبكر لحظة من الزمن والتي يقع فيها حدث معين (أي أن جميع الأنشطة التي تنتهي بهذا الحدث قد اكتملت) ، الوقت المبكر المتوقع " "Expected time استخدمت لأننا نتوقع إنهاء تكتمل قبل ذلك. "Earliest

الجدول التالي يوضح الوقت المبكر المتوقع $T_{
m E}$ للانتهاء من كل نشاط:

Earliest Expected	النشاط	Earliest Expected	النشاط
Completion time (TE		Completion time (
)		T_{E})	
45	F	12	A
66	G	20	В
36	Н	14	C
63	I	30	D
60	J	40	Е

والوقت المبكر لوقوع الأحداث هو كما هو موضح في شبكة PERT التالية:

لحساب الوقت المبكر المتوقع للأحداث يجب وضع الصفر في البداية (T_E) ، لذلك فإن كل الأوقات المبكرة لوقوع الحدث تفسر على أنها عدد الأيام أو الساعات التي مضت منذ بداية المشروع. فمثلا الحدث δ (T_E) أي انه أبكر وقت متوقع لوقوع الحدث δ هو δ 6 يوما من بداية المشروع.

كذلك الوقت المبكر المتوقع لآي نشاط هو عبارة عن الوقت المتوقع للنشاط نفسه للله الوقت المبكر لوقوع حدث البداية . أي أن:

12 = 12 + 0 = A للنشاط T_{E}

20 = 20 + 0 = B للنشاط T_E

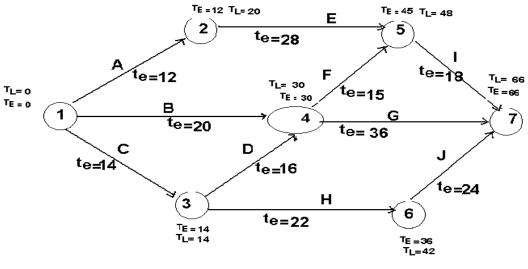
45 = 15 + 30 = F للنشاط T_{E}

و هکذا

كذلك T_E للحدث 4 يقع عندما بكتمل جميع الأنشطة السابقة و هي B و كذلك D. فمثلا النشاط B ينتهي بعد 20 يوما و لكن النشاط D ينتهي بعد 30 يوما ، لذلك فإن الوقت المبكر المتوقع لوقوع الحدث 4 هو 30 يوما. و هكذا لجميع الأحداث. لاحظ أن الحدث 7 هو عبارة عن اكتمال الأنشطة T_E ، T_E و هو عبارة عن اكتمال الأنشطة T_E ، و هو 4. وهو عبارة ياخذ وقت أطول للانتهاء منه هو أبكر وقت يتم فيه الحدث T_E ، و هو 66. و هو عبارة عن المسار الأطول أو المسار الحرج.

الوقت المتأخر المسموح به (Latest allowable time)

حيث أن T_E هي عبارة عن مدة متوقعة ، فإن الوقت المبكر لإنهاء الأنشطة أو الوقت المبكر لوقوع أيا من الأحداث سيكون توقع فقط. لذلك فإن بعض الأنشطة قد تأخذ وقت أطول من الوقت المتوقع و بالتالي سيؤثر على المشروع بأكمله. ومعرفة الوقت المتأخر المسموح به لإنجاز أي نشاط أو لوقوع أي حدث مهم جدا. لان معرفة الوقت المتأخر المسموح به ستوضح لنا فيما إذا كان التأخير في نشاط أو حدث معين سيؤثر على تأخر المشروع بأكمله أم لا. سنرمز للوقت المتأخر المسموح به بالرمز T_L). تعريف: T_L لنشاط معين من الأنشطة ، هو عبارة عن آخر لحظة من الزمن يسمح به لإنجاز النشاط هذا بحيث لا يؤثر على تأخر اكتمال المشروع عن المدة المتوقعة الأصلية.


كذلك T_L لحدث معين من الأحداث ، هو عبارة عن آخر لحظة من الزمن يسمح به لوقوع الحدث هذا بحيث لا يؤثر على تأخر اكتمال المشروع عن المدة المتوقعة الأصلية. الجدول التالي يوضح الوقت المتأخر المسموح به للأنشطة:

Latest Allowable (T _L)	Earliest Expected Completion	النشاط
الوقت المتأخر المسموح به	time (T _E)	
	الوقت المبكر المتوقع	
20	12	A
30	20	В
14	14	C
30	30	D
48	40	Е
48	45	F
66	66	G
42	36	Н
66	63	I
66	60	J

لحساب قيم (T_L) فأننا نبدأ من الحدث النهائي (حدث T_L ، أي 66 يوما) ونرجع إلى الأمام باتجاه البداية . و T_E للحدث الأخير (حدث T_L في هذا المثال) هو دائما يساوي (T_L) لنفس الحدث . أي أن T_L = T_L = T_L يوما. ونرجع إلى الأمام لحساب قيم T_L الباقية .

قاعدة : الوقت المتأخر المسموح به (T_L) (T_L) (T_L) نشاط من الأنشطة هي عبارة عن الوقت المتأخر المسموح به (T_L) للحدث الذي ينتهي فيه ذلك النشاط. لذلك فإنه بمجرد حساب الوقت المتأخر المسموح به (T_L) (T_L) (T_L) لأي حدث ، فإنه هو نفسه الوقت المتأخر المسموح به (T_L) لجميع الأنشطة التي تنتهي عند ذلك الحدث إذا افترضنا أن النشاط (T_L) مثلا لم يبدأ حتى اليوم ال (T_L) فهل ذلك سيؤثر على المشروع؟

إذا نظرنا إلى الوقت المتأخر المسموح به (T_L) للحدث 7 و كذلك النشاط J هو 66 يوما، والمدة المتوقعة اللازمة لإنجاز النشاط J هي 24 يوما. لذلك فإن النشاط J يجب أن يبدأ في موعد أقصاه هو 66 J 42 J 42 الموقت المتأخر المسموح به J 1 للحدث J هو 42 يوما) و إلا اثر ذلك على إكمال المشروع في الوقت المحدد. لذلك إذا بدأ النشاط J في اليوم الح 43 فإن المشروع يتوقع أن ينتهي ليس قبل المحدد. لذلك إذا بدأ النشاط J في اليوم الح 43 فإن المشروع يتوقع أن ينتهي ليس قبل J 43 J 45 J 46 يوما ، أي بتأخر يوما واحدا عن الموعد المتوقع لوقوع الحدث J 5 شبكة J 47 التالية توضح أيضا الوقت المتأخر المسموح به J 47 للأحداث

كذلك وبنفس الطريقة يمكن حساب الوقت المتأخر المسموح به (T_L) للحدث 5. فإن الوقت المتأخر المسموح به (T_L) للحدث 5 عبارة عن T_L 6 (المدة اللازمة لإنجاز النشاط T_L 1 تساوى 48 يوما).

حساب الوقت المتأخر المسموح به (T_L) للحدث 4 قد يكون أصعب قليلا، وذلك لان النشاط F و كذلك النشاط G تبدأ من الحدث 4 لذلك فإن الحدث 4 يجب أن يبدأ مبكر ا بما فيه الكفاية ليسمح لكلا النشاطين من الانتهاء قبل الوقت المتأخر المسموح به لكلا منهم.

الوقت المتأخر المسموح به (T_L) للنشاط F=48، و المدة المتوقع أن يأخذها النشاط هذا هي 15 يوما، لذلك فإن النشاط F يجب أن لا يتأخر عن اليوم F يوما وهو الفرق بين 48 و بين 15 .

كذلك فإن الوقت المتأخر المسموح به (T_L) للنشاط G=66 ، و المدة المتوقع أن يأخذها النشاط هذه هي 36 يوما، لذلك فإن النشاط G يجب أن لا يتأخر عن 30 يوما G .

و لحساب الوقت المتأخر المسموح به (T_L) للحدث 4 فأننا نأخذ الوقت الأقل من بين الأوقات التي يجب أن لا تتأخر عنها الأنشطة التي تبدأ من ذلك الحدث (12) الأقل من بين 33 (13) ، أو بصيغة أخرى (13) (13) ، أي أن الوقت المتأخر المسموح به (13)) للحدث 4 يكون 30 يوما.

افترض أن الحدث 4 وقع في اليوم ال 31 ، ماذا سيكون التأثير على النشاط \mathbf{F} وكذلك النشاط \mathbf{G} ؟

النشاط \bar{F} لن يتأثر بهذا وذلك لان النشاط \bar{F} يجب أن لا يتأخر عن 33 يوما. أما النشاط \bar{F} فسوف يتأثر بهذا وذلك لان النشاط \bar{F} يجب أن لا يتأخر عن 30 يوما، أي سيتأخر بيوم واحد مما يؤدي إلى نهاية المشروع بأكمله بيوم واحد. باستخدام نفس الطريقة فأننا نستطيع الحصول على الوقت المتأخر المسموح به (\bar{F}) لكل الأحداث الباقية . ويجب أن تكون قيمة الوقت المتأخر المسموح به (

للحدث الأول (البداية) دائما تساوي (TE) وتساوي الصفر.

الوقت المتأخر المسموح به من المعلومات المهمة والتي تساعدنا في معرفة الأنشطة التي يجب أن لا تتأخر عن الموعد المحدد، و إلا فإن المشروع بأكمله سيتأخر. فمثلا بعد أن بدأنا المشروع وجدنا أن النشاط B لن ينتهي إلا بنهاية اليوم ال 25 بدلا من اليوم المحدد أي اليوم 20. هل سيؤثر ذلك على المشروع ككل؟

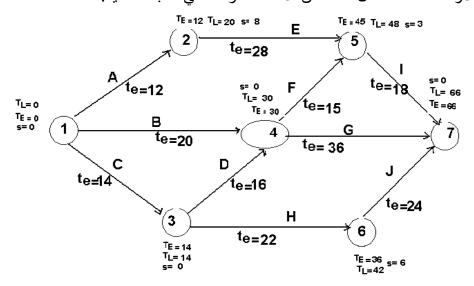
الجواب طبعا بلا! وذلك لان الوقت المتأخر المسموح به (T_L) للحدث 4 (و أيضا للنشاط B) هو 30 يوما. ولا يوجد أي مشكلة بإنتهاء النشاط B حتى اليوم ال 30. إذا طريقة PERTتستطيع إعطائك الكثير من المعلومات الضرورية للتحكم في المشروع.

(Slack) الفائض

من الأسئلة المهمة التي من الممكن أن يجيب عليها أسلوب PERT هو معرفة المدة التي يمكن أن يتأخر فيها نشاط أو حدث بدون أن يسبب ذلك التأخير في النشاط أو الحدث إلى تأخير في المشروع بأكمله. هذه المدة التي يمكن أن يتأخر فيها نشاط أو حدث بدون أن يسبب ذلك التأخير في النشاط أو الحدث إلى تأخير في المشروع بأكمله ، تسمى الأوقات الفائضة.

كيف يتم حساب الأوقات الفائضة؟

تعریف : الوقت الفائض لنشاط أو حدث معین (ونرمز له بالرمز $_{\rm S}$) هو الفرق بین الوقت المتأخر المسموح به ($_{\rm TL}$) للحدث أو النشاط و الوقت المبكر ($_{\rm TE}$) لهذا الحدث أو النشاط. أي انه = $_{\rm TL}$


يفسر الوقت الفائض لنشاط ما على انه المدة الزائدة عن الوقت المتوقع (te) التي ممكن أن يأخذها نشاط معين بدون أي تأثير على المشروع بأكمله.

و يفسر الوقت الفائض لحدث ما على انه المدة الزائدة عن الوقت المبكر لوقوع الحدث (T_E) و التي ممكن أن يقع فيها حدث معين بدون أي تأثير على المشروع بأكمله.

الجدول التالي يوضح الأوقات الفائضة للأنشطة:

		<u> </u>	
الأوقات الفائضة)Slacks	Latest Allowable (T _L)	Earliest Expected Completion	النشاط
$T_L - T_E$)	الوقت المتأخر المسموح به	الوقت المبكر المتوقع $ au$ time ($ au_E$)	
8	20	12	A
10	30	20	В
0	14	14	C
0	30	30	D
8	48	40	Е
3	48	45	F
0	66	66	G
6	42	36	Н
3	66	63	I
6	66	60	J

الأوقات الفائضة لكل حدث من الأحداث هو كما في الشبكة التالية:

(The Critical Path CPM) المسار الحرج

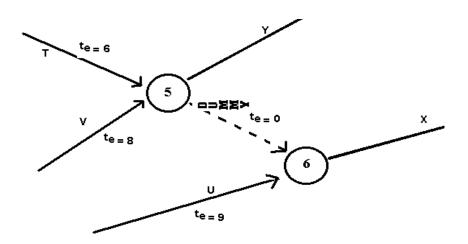
المسار الحرج هو عبارة عن الأنشطة المتلاحقة والتي تكون في مجموعها أطول فتره ممكنة من البداية وحتى النهاية. وبالنظر إلى شبكة PERT السابقة يتضح أن الأنشطة $C \rightarrow D \rightarrow G$ تكون المسار الحرج لهذا المشروع. في السابق تعرفنا على المسار الحرج وذلك بجمع فترات الأنشطة اللازمة لجميع المسارات الممكنة ، ولكن باستخدام أسلوب PERT فإننا لا نحتاج لان نحسب جميع المسارات، اذ انه بالسهولة بمكن تحديده.

جميع الأنشطة التي فائضها يساوي الصفر ، لا يمكن تأخيرها عن موعدها المحدد و الا فإن ذلك سيؤثر على المشروع بأكمله. ولذلك فإن هذه الأنشطة هي التي تحدد المدة المتوقعة لإنهاء المشروع وكذلك المسار الحرج.

قاعدة : المسار الحرج يتكون من الأنشطة التي لا يوجد بها فوائض في الأوقات أي (s=0) . الأحداث التي لا يوجد بها فوائض (أي أن فوائضها تساوي أصفارا) تكون تقع على المسار الحرج.

وبتطبيق هذه القاعدة على شبكة PERT نجد أن الأنشطة التي لا يوجد بها فوائض هي الأنشطة C ، C و النشاط C و ولذلك فإن المسار الحرج يمر بهذه الأنشطة كذلك فإن الأحداث التي يوجد بها فوائض هي الأحداث C ، C و كذلك C و هذه الأحداث تربط الأنشطة C ، C و النشاط C لتكوين المسار الحرج.

و عموما فإن الأشخاص الذين يعملون في المشروع ستكون علاقتهم قوية بأنشطة معينة وليس لهم علاقة بالأحداث ، لان الأحداث ستكون من تخصص مدير المشروع و محلل شبكة PERT.


لذلك فإنه بالأهمية بمكان الاهتمام بالأنشطة التي تقع على المسار الحرج ويجب ملاحظتها بعناية اكبر والتركيز عليها والتحكم في أوقاتها حتى لا يتأخر المشروع بأكمله.

الأنشطة الوهمية (Dummy Activities):

في بعض الحالات نجد أن أنشطة معينة تشارك بعضها البعض في بعض الأنشطة السابقة وليس كلها. انظر إلى الجدول التالي:

الأنشطة السابقة	النشاط
T , U, V	X
T, V	Y

في هذه الحالة فأننا V, U, T ويكون بداية لنشاط V, U, U, U و يكون بداية لنشاط V و نشاط V و نشاط V و نشاط V و نشاط سابق. وفي هذه الحالة يجب أن نضع نشاط و همي (Dummy Activity) و نعطيه صفرا من الزمن (أي أن V ويوضع على شكل خط متقطع في شبكة V الرسم التالي يوضح هذه الحالة:

وبافتراض أن المدة المتوقعة للنشاط U=9 , V=8 , T=6 فإنه بمجرد أن يقع الحدث 5 (مثلا) فإن الحدث 6 سيقع مباشرة إذا كان النشاط U قد اكتمل . أي أن الحدث 6 سيقع متى ما انتهت جميع الأنشطة الثلاثة.

الأنشطة الوهمية تعامل معاملة الأنشطة العادية الأخرى ، وحيث أن المدة اللازمة لإنجاز ها دائما يساوي الصفر فإن هذه الأنشطة الوهمية من المستحيل أن تتسبب في تأخير المشروع.

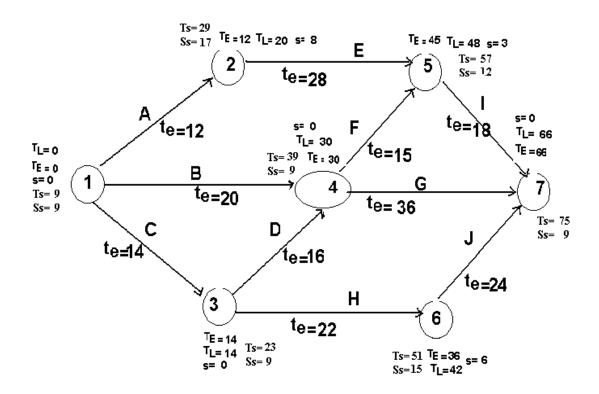
جدولة الأوقات "Schedule times"

في حالات كثيرة في الواقع يجب أن ينتهي بناء المشروع في مدة محددة . مثلا ، صاحب الشركة يريد أن ينتقل إلى المقر الجديد في تاريخ معين ، و الانتهاء من بناء المقر في ذلك الوقت يكون بالأهمية بمكان في المثال السابق

تعریف: T_S ترمز للوقت المتأخر المسموح به لإكمال نشاط معین أو حدث معین بدون تأخیر فی المشروع بأكمله عن التاریخ المحدد له.

تعريف: $S_{\rm S}$ هو الفائض الثاني ($T_{\rm L}-T_{\rm S}$) وهو عبارة عن الفرق بين الوقت المتأخر المسموح به لإكمال نشاط أو حدث معين بدون التأثير على التاريخ المحدد لتسليم المشروع - الوقت المتأخر المسموح به لإكمال نشاط أو حدث معين بدون التأثير على التاريخ المحدد لاكتمال المشروع.

لذلك فإن $T_{\rm S}$ للحدث الأخير يساوي تاريخ التسليم أو التاريخ المقرر أن ينتهي فيه المشروع . جميع قيم $T_{\rm S}$ للأحداث الأخرى ستحسب بدقة إذا استخدمنا تاريخ التسليم كأساس لحساب الأحداث الأخرى.


مثلا افترض أن المشروع والذي نحن بصدده مطلوب له أن ينتهي قبل اليوم ال - 75. والمشروع كما قدرنا يتطلب فقط 66 يوما لإنهائه. لذلك فإن كل قيم T_S هي عبارة عن قيم T_L التي حصلنا عليها من قبل بعد إضافة T_S (وهي 75-66 =9) أيام (T_S عن قيم T_S و كذلك فإن الفوائض الثانية هي عبارة عن الفوائض الأولى بعد إضافة T_S أي أن T_S أي أن T_S

قيم $S_{\rm S}$ وكذلك قيم $T_{\rm S}$ لجميع الأنشطة هي كما يلي:

		مي د چي.	بجي ، د ــــــــــــــــــــــــــــــــــ		3 . 3
Schedule	Schedule time	الأوقات الفائضة	Latest	Earliest	النشاط
(S_S)	(T_S)	Slacks(T _L -	Allowable (Expected	
$S_{S=}T_{S-}$	$= T_{L+9}$	T _E)	الوقت T_{L} ال	Completion	
T _E	- L1)	L,	المتأخر	time (T _E)	
1 E			المتأخر المسموح به	الوقت المبكر المتوقع	
				المتوقع	
17	29	8	20	12	Α
19	39	10	30	20	В
9	23	0	14	14	C
9	39	0	30	30	D
17	57	8	48	40	Е
12	57	3	48	45	F
9	75	0	66	66	G
15	51	6	42	36	Н
12	75	3	66	63	I
15	75	6	66	60	J

القيمة 9 للحدث 1 (حدث البداية) تفسر على أننا بإمكاننا أن نبدأ في اليوم التاسع وليس ألان ومع ذلك نستطيع أن نكمل المشروع قبل اليوم ال 75 ،إذا ماتمً كل نشاط حسب المقدر له.

الشبكة التالية توضح قيم $S_{\rm S}$ وكذلك قيم $T_{\rm S}$ لجميع الأحداث:

"Variable time estimate " استخدام الأوقات المقدرة

المدة التي استخدمناها لكل نشاط في السابق هي عبارة عن توقع وتخمين وليس شيء مؤكد. وفي الحقيقة أن الأنشطة قد لا تأخذ نفس الفترة التي افترضناها. في بعض الأحيان قد تأخذ وقت أطول أو اقصر من الفترة المتوقعة. لذلك ،فلكي يكون توقعنا اقرب إلى الحقيقة ،فإنه يجب استخدام بعض التوزيعات الاحتمالية. ومن أفضل التوزيعات الاحتمالية على الإطلاق في هذا المجال ،والذي يتناسب استعماله مع طبيعة طول الفترة الزمنية التي يتطلبها إنجاز نشاط من الأنشطة ،هو توزيع "beta".

افترض أننا وضعنا ثلاث فترات لتقدير الزمن اللازم (te) بدلا من تقدير واحد.

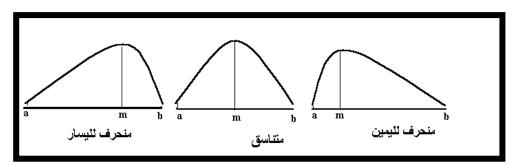
(Optimistic estimate) التقدير المتفائل

وهي اقصر فترة ممكنة، بحيث أن الفترة الصحيحة التي يأخذها نشاط معين يجب أن تكون أطول من هذا التقدير بنسبة 99%. افترض إننا رمزنا بالرمز (a) لهذا التقدير.

2- التقدير الأكثر احتمالا (Most likely estimate)

وهي الفترة التي تقابل اكبر احتمال ممكن أن يأخذه هذا النشاط. وهذا هو المنوال لتوزيع الفترات التي يأخذها هذا النشاط "Mode" وليس بالضرورة المتوسط الحسابي "Mean" ، افترض أننا اسمينا هذا التقدير "m".

(Pessimistic estimate) -3


وهي أطول فترة ممكنة، بحيث أن الفترة الصحيحة التي يأخذها نشاط معين يجب أن تكون اقصر من هذا التقدير بنسبة 99%. افترض إننا رمزنا بالرمز "b" لهذا التقدير . توزيع بيتا له خاصية واحدة جعلته الأنسب والأفضل لوصف المدة الزمنية التي يتطلبها إنجاز نشاط من الأنشطة. هذه الخاصية هي انه إذا عرفنا القيم الثلاث (أي التقدير المتشائم) فإننا نستطيع معرفة

المتوسط الحسابي أو المدة المتوقعة (t_e)، و كذلك التباين σ^2_e لهذه الفترة كما يلي:

$$t_e = \frac{a+4m+b}{6}$$

$$\sigma_{e}^2 = \left(\frac{b-a}{6}\right)^2$$

توزيع بيتا يختلف عن التوزيع الطبيعي بأنه ليس بالضرورة متناسق حول الوسط. وذلك لأنه بإمكاننا الحصول على تقدير متفائل "a" قريب جدا من التقدير الأكثر احتمالا "m" والتقدير المتشائم "b" يكون بعيد جدا عن التقدير الأكثر احتمالا، أو العكس. وهذا يعرف في الإحصاء بالتوزيع المنحرف "Skewed distribution" الشكل التالي يوضح الأشكال الثلاثة الممكنة لفترات الأنشطة حسب توزيع بيتا:

الآن دعنا نستخدم هذه التقديرات الثلاث (أي التقدير المتفائل، التقدير الأكثر احتمالا، التقدير المتشائم) في المشكلة السابقة ، بدلا من التقدير الأول. كذلك المتوسط الحسابي أو الفترة المتوقعة $_{\rm c}$ والتباين $_{\rm c}$ في فترة الأنشطة.

 σ^2_e الجدول التالي يوضح المتوسط الحسابي أو الفترة المتوقعة والتباين المتوسط الخسابي أو الفترات جميع الأنشطة:

التباين	المدة المتوقعة	التقدير	التقدير الأكثر	التقدير	النشاط
		المتشائم	احتمالا	المتفائل	
1.78	12	16	12	8	A
9	20	31	19	13	В
4	14	20	14	8	C
16	16	28	16	4	D
40.11	28	57	23	19	Е
4	15	21	15	9	F
16	36	48	36	24	G
7.11	22	30	22	14	Н
2.78	18	23	18	13	I
11.11	24	34	24	14	J

مثلا لحساب الوقت المتوقع و التباين للنشاط B فإن:

$$t_e = \frac{13 + 4(19) + 31}{6}$$
 120/6 = 20

$$\sigma_{e}^{2} = \left(\frac{31-13}{6}\right)^{2}$$
 (3)² = 9

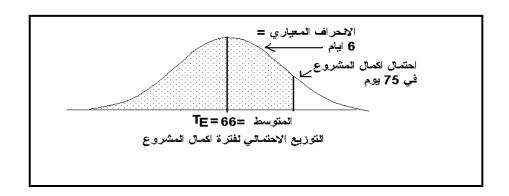
لاحظ أن القيم الثلاث التي وضعناها (أي التقدير المتفائل، التقدير الأكثر احتمالا، التقدير الأكثر احتمالا، التقدير المتشائم) في الجدول السابق، وضُعت لكي تتفق مع القيم المتوقعة السابق، ولذلك فإن عند التعويض في (te) فإن القيم جاءت كالسابق بدون تغيير.

فترة المشروع (Project Duration)

من أهم الأسئلة المطلوب الإجابة عليها من قبل المشرفين على المشروع ، هي أسئلة تتعلق بالوقت الذي ينتهي فيه المشروع. و بالتحديد السؤال هو بنسبة كم نحن واثقون بان المشروع سينتهي في وقت أو تاريخ معين؟

وفي المثال الحالي ممكن أن نُسأل: بنسبة كم نحن واثقون بأننا سنكمل المشروع قبل اليوم الـ 75؟

بإمكاننا إرفاق مقياس للاحتمالية هذه ، مثل التباين و الانحراف المعياري للأوقات التي حسبناها وذلك مثل التوقيت المبكر للأنشطة أو الأحداث. ولكن نحن الآن بصدد التركيز على معرفة احتمال وقوع الحدث الأخير (حدث 7) و هو حدث الانتهاء من المشروع.


تعريف : σ^2_E هو التباين في فترة إكمال نشاط من الأنشطة أو حدث من الأحداث . ألان دعنا نقوم بصياغة وقت إتمام المشروع على انه يُتوقع أن يكتمل في خلال σ^2_E يوما و بتباين σ^2_E . مع العلم أن تقدير σ^2_E يوما جاء من السابق ومن مجموعة الأنشطة التي تكون المسار الحرج.

إذا كان فترة إتمام المشروع هي عبارة عن مجموع 3 متغيرات عشوائية ، فإن توزيع هذه الفترة عبارة عن مجموع هذه الثلاث المتغيرات العشوائية المستقلة. وباستخدام نظرية النزعة المركزية "Central limit theory" التي تقول: انه عند جمع عدة متغيرات عشوائية مستقلة ، بغض النظر عن توزيعاتها الاحتمالية ، فإن الناتج هو متغير عشوائي يقترب من التوزيع الطبيعي. وكلما زاد عدد هذه المتغيرات العشوائية المستقلة هذه ، كلما اقترب الناتج إلى التوزيع الطبيعي. ومتوسط هذا التوزيع هو عبارة عن مجموع متوسطات المتغيرات العشوائية (أي فترات الأنشطة)، و تباينه هو عبارة عن مجموع تباينات هذه المتغيرات العشوائية.

لذلك فإن:

متوسط المدة التي يأخذها المشروع = 14 +16 + 36 يوما (كما في السابق) وتباينه يكون σ^2 = 16 + 16 + 16 = 36 يوما و الانحراف المعياري = σ^3 = 6 يوم

لذلك فإنه من الممكن أن نتصور المدة التي يأخذها إكمال المشروع و احتمال اكتمال في أو قبل المدة المقررة وهي 75 يوما كما في الشكل الاحتمالي التالي:

ولحساب احتمال إكمال المشروع في 75 يوما فإنه يجب استخدام التوزيع الطبيعي المعياري (أي بمتوسط = صفر و انحراف معياري = 1) والسؤال هو ما هو الاحتمال بان نأخذ عينة عشوائية من مجتمع طبيعي معياري بمتوسط 66 وانحراف معياري 6 ، وتكون هذه العينة اقل من أو يساوي 75 ؟ وللوصول للجواب فإنه أو لا يجب الحصول على قيمة z (التحويله إلى متغير عشوائي معياري طبيعي).

$$z = \frac{75 - 66}{6} = 1.5$$

لذلك فإن 75 يوما تقابل انحراف معياري 1.5 فوق المتوسط. وبالرجوع إلى جدول التوزيع الطبيعي المعياري التجميعي (Cumulative Standard Normal) فإننا نجد أن القيمة 1.5 تقابل احتمال 0.9332 . أي أن احتمال أن يكتمل المشروع قبل اليوم ال 0.9332 ، وباعتبار أن الفترة المتوقعة لإكمال

المشروع هو 66 يوما حُدد بواسطة الأنشطة التي تقع على المسار الحرج (أي -G- D-C

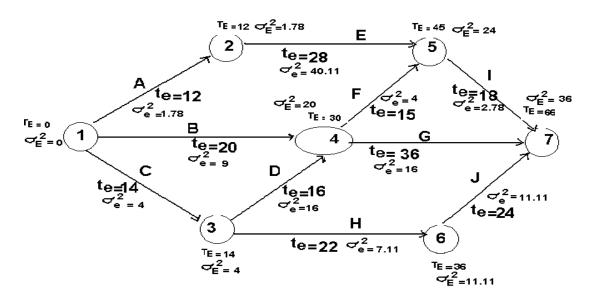
مع إننا افترضنا أن الفترة المتوقعة لإكمال المشروع هي 66 يوما، ألا أن ذلك قد لا يحدد الوقت الصحيح ، خاصة أن بعض المسارات الأخرى قد يأخذ وقت أطول من المسار الحرج أو أن المسار الحرج قد يكتمل في وقت اقل. أحسب احتمال أن يأخذ المسار A-E-I وقتا أكثر من A يوما.

"Event occurrence times " أوقات وقوع الحدث

فترة إكمال المشروع هي تعادل الوقت المبكر TE لوقوع الحدث الأخير، وخاصة لأن T_E للحدث الأول بدأ من الصفر. وبإمكاننا قياس التباين $\sigma 2_E$ المرافق للوقت المبكر T_E لكل حدث. وسنستخدم تباين فترة النشاط $\sigma 2e$ للحصول على تباين الحدث $\sigma 2e$ فلكل حدث معين ، فإن التباين في وقوع الحدث $\sigma 2e$ التباين $\sigma 2e$ التباين المدث ($\sigma 2e$) للحدث السابق له مباشرة + التباين ($\sigma 2e$) لفترة النشاط الذي يربط بين هذين الحدثين.

التباين للحدث الأول $\sigma^2_{\rm E}=0$ ، حسب التعريف

التباين للحدث الثاني $\sigma^2_{\rm E}$ =تباين الحدث الأول + تباين النشاط الذي يربط الحدث 2 بالحدث 1 (أي تباين النشاط A)


1.78 = 1.78 + 0 =

كذلك الحدث 4 = 4 + 0 = 4 أيام

D , B

إنه النشاط D وذلك لان $T_{\rm E}=30$ هي عبارة عن جمع D=16+30 يوما

شبكة PERT التالية توضح التباين لكل الأحداث:

$$z = \frac{35 - 30}{\sqrt{20}} = 1.12$$

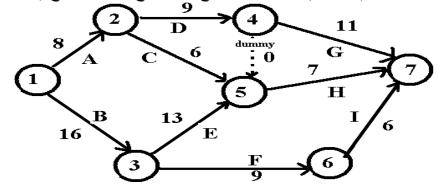
وبالرجوع إلى جدول التوزيع الطبيعي التجميعي ، بإمكاننا إيجاد احتمال أن: $z \leq 1.12$

و هكذا ممكن أن نكمل حساب التباين لجميع الأحداث الباقية ، وملاحظة أن التباين للحدث الأخير (7) يجب أن يساوي التباين الخاص بالفترة المتوقعة لإنهاء المشروع بأكمله.

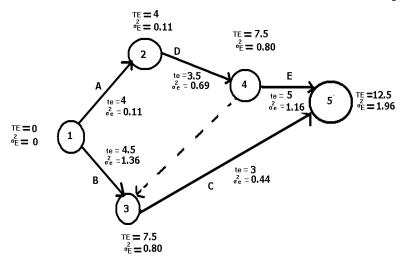
أوقات إتمام النشاط (Activity-Completion Times) بإمكاننا أيضا حساب التباين لكل نشاط على حدة ، والقاعدة هي كالتالي: تباين ($\sigma^2_{
m E}$) نشاط معين $\sigma^2_{
m E}$ التباين $\sigma^2_{
m E}$ التباين لفترة $\sigma^2_{
m e}$

الجدول التالي يوضح الوقت المتوقع ($T_{\rm E}$) والتباين لإكمال الأنشطة:

		- 5.
التباين Variance	Earliest Expected Completion time (T _E)	النشاط
$\sigma^2_{\rm E}$	الوقت المبكر المتوقع	
1.78	12	A
9	20	В
4	14	C
20	30	D
41.89	40	Е
24	45	F
36	66	G
11.11	36	Н
26.78	63	I
22.22	60	J


مسائل محلولة على أسلوب تقييم البرامج ومراجعتها وطريقة المسار الحرج (CPM)

 (تخطيط منشآت سياحية) شركة المنتجعات الوطنية قامت بشراء ارض مساحتها 16 كم 2 بمدينة الرياض لإقامة استراحات طبيعية و أشجار وملاعب أطفال ومسطحات خضراء و مائية و كانت الأنشطة اللازمة لتخطيط الأرض و تسويتها وتقسيمها و زراعتها وتشجيرها و بناءها يتطلب إنجاز الأنشطة التالية:

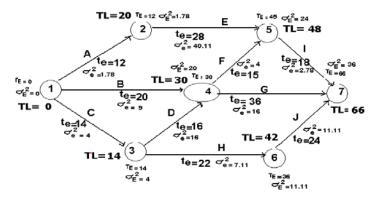

النشاط السابق (predecessor activities)	النشاط (Activity)
لا يوجد	A
لا يوجد	В
A	C
A	D
A,B	Е
B,A	F
C,E	G
D,G	Н
E	I
F	K

المطلوب رسم شجرة بيرت فقط

2. (تخطيط أحداث المشروع) إذا كانت الأوقات المتوقع (t_e) هي كما هو على شبكة بيرت التالية. المطلوب استخراج الوقت المبكر (T_E) والمتأخر (T_E) والفوائض (Slacks) لأحداث المشروع واستخراج المسار الحرج (CPM):

3. إذا كانت الأوقات المتوقعة والتباين للأنشطة و الإحداث لأحد المشاريع هي كالتالي:

المطلوب:

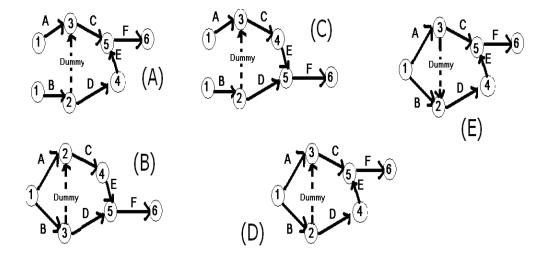

أ- حساب احتمال أن ينتهي المشروع في خلال 14 يوما (14 يوم أو اقل)؟

ب - احتمال أن ينتهي المُشروعُ في خلَّال 10 أيام (10 أيام أو اقل) ؟

. ج - احتمال أن ينتهي النشاط D في مدة تتراوح بين 5 إلى 10 أيام؟

ر - احتمال أن ينتهي النشاط D في خلال 10 أيام؟

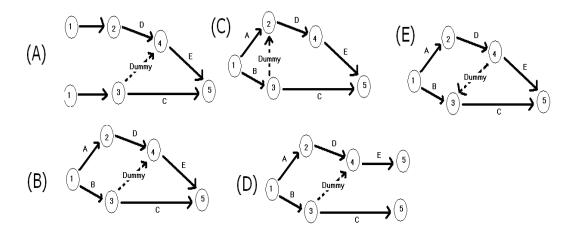
4. إذا كانت شبكة _ خارطة _ PERT شاملة الأوقات المتوقعة والتباين للأنشطة هي كالتالي:

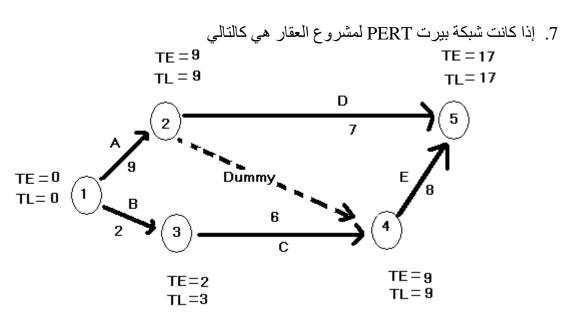

المطلوب:

حساب احتمال أن ينتهي المشروع في فترة لا تقل عن 46 يوم؟ حساب احتمال أن ينتهي المشروع في فترة لا تزيد عن 86 يوم؟ حساب احتمال أن يبدأ النشاط G في فترة لا تزيد عن 40 يوما؟ حساب احتمال أن يبدأ النشاط G في فترة تتراوح بين 30 إلى 50 يوما؟

5. إذا كانت الأنشطة و الأنشطة السابقة لمشروع تسويق منتج هي كالتالي

	y
الأنشطة السابقة (Predecessors)	النشاط(Activities)
لا يوجد	A : تدريب العمال
لا يوجد	B : شراء الآلات
A , B	C: إنتاج المادة (1)
В	D: إنتاج المادة (2)
D	E: اختبار المادة (2)
C, E	F: مزج المادتين (1
	(2:

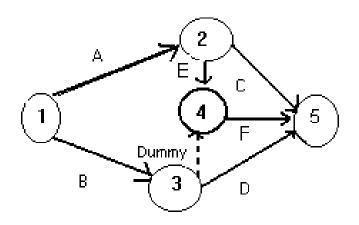

والمطلوب اختيار الرسم الصحيح لشبكة PERT من بين الرسوم التالية:



6. إذا كانت الأنشطة و الأنشطة السابقة لمشروع الجزيرة هي كالتالي:

الأنشطة السابقة (Predecessors	النشاط(Activities)
لاً يوجد	A : تدريب العمال
لا يوجد	B : شراء الألات
В	C: إنتاج المادة (1)
A	D: إنتاج المادة (2)
D,B	E: اختبار المادة (2)

والمطلوب اختيار الرسم الصحيح لشبكة PERT من بين الرسوم التالية:

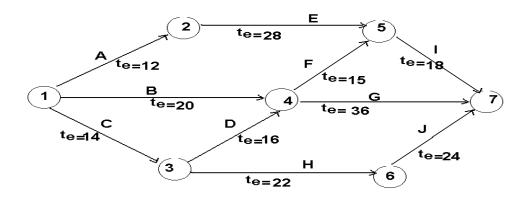

المطلوب اختيار الأنشطة التي تقع على المسار الحرج CPM

- a) A, ,Dummy,D
- b) A,Dummy,E
- c) B,C,D
- d) B,C,E
- e) A,Dummy, C,B

8. إدارة مشاريع إذا كانت الأنشطة والفترات المتوقعة بالأسابيع لمشروع الجزيرة هي كالتالي:

				ي.	النشاط
	te		الفترات المتوقعة		
		المتشائم	الأكثر	المتفائل	
		(b)	احتمالا (m)	(a)	
	2.75	3.5	3	1	A
	2	3.5	2	0.5	В
	4.5	8	4	3	C
	5.5	10	5	3	D
	5.5	9	5	4	Е
	3.5	4	3.5	3	F

المطلوب آلاتي: بالاستعانة بالجدول السابق وبالرسم المرفق المطلوب:


أ - حساب الوقت المبكر والمتأخر للأحداث و للأنشطة وتحديد المسار الحرج؟ ب حساب احتمال أن ينتهي المشروع في فترة تتراوح بين 10 إلى 15 أسبوعا؟ ج - احتمال أن ينتهي المشروع في فترة لا تقل عن 14 أسبوع (أي 14 أسبوعا أو أكثر)؟

د- آحتمال أن يبدأ النشاط d في مدة لا تزيد عن 3 أسابيع؟

حل مشكلة Pert و CPM باستخدام الحاسب

حل مشاكل Pert و CPM باستخدام اكسل (Excel) هنا نسترجع المشكلة الخاصة بشركة سدير السابقة و ملخص المشكلة في الجدول و خريطة بيرت (PERT) التاليتين والتي تم حلها باستخدام شبكة Pert بالتفصيل:

	ا الحاد في ا	(= ====)
المدة المتوقعة	الأنشطة السابقة	النشاط
Expected duration (t _e)		
12	لا يوجد	A
20	لا يوجد لا يوجد	В
14	لا يوجد	C
16	C	D
28	A	E
15	D, B	F
36	D, B	G
22	C	Н
18	E, F	I
24	Н	J

و المطلوب حل المشكلة و تحديد المسار الحرج والوقت المتوقع للانتهاء باستخدام برنامج اكسل (EXCEL).

لحل المشكلة يتعين علينا إتباع الخطوات التالية لتسهيل عملية الحل: الانتقال إلى برنامج اكسل (EXCEL) و وضع جدول بيرت (PERT) بالشكل التالى:

- اختيار صف وتسميته الأحداث ووضع أرقام هذه الأحداث في هذا الصف.
 - كل خلية من الخلايا تمثل الوقت المبكر لبداية الحدث.
 - نبدأ بوضع القيمة صفر (0) في الخلية الأولى و التي تمثل الحدث رقم 1.
- الخلايا D9:G9 ستكون الخلايا التي يخرج فيها قيم و نتائج الوقت المبكر لكل حدث. وهذا سيكون هو المطلوب من البرامج التوصل إليه وسيكون شكل المشكلة في برنامج اكسل (EXCEL) كالتالي:

- بعد ذلك ندخل شبكة بيرت (PERT) و العلاقة بين الأحداث و الأنشطة في جدول اكسل (EXCEL) بوضع الأنشطة على العمود B و الأحداث على الصف 15 على سبيل المثال.
- حيث أن الأنشطة تمثل في شبكة بيرت (PERT) بمنحنى أو خط يصل بين الحدث السابق و الحدث اللاحق فانه هنا ستوضع هذه العلاقة في الصفوف بحيث يكون لكل نشاط صف واحد.

• كل نشاط سيوضع إمامه الرقم (-1) مقابل الحدث الذي يبدأ به و يوضع أمامه (1) أمام الحدث الذي ينتهي فيه وما عدى ذلك نضع القيمة (0) كما في الشكل التالى:

×									Microsoft Exc	el - بيرت. xls 💂	
	عليمات	كتب سؤالاً للت	I -		بار تعليمات	بيانات لِط	أ <u>د</u> وات	اِج تنسيق	برير <u>ع</u> رض اِدر	_ 📳 مِلف تح	₽×
€ [) 📂 🖼	<u> </u>	🗿 🔼 l 🗳	۶ 🛍 🏻	<u> 🖺 - 🧇</u>	4) +	🥦 Σ 🕶	≜ ↓ ∭	100% - 🕝	<u>"</u> ■ B	- "
г	J21	-	,								
	J	I	Н	G	F	Е	D	С	В	А	
											4
											5
								الإحداث		L	6
		النهاية	_					البداية		<u>سم الحدث</u> رقم الحدث	7
		7	6	5	4	3	2	1		<u>رقم الحدث </u>	8
								0	حداث	، المبكر للام	
											10
								1118		Alle Alves	11
							حره	قات المب الإحداث	شطة و الاو	ביברום פוענ ו	13
		النهاية						الداية			14
		7	6	5	4	3	2	1			15
		ó	0	0	Ö	0	1	1-	Α		16
		ō	ō	ō	1	ō	ō	1-	В		17
		Ō	0	Ō	0	1	Ō	1-	С		18
		0	0	0	1	1-	0	0	D E	.م	19
		0	0	1	0	0	1-	0	E	الانشطة	20
		0	0	1	1-	0	0	0	F] <u> </u>	21
		1	0	0	1-	0	0	0	G	=	22
		0	1	0	0	1-	0	0	Н	1	23
		1	0	1-	0	0	0	0	I		24
₹		1	1-	0	0	0	0	0	J	L	25
	1									ا√ورقة1 ﴿ و	← → №
	ة ا ی حدیس	أ <u>ش</u> كال تلقائية	- / >		A 🕄	<u> </u>		(- <u>A</u> -	=		
										هز	// جا

- بعد ذلك ندخل الوقت أو المدة المتوقعة (te) لكل نشاط أمامه في العمود على سبيل المثال في العمود L . و و يكون في الخلايا (L16:L25) .
- وفي العمود J على سبيل المثال يمكن أن نضع الخلايا الخاصة بالوقت المتأخر المسموح به لكل نشاط أي في الخلايا (J16:J25). ويكون حسب المعادلة التالية: (sumproduct(\$c\$9:\$I\$9,c16:I16). وحساب الوقت المتأخر المسموح به لكل نشاط. مع ملاحظة أن رمز الدولار (\$) وضع بين الإشارات إلى الصف رقم 9 لتثبيت هذه الخلايا و عدم تحرك الإشارة إليها عند التعبئة. و هذه التعبئة سنستخدمها في نسخ الدالة إلى الخلايا الأخرى. حيث نبدأ بالخلية رقم J16 ثم نسحب الخلية من الزاوية السفلى اليسرى مع استمرار الضغط على الماوس حتى نصل إلى أخر خلية.
- في العمود M نضع الفوائض وهي عبارة عن ناتج طرح قيم M 116-L16 وهكذا بالنسبة للعناصر الأخر في نفس العمود.

• وفي العمود رقم K نقوم بإدخال علامات الأكبر من أو يساوي (=<) أي أن الوقت المتأخر المسموح به دائما اكبر من أو يساوي المدة المتوقعة لكل نشاط. و كون الحل عند هذه الخطوة كالتالى:

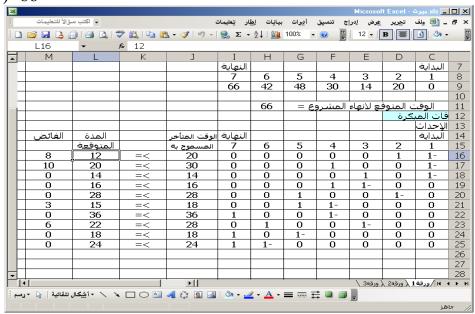
بعد ذلك نحدد الخلية الخاصة بالمدة المتوقع للمشروع ككل وهي عبارة عن الوقت المبكر و المتأخر للحدث الأخير ونضعها في الخلية مثلا H11 وهي نفسها القيمة التي تكون في الخلية 19. ولذلك نضع في الخلية H11 القيمة (19).

الانتقال إلى Solver في قائمة أدوات Tools ثم ادخل المعطيات التالية:

في خانة الخلية الهدف set target cell ضع 111

في خانة equal to نضع min أي اقل مدة متوقعة

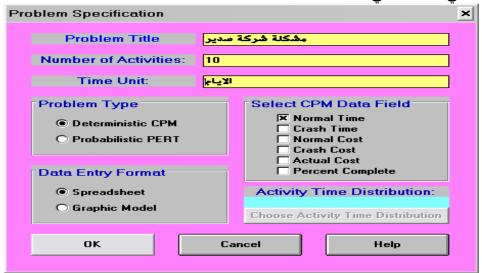
في خانة الخلايا التي يتم تغييرها by changing نضع 19:19 وكذلك القيد 0=.91 وكذلك القيد


J16:J25>=L16:L25

وفي خانة الخيارات Options نضع افتراض نموذج خطي Options وفي خانة الخيارات Solver كالآتى:

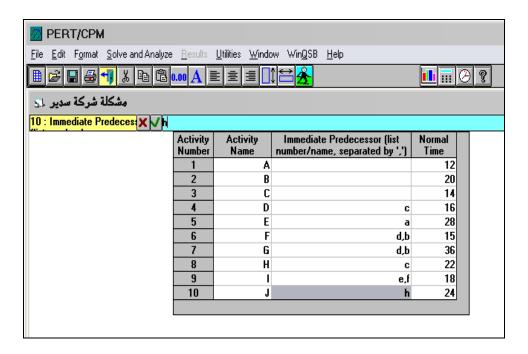
ثم بالنقر على حل Solve ثم موافق Ok نصل إلى الحل وفيها يظهر أن الأوقات المتأخرة المسموح بها لكل حدث هي كما يلي:

TL(1)=0,TL(2)=20,TL(3)=14,TL(4)=30,TL(5)=48,TL(6)=42,TL(7)=66

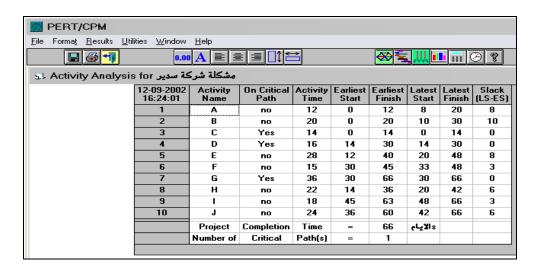


حل مشاكل Pert و CPM باستخدام برنامج

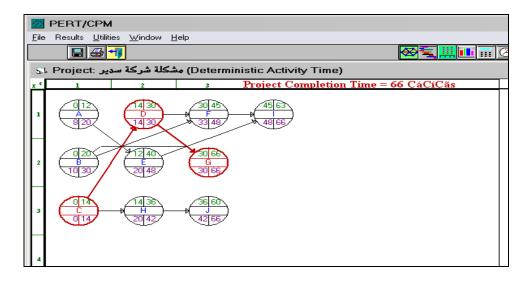
يمكن حل مشكلة شركة سدير السابقة باستخدام برنامج QSB كما يلي: أو لا من قائمة ابدأ (Start) في النوافذ نذهب إلى البرامج (programs) ثم اختيار برنامج QQB وبعد ذلك تخرج لنا قائمة طويلة بتطبيقات البرنامج ونختار منها (Pert/cpm) ثم تخرج لنا نافذة البرنامج كما في الشكل التالي:

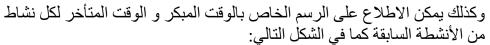


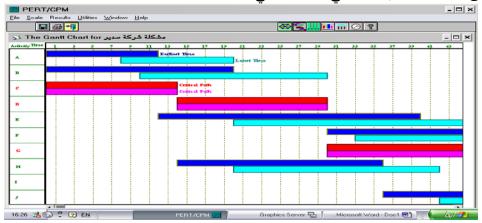
بعد ذلك يتم النقر على الأيقونة الله المشكلة جديدة" ويتم كتابة معلومات المشكلة كما في الشكل التالي:

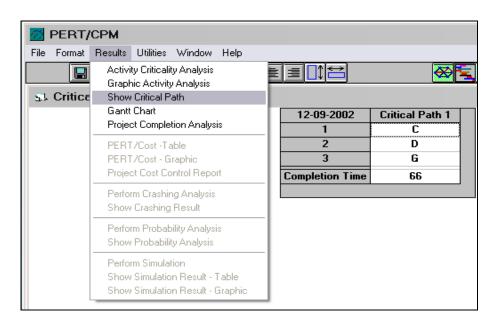


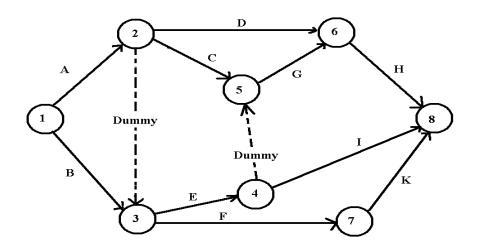
مع العلم بأن Number of activities هي عدد الأنشطة و ن وعية المشكلة (Data Field) و حقل البيانات (Data Field) هي محددة (Normal Time) هو الوقت الطبيعي (Normal Time) بينما وضعنا الهيئة التي ندخل بها البيانات


(Data Entry Format) على شكل جدول (Spreadsheet). وبعد ذلك تخرج لنا نافذة إدخال البيانات كما هي في الشكل التالي:

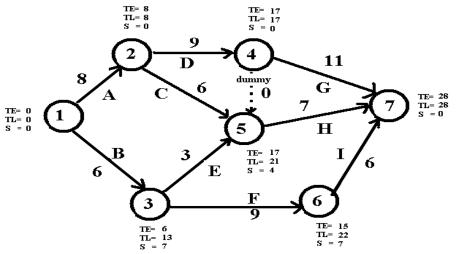



مع العلم أيضا بان رقم النشاط هو (Activity Number) و اسم النشاط هو (Activity name) و الأنشطة السابقة مباشرة هي (Activity name) و الأنشطة السابقة مباشرة هي (Activity name) و يتم وضع فواصل بينهما إذا كانت الأنشطة السابقة أكثر من واحد. وبعد الانتهاء من إدخال البيانات بالكامل نقوم بحل المشكلة من قائمة (Solve and Analyze). و بعد ذلك تخرج لنا نافذة الحل في الصفحة التالية:


ونلاحظ من الحل السابق أن الأنشطة التي تقع على المسار الحرج (CPM) هي الأنشطة (c,d,g) كما يظهر من العامود (Path) و أن الأوقات المبكرة للأنشطة (TE) هي القيم الموجودة في العامود (Project Completion Time) و كذلك الوقت المتوقع لانتهاء المشروع (Project Completion Time) و هي نفسها نفس النتائج التي تحصلنا عليها من قبل باستخدام طريقة بيرت (PERT) . كذلك يمكن الاطلاع على نتائج الحل السابق على خارطة بيرت (PERT) التالية:



كذلك يمكن الحصول على العديد من النتائج المهمة الأخرى باستخدام البرنامج مثل الحصول على جدول تكاليف مشكلة بيرت (PERT) و رسم شبكة التكاليف لمشكلة بيرت (Perobabilities) و كذلك المحاكاة بيرت (Simulation) و كذلك المحاكاة

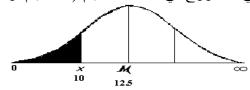


حلول أسئلة تقييم البرامج ومراجعتها وطريقة المسار الحرج (CPM)

.1

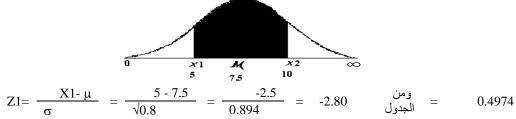
.2

 $G \cdot D \cdot A$ هو المسار الحرج


و. أ- حساب احتمال أن ينتهي المشروع في خلال 14 يوما (14 يوم أو اقل)؟

 $Z = \frac{x - \mu}{\sigma} = \frac{14 - 12.5}{\sqrt{1.96}} = \frac{1.5}{1.4} = 1.07$ ومن الجدول = 0.3577

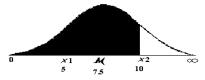
 $P(x \le 14) = 0.5 + 0.3577 = 0.8577$


ب - احتمال أن ينتهي المشروع في خلال 10 أيام (10 أيام أو اقل) ؟

 $Z=-\frac{x-\mu}{\sigma}=\frac{10-12.5}{\sqrt{1.96}}=-\frac{2.5}{1.4}=-1.79$ ومن الجدول = 0.4833

 $P(x \le 10) = 0.5 - 0.4833 = 0.017$

ج - احتمال أن ينتهي النشاط D في مدة تتراوح بين 5 إلى 10 أيام؟

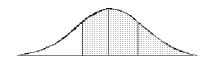

 $Z2=\frac{-\mu 2X}{\sigma}=\frac{-7.510}{\sqrt{0.8}}=\frac{2.5}{0.894}=2.80$ ومن الجدول = 0.4974 $P(5 \le x \le 1) = 0.4974 + 0.4974 = 0.99$

د - احتمال أن ينتهي النشاط D في خلال 10 أيام؟

الاحتمال هو:

$$Z = \frac{X - \mu}{\sigma} = \frac{10 - 7.5}{\sqrt{0.8}} = \frac{2.5}{0.894} = 2.80$$
 $= 0.497$

 $P(x \le 10) = 0.5 + 0.4974 = 0.9974$



4

... 1 -حساب احتمال أن ينتهي المشروع في فترة لا تقل عن 46 يوم؟

$$Z = \frac{x - \mu}{\sigma}$$

$$Z = \frac{46-66}{36} = -.3.33$$

من الجدول p=0.499 0.999=0.999= الاحتمال

2 - حساب احتمال أن ينتهي المشروع في فترة لا تزيد عن 86 يوم؟

$$Z = \frac{x - \mu}{\sigma}$$

$$Z = \frac{86-66}{36} = +.3.33$$

من الجدول p=0.499 0.999=0.999= الاحتمال

3 - حساب احتمال أن يبدأ النشاط G في فترة لا تزيد عن 40 يوما؟

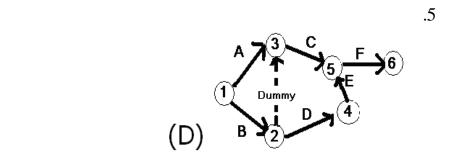
$$Z= \frac{x - \mu}{\sigma}$$

$$Z= \frac{30-40}{20} = +2.24$$

من الجدول p=0.487 0.987=0.487=0.987 الاحتمال

4 - حساب احتمال أن يبدأ النشاط G في فترة تتراوح بين 30 إلى 50 يوما؟

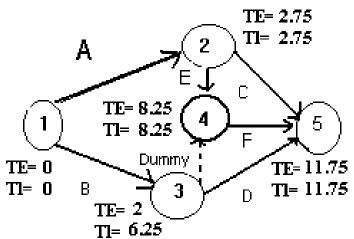
$$Z = \frac{x - \mu}{\sigma}$$


$$Z1 = \frac{30-50}{20} = +4.47$$

$$Z=$$
 $\frac{x-\mu}{\sigma}$

$$Z2 = \frac{30-30}{20} = 0$$

من الجدول p=0.499 0.5 =0+0.499 الاحتمال


(B) 1 B Dummy E 5

.7

b) A,Dummy,E

8.

							.0
TL	TE	σ2	te		توقعة	الفترات الم	النشاط
				المتشائم	الأكثر احتمالا	المتفائل	
				(b)	(m)	(a)	
2.75	2.75	0.17	2.75	3.5	3	1	A
6.25	2	0.25	2	3.5	2	0.5	В
11.75	7.25	0.69	4.5	8	4	3	С
11.75	7.5	1.36	5.5	10	5	3	D
8.25	8.25	0.69	5.5	9	5	4	Е
11.75	11.75	0.027	3.5	4	3.5	3	F

أ- المسار الحرج A,E,F ب. حساب احتمال أن ينتهي المشروع في فترة تتراوح بين 10 إلى 15 أسبوعا؟

$$Z1=\frac{x-\mu}{\sigma}=\frac{10-11.75}{\sqrt{0.887}}=\frac{1.75}{0.942}=-1.86$$
 من الجدول = 0.4686

$$Z2=\frac{x-\mu}{\sigma}=\frac{15-11.75}{\sqrt{0.887}}=\frac{3.25}{0.942}=3.45$$
 من الجدول = 0.4999

 $P(10 \le x \le 5) = 0.4686 + 0.4999 = 0.9686$

ج- احتمال أن ينتهي المشروع في فترة لا تقل عن 14 أسبوع (أي 14 أسبوعا أو أكثر)؟

$$Z=\frac{x-\mu}{\sigma}=\frac{14-11.75}{\sqrt{0.887}}=\frac{2.25}{0.942}=2.38$$
 at 0.4916

 $P(14 \le x) = 0.5 - 0.4916 = 0.0084$

احتمال أن ينتهي المشروع خلال 11 يوم

0.5 - 0.288 = 0.22

د- احتمال أن يبدأ النشاط d في مدة لا تزيد عن 3 أسابيع؟

$$Z=$$
 $\frac{x-\mu}{\sigma}$ $=$ $\frac{3-2}{0.125}$ $=\infty$ $=0.4999$ $+0.5$ $=0.9999$

مرفق رقم (2)

ومعناها بالعربي	مفردات لاتينية	مفردات عربية ومعناها باللاتيني		
A			1	
Activity	النشاط	Equipment Selection	اختيار الهعدات	
Activity Completion				
Times	أوقات إتمام النشاط	Quantitative Methods	الأساليب الكمية	
Arrival Process	عملية الوصول	Powers Or Exponentiation	الأسس	
Arrival Rate	معدل الوصول	Jobs	الأعمال	
Arrivals	عدد الزبائن	Predecessor Activities	الأنشطة السابقة	
Artificial Intelligence	الذكاء الاصطناعي المتغير ات الاصطناعية	Dummy Activities	الأنشطة الوهمية	
Artificial Variables	المتغيرات الاصطناعية	Systems	الأنظمة	
Assignment Problem	مشكلة التعيين أو التخصيص	Stochastic	الأنظمة الاحتمالية	
В		FMS Flexible Manufacturing Systems	الأنظمة الصناعية المرنة	
Branch - And - Bound				
Methods	باستخدام طريقة التفرع	Interarrival Times	الأوقات الفاصلة	
C		FCFS أو FCFS	الأول في الوصول الأول في الخدمة	
CAD (Computer Aided				
Design	التعليم بمساعدة الحاسب	Totals	الإجمالي	
Capacity Of Queue	التعليم بمساعدة الحاسب حجم الصف نظرية النزعة المركزية	Parametric Programming	الإجمالي البرمجة البرامترية	
Central Limit Theory	نظرية النزعة المركزية	Dynamic Programming	البرمجة الديناميكية	
Chain	السلسلة	Mathematical Programming	البرمجة الرياضية	
Clock Time	ساعة توقيت	Nonlinear Programming	البرمجة غير الخطية	
Computer -Aided				
Manufacturing	التصنيع بمساعدة الحاسب	Quadratic Programming	البرمجة من الدرجة الثانية	
Constant	الثابت	Linear Programming	البر مجة الخطبة	
Constraints	صياغة القيود	Robots Control	التُحكم الآلي التحلل	
Continues System	نظام متصل	Degeneracy	التحلل	
Critical Path	المسار الحرج	Quantitative Analysis	التحليل الكمي	
Critical Path Method CPM	طريقة المسار الحرج	Duality	التطابقية أو الثنائية	
Cumulative Normal	طريقة المسار الحرج جدول ا لتوزيع الطبيعي ا	ž		
Distribution Standard	لمعيار ي ا لتجميعي	Differentiation	التفاضل	
D		User Interface	واجهة المستخدم	
Decision Science	علم القرار	Most Likely Estimate	واجهة المستخدم التقدير الأكثر احتمالا	
Decision Support			<u> </u>	
Systems(DSS)	نظم دعم اتخاذ القرار القوانين المعانة	Pessimistic Estimate	التقدير المتشائم التقدير المتفائل	
Declarative Rule		Optimistic Estimate	التقدير المتفائل	
Degeneracy	التحلل	Integration	التكامل	
Demands	الطلب	Exponential Distribution	التوزيع الأسي التوزيع الذكي ونظام	
	.	Intelligent Scheduling And	التوزيع الذكي ونظام	
Destinations	مراكز التوزيع المحددات	Information System	المعلومات التوزيع المنحرف	
Determinates		Skewed Distribution	التوزيع المنحرف	
Deterministic	محددة	Constant	الثابت	
Differentiation	التفاضل	Feasible Solution	الحلول الممكنة	
Dijkstra's Algorithm	خوارزمية دجكسترا	Programming Languages	الخاص بالبرمجة	

سرد المصطلحات

ومعناها بالعربي	مفردات لاترنية	بية ومعناها باللاتيني	مفر دات عم
	معردات لا بيب	بيا ومعالد بالرنيق	معردات عر
\mathbf{A}			1
Activity	النشاط	Equipment Selection	اختيار الهعدات
Activity Completion			
Times	أوقات إتمام النشاط	Quantitative Methods	الأساليب الكمية
Arrival Process	عملية الوصول	Powers Or Exponentiation	الأسس
Arrival Rate	معدل الوصول	Jobs	الأعمال
Arrivals	عدد الزبائن	Predecessor Activities	الأنشطة السابقة
Artificial Intelligence	الذكاء الاصطناعي	Dummy Activities	الأنشطة الوهمية
Artificial Variables	المتغيرات الاصطناعية	Systems	الأنظمة
Assignment Problem	مشكلة التعيين أو التخصيص	Stochastic	الأنظمة الاحتمالية
В		FMS Flexible Manufacturing	so his is his take
		Systems	الأنظمة الصناعية المرنة
Branch – And – Bound	e sellete i iver i	Interessive 1 Times	21 1:N -1: \$11
Methods	باستخدام طريقة التفرع	Interarrival Times	الأوقات الفاصلة
\mathbf{C}			الأول في الوصول الأول
		FCFS أو FCFS	في الخدمة
CAD le Computer Aided	that the		h
Design	التعليم بمساعدة الحاسب حجم الصف نظرية النزعة المركزية	Totals	الإجمالي البرمجة البرامترية
Capacity Of Queue	حجم الصف	Parametric Programming	
Central Limit Theory	نظريه النزعه المركزيه السلسلة	Dynamic Programming	البرمجة الديناميكية
Chain		Mathematical Programming	البرمجة الرياضية البرمجة غير الخطية
Clock Time	ساعة توقيت	Nonlinear Programming	البرمجه غير الخطيه
Computer –Aided	the test		saatis til s ti
Manufacturing	التصنيع بمساعدة الحاسب الثانت	Quadratic Programming	البرمجة من الدرجة الثانية البرمجة الخطية
Constant	•	Linear Programming	
Constraints	صياغة القيود نظام متصل	Robots Control	التحكم الآلي التحلل
Continues System		Degeneracy	النخال التحليل الكمي
Critical Path	المسار الحرج	Quantitative Analysis	التحليل الكمي
Critical Path Method	11 1 11 25 1	Develies	التطابقية أو الثنائية
CPM	طريقة المسار الحرج جدول التوزيع الطبيعي ا	Duality	النطابقية او التنانية
Cumulative Normal Distribution Standard	جدوں ا لنوریع الطبیعي ا لمعیار ي ا لتجمیعي	Differentiation	التفاضل
	سعياري التجميعي	Differentiation	التعاصين
\mathbf{D}		User Interface	ماحمة المستخدم
Decision Science	علم القر ار	Most Likely Estimate	واجهة المستخدم التقدير الأكثر احتمالا
Decision Support	J.J (1.100t Elitery Estimate	
Systems(DSS)	نظم دعم اتخاذ القر ار	Pessimistic Estimate	التقدير المتشائم
Declarative Rule	نظم دعم اتخاذ القرار القوانين المعلنة	Optimistic Estimate	التقدير المتشائم التقدير المتفائل
Degeneracy	التحلل	Integration	التكامل
Demands	الطلب	Exponential Distribution	التو زيع الأسي
	<u> </u>	Intelligent Scheduling And	التوزيع الآسي التوزيع الذكي ونظام
Destinations	مراكز التوزيع	Information System	المعلومات
Determinates	مراكز التوزيع المحددات	Skewed Distribution	المعلومات التوزيع المنحرف
Deterministic	محددة	Constant	الثابت
Differentiation	التفاضل	Feasible Solution	الحلول الممكنة
Dijkstra's Algorithm	خوارزمية دجكسترا	Programming Languages	الخاص بالبرمجة

Discrete Event	gates here have	Chain	الساسلة
Simulation Discrete System	نماذج المحاكاة المتقطعة نظام متقطع	Chain Just-I N-Time	السلسلة الصنع في وقته
Dual Problem	المشكلة المرافقة	Demands	الطلب الطلب
Duality	التطابقية أوالثنائية	Supplies	العرض
Dummy Activities	الأنشطة الوهمية	Declarative Rule	القوانين المعلنة
Dummy Points	نقاط و همية	Shipping Allocation	الكمية المنقولة
Dummy Supply Point	عرض و همي	Logarithm Variable Mix	اللوغاريتمات
Duration	المدة	Variable Mix	المتغيرات الحرة القيمة
Dynamic Programming	البرمجة الديناميكية	ام الحاسبة Surplus Variables	علم المتغيرات الزائدة و استخد
Dynamic Simulation	ند ذه ، حاکاة ديناييک	Artificial Variables	المتغدد استالم ذاعية
T.	<u> </u>		
E		Slack Variables	المتغيرات الفائضة
Earliest Expected			المتغيرات غير الداخلة في
Completion Time TE	الوقت المبكر المتوقع للانتهاء	Nonmix Variables	الحل اعات
Equipment Selection	اختيار الأدوات أوقات وقوع الحدث	Simulation	المحاكاة المحددات
Event Occurrence Times Exchange Coefficient	اوفات وفوع الحدت معامل التغيير	Determinates Duration	المحددات المدة
Exchange Coefficient Exchange Ratio	معامل التغيير معدل التغيير	Expected Duration	المدة المتوقعة
Expected Duration	المدة المتوقعة	Critical Path	المسار الحرج (CPM)
Expected Time Of	 		· · · · · · · · · · · · · · · · · · ·
Completion	الوقت المتوقع للانتهاء	Paths	المسارات أو الطرق المشاكل ذوات القيمتين
Expert Systems	أنظمة الخبراء	Zero-One-Problems	
Exponential Distribution	التوزيع الأسي	Unbound Feasible Solutions	المشاكل غير المقيدة
F			
_		Dual Problem	المشكلة المرافقة
Facility Planning	تخطيط الخدمات	Sources	المصادر
Feasible Solution	مجال الحل الممكن	Matrixes	المصفوفات
First Come First Served	الأُول في الوصول الأول في الخدمة	Activity	النشاط
FCFS Flexibility	الحدمه تقنية المرونة	Activity Limits	النساط النهايات
Flexible Manufacturing	تعلیه انمرود-	Earliest Expected	النهايات الوقت المبكر المتوقع
System	نظم الصناعة المرنة	Completion Time TE	الربية المبر الموريخ للانتهاء
Fms Flexible		•	•
Manufacturing Systems	الأنظمة الصناعية المرنة	Earliest Expected Time	الوقت المبكر المتوقع الوقت المتأخر المسموح
F 1.0	1 . 1 the tir.	T	الوقت المتأخر المسموح
Formulation	صياغة المشكلة رياضيا	Latest Allowable Tl	به
G			الوقت المتأخر المسموح
J		Latest Allowable Time	به
Course I		Expected Time Of	a month of the officer to
Gauss Jordan Gemory Methods	معادلة قس جور دن طريقة قومري	Completion Optimized Production	الوقت المتوقعللانتهاء أمثلية الإنتاج
Goal Programming	طريقه قومري بر مجة الهدف	Hardware Production	امتلية الإنتاج أجزاء الحاسب الآلي
Graphical Solution	برمب بهت	11did wait	اجران المسب ادي
Methods	طريقة الحل البياني	Shadow Prices	أسعار الظل
		Program Evaluation And	أسعار الظل أسلوب تقييم البرامج
Group Technology GT	تقنية المجموعات	Review Technique PERT	ومراجعتها
Н			
11		Reasoning	أنظمة التحليل
Hardware	أجزاء الحاسب الآلي طريقة هانغاريان	Natural Language Systems	أنظمة اللغة الطبيعية
Hungarian Method	طريقة هانغاريان	Expert Systems	أنظمة الخبراء
T			
1		Ctivity Completion Times	أوقات إتمام النشاط
Idle	فارغ	Event Occurrence Times	أوقات وقوع الحدث
Improvement Row	كسب الوحدة الواحدة	Slacks	إضافة الفوائض
Infeasible	غير ممكن		Ļ
<u> </u>		Branch – And – Bond	
Inference Engine	ماكينة الاستدلال	Methods	باستخدام طريقة التفرع
T 6" 1.		Decision Support Systems	
Infinite	لانهائي	DSS	بأنظمة القرارات المساعدة برمجة الأعداد الصحيحة
Initial Simplex Tableau	حدث السمياكس الابتدائي	Integer Programming	برمجه الاعداد الصحيحه أوغير الكسرية
minai Simplex Tableau	جدول ا لسمبلكس الابتدائي برمجة الأعداد الصحيحة	mogor i rogramming	او بعیر انتسری-
Integer Programming	برحب المسرية أوغير الكسرية	Goal Programming	برمجة الهدف
Integration	التكامل	Malti Objectives	بر مجة متعددة الأهداف
Intelligent Scheduling	التوزيع الذكي ونظام	uu Oojeenves	برهب سند د
And Information System	موريع مدي وسم موالمعلومات	Primal	برنامج أولي
Interarrival Rate	معدل الوصول الفاصل	معدل أو متوسط الأوقات الفاصلة	ت ت
	الأو قات الفاصلة	3 3 3 -	- تحديد أعظم زاوية جذابة
Interarrival Times	•		
Inventory Models	نماذج المخزون	Sensitivity Analysis	تحليل الحساسية
J			
J		Network Analysis	تحليل الشبكات
Jobs	الأعمال	Facility Planning	تخطيط الخدمات
	طريقة لا مخزون، إحضار	CAD Computer Aided	تطبيقات الكمبيوتر في
	المواد أثناء الصنع فقط	Design	التصميم تطبيقات الكمبيوتر في
Just-I N-Time	المواد الماء المسلح لمسد		
Just-I N-Time	القواد التار التعلق لفتد		
Just-I N-Time	المواد المال المسلم للقد	Computer – Aided	الصناعة أو التطبيقات
Just-I N-Time K	العقاد العلم عقد	Computer –Aided Manufacturing	
Just-I N-Time K Kan Ban System	سورد سان استقاع مسد		الصناعة أو التطبيقات الصناعية بواسطة

، الحاسب	واستخدام	الإدارة	علم
----------	----------	---------	-----

Logarithm	اللو غاريتمات	Plant Scheduling	توزيع العمل على الأجهزة أو العمال
M		Memoryless Distribution	توزيع ذو خاصية عدم التذكر
Malti Objectives	برمجة متعددة الأهداف		E
Management Science	علم الإدارة	Transportation Tableau	جدول النقل جدول التوزيع الطبيعي ا لمعياري ا
Mathematical Programming	البرمجة الرياضية	Cumulative Standard Normal Distribution	جدول التوزيع الطبيعي ا لمعياري ا لتجميعي
Matrixes	المصفوفات	Initial Simplex Tableau	جدول ا لسمبلكس ا لابتدائي
Maximization	تعظیم توزیع ذو خاصیة عدم	Schedule Times	جدولة الأوقات
Memoryless Distribution	توزيع ذو خاصية عدم التذكر	Quailty	جودة
Minimization	دالة تصغيرية	State	حالة
Minimum Cost Technique	طريقة أقل تكلفة	Capacity Of Queue	حجم الصف
MIS Management Information System	نظم المعلومات الإدارية	Multiple Optimal Solutions	
Mixed Integer Programming Problem	مشكلة البرمجة الصحيحة المختلطة		حلول متعددة مثلى
Modi Modified Distribution Methods	طريقة التوزيع المعدلة	Transportation Algorithm	خطوات طريقة النقل
Monte Carlo Simulation	نموذج مونتي كارلو	Dijkstra's Algorithm	خوارزمية دجكسترا
Most Attractive Corner	تحديد أعظم زاوية جذابة		7
Most Likely Estimate	التقدير الأكثر احتمالا	Objective Function	دالة الهدف
Multi-Objective	متعدد الأهداف	Minimization	دالة تصغيرية
Multiple Optimal Solutions	حلول متعددة مثلي)
N		Unit Profit	ربحية الوحدة الواحدة
Natural Language Systems	أنظمة اللغة الطبيعية		س
		Clock Time	ساعة توقيت

	_		
Network Analysis	تحليل الشبكات		ص
Network Models	نماذج الشبكات	Pivot Row	صف المحور
Non Negative Constraints	قيد عدم السلبية	Constraints	صياغة القيود
Nonlinear Programming	البرمجة غير الخطية	Formulation	صياغة المشكلة رياضيا
Nonmix Variables	المتغيرات غير الداخلة في الحل		ط
Northwest Corner Technique	طريقة الركن الشمالي الغربي	Modi Modified Distribution Methods	طريقة التوزيع المعدلة
O		Simplex Methods	طريقة الحل البياني طريقة الركن الشمالي
Objective Function	دالة الهدف	Critical Path Method CPM	طريقه الركن الشمالي الغربي
Operations Research	علم بحوث العمليات		
Optimistic Estimate	التقدير المتفائل		
Optimized Production	أمثلية الإنتاج	Minimum Cost Technique	طريقة أقل تكلفة
Optimized Production Technology OPT	تقنية أمثلية الإنتاج	Gemory Methods	طريقة قومري
P		Simplex Methods	طريقة السمبلكس
Parametric Programming	البرمجة البرامترية	Hungarian Method	طريقة هانغاريان
Paths	المسارات أو الطرق	Critical Path Method (CPM)	طريقة المسار الحرج
Permanent	نهائى		ع
Pessimistic Estimate	التقدير المتشائم	Arrivals	عدد الزبائن
Pivot Column	عمود المحور	Number Of Services	عدد نقاط الخدمة
Pivot Row			
1 1 1 OL 10 W	صنف المحور	Dummy Supply Point	نقطة عرض وهمي
Plant Scheduling	صف المحور توزيع العمل على المكانن أو العمال الغ	Statistics	نقطة عرض وهمي علم الإحصاء
Plant Scheduling Powers Or Exponentiation	العمال الأسس	Statistics Management Science	علم الإحصاء علم الإدارة
Plant Scheduling	العمال	Statistics	
Plant Scheduling Powers Or Exponentiation Predecessor Activities Primal	العمال الأسس الأنشطة السابقة	Statistics Management Science	علم الإحصاء علم الإدارة
Plant Scheduling Powers Or Exponentiation Predecessor Activities	العمال الأسس الأنشطة السابقة	Statistics Management Science Decision Science	علم الإحصاء علم الإدارة علم القرار
Plant Scheduling Powers Or Exponentiation Predecessor Activities Primal Program Evaluation And Review Technique	العمال الأسس الأنشطة السابقة برنامج أولي أسلوب تقييم البرامج	Statistics Management Science Decision Science Operations Research	علم الإحصاء علم الإدارة علم القرار علم بحوث العمليات
Plant Scheduling Powers Or Exponentiation Predecessor Activities Primal Program Evaluation And Review Technique PERT	العمال الأسس الأنشطة السابقة برنامج أولي أسلوب تقييم البرامج ومراجعتها	Statistics Management Science Decision Science Operations Research Service Process	علم الإحصاء علم الإدارة علم القرار علم بحوث العمليات عملية الخدمة

Q			ف
Quadratic Programming	البرمجة من الدرجة الثانية	Idle	فارغ
Quality	ج ودة	Project Duration	فترة المشروع
Quantitative Analysis	التحليل الكمي		ق
Quantitative Methods	الأساليب الكمية	Non Negative Constraints	قيد عدم السلبية
Queuing Models	نماذج الصفوف		ك
Queuing Theory	نظرية الانتظار (الصفوف	Improvement Row	كسب الوحدة الواحدة
R		·	J
Reasoning	أنظمة التحليل	Infinite	لانهائي
Recursive Equation	معادلة التراجع		م
Robots Control	التحكم الآلي	Temporary	مؤقتة
s		Inference Engine Multiple	ماكينة الاستدلال
Schedule Times	جدولة الأوقات	Objectives	متعدد الأهداف
Sensitivity Analysis	تحليل الحساسية	Multi-Objective	متعددة الأهداف
Service Discipline	نظام الخدمة	Slack Variable	متغير فائض
Service Process	عملية الخدمة	Feasible Solution	مجال الحل الممكن
Service Time	مدة الخدمة لكل زبون	Deterministic	محددة
Services, Number Of	عدد نقاط الخدمة	Service Time	مدة الخدمة لكل زبون
Shadow Prices	أسعار الظل	Destinations	مراكز التوزيع
Shipping Allocation	الكمية المنقولة	Shortest Path Problems	مشاكل الطريق الأقصر
Shipping Cost	تكلفة النقل	Subject To	مشروط أو مقيد بـ
Shortest Path Problems	مشاكل الطريق الأقصر	Pure Integer Programming Problem	مشكلة البرمجة الصحيحة الصافية
Simplex Methods	طريقة السمبلكس	Mixed Integer Programming Problem	مشكلة البرمجة الصحيحة المختلطة
Simulation	المحاكاة	Assignment Problem Transportation	مشكلة التعيين أو التخصيص
Skewed Distribution	التوزيع المنحرف	Problem	مشكلة النقل
Slack Variable	متغير فائض	Knapsack Problem	مشكلة حقيبة الظهر
Slacks	إضافة الفوائض	Recursive Equation	معادلة التراجع

علم الإدارة واستخدام الحاسب

Solution Values	نتائج الحل	Gauss Jordan	معادلةقس جوردن
		Exchange	
Sources	المصادر	Coefficient	معامل التغيير
State	حالة	Exchange Ratio	معدل التغيير
Static Simulation Model	نموذج محاكاة ثابت	Arrival Rate	معدل الوصول
Statistics	علم الإحصاء	Interarrival Rate	معدل أو متوسط الأوقات الفاصلة
			,* <u>\</u>
Stochastic	الأنظمة الاحتمالية		Ŭ
Subject To	مشروط أو مقيد بـ	Solution Values	نتائج الحل
Supplies	العرض	Service Discipline	نظام الخدمة
Surplus Variables	المتغيرات الزائدة	Kan Ban System	نظام کان بان
Systems	الأنظمة	Continues System	نظام متصل
T			
\mathbf{T}		Discrete System	نظام متقطع
Temporary	مؤقتة	Queuing Theory	نظرية الانتظار (الصفوف
	-	Central Limit	
Totals	الإجمالي	Theory	نظرية النزعة المركزية
		Flexible	
T ((D 11	trituate a	Manufacturing	5. 11.5 1. 11.1
Transportation Problem	مشكلة النقل	System Decision Support	نظم الصناعة المرنة
Transportation Algorithm	خطوات طريقة النقل	System Support	نظم القرارات المساند
Transportation Argorithm	عوب عرب بعن	MIS Management	عم ،عر،ر، ع ،عدد
		Information	
Transportation Tableau	جدول النقل	System	نظم المعلومات الإدارية
			.= , ,
		D D:	
•		Dummy Points	نقاط و همية
Unbalanced	غير متوازنة	Network Models	نماذج الشبكات
Unbound Feasible	e. = ti + tei = ti	O : W 11	11 31 -
Solutions	المشاكل غير المقيدة	Queuing Models Discrete Event	نماذج الصفوف
Unit Profit	ربحية الوحدة الواحدة	Simulation	نماذج المحاكاة المتقطعة
User Interface	ربب ، روده ، رودد التفاعل مع المستخدم	Inventory Models	نماذج المخزون
OSCI Interface	الساعل من المسلم	inventory woders	عدي المسرون
\mathbf{V}		Static Simulation	
▼		Model	نموذج محاكاة ثابت
Variable Mix	المتغيرات الحرة القيمة	Dynamic Simulation Model	نموذج محاكاة ديناميكي
			ــــــــــــــــــــــــــــــــــــــ
$ \mathbf{V} $		Monte Carlo	
_		Simulation	نموذج مونتي كارلو
Zero-One-Problems	المشاكل ذوات القيمتين	Permanent	نهائي

مرفق رقم (3) مراجع

المراجع العربية:

- 1. نظرية القرارات التجارية (مفاهيم وطرق كمية)، كاسر نصر المنصور الأردن، دار الحامد 2000 م.
 - 2. نظرية القرارات الإدارية (م دخل كمي في الإدارة)، حسن علي مشرفي. عمّان، دار المسيرة للنشر والتوزيع 1997م.
- عمّان، دار المسيرة للنشر والتوزيع. 1997م. 3. التحليلات الكمية في اتخاذ القرارات ، تركي إبراهيم سلطان،الرياض ، جامعة الملك سعود. 1984م
 - الملك سعود. 1984م . 4. التحليل الكمي في الإدارة (2)، د. إبراهيم مخلوف، مذكرة -، قسم الأساليب الكمية، جامعة الملك سعود.1998
 - 5. دراسات في الأساليب الكمية واتخاذ القرارات. د. منصور البديوي (الدار العربية 1987م).
- 6. نظريات ومسائل في بحوث العمليات. د. ريتشارد برونسون. نيويورك: دار ماكرو هيل للنشر ؛ القاهرة: الدار الدولية للنشر والتوزيع، 1988.

المراجع الأجنبية:

- 1. Operation Research, Application and Algorithms, Wayne L. Winston, Indiana University, 4th Edition, 2004.
- 2. Applied Management Science: A Computer-Integrated Approach for Decision Making: John A., Jr. Lawrence, Barry Alan Pasternak, 1997
- 3. Introduction to Operations Research, Hamdy A. Taha, eighth edition, April 4, 2006.
- 4. Introduction to mathematical programming, Frederick S. Hillier, Gerald J. Lieberman. 2 edition, April 1, 1995

- 5. Production and Operations Analysis, Second Edition, Steven Nahmais, Santa Clara University, IRWIN, March 3, 2008
- 6. Introduction to Mathematical Programming, by N. K. Kwak, Saint Louis University, Marc J. Schniederjurs university of Nebraska, Robert E.Krieger Publishing Company, Malabar, Florida, 1987
- 7. Quantitative Methods for Business Decision with Case. San Jose. State University, The Dryden Press, Sixth Edition, 1994
- 8. Operation Research Principles and Practice, Second Edition, Ravindran Phillips Solberg, July 2007
- 9. Quantitative Decision-Making for Business, Prentice, Hall International editions, Gilbert Gordon, Israel Pressman. Third edition, 1990
- 10.Linear Programming and Network Flows, Second Edition, Makhtar s. Bazaraa, John J. Jarvis, and Hanif D. Sherali, November 2008