
9.4 SINGULAR POINTS

The interest in the concept of a singular point stems from its 
usefulness in (1) classifying ODEs and (2) investigating the feasibility 
of a series solution.

Second-order homogeneous differential equation (in y) is

For finite values of x0 :

1- If the functions P(x) and Q(x) remain finite at x = x0, point x = x0 is 
an ordinary point.

2- If either P(x) or Q(x) diverges as x→x0 but (x −x0)P (x) and

(x − x0)2Q(x) remain finite as x→x0, then x = x0 is called a regular 
singular point.

3- If P(x) diverges faster than 1/(x−x0) so that (x−x0)P (x) goes to 
infinity as x→x0, or Q(x) diverges faster than 1/(x − x0)2 so that (x − 
x0)2Q(x) goes to infinity as x→x0, then point x = x0 is labeled an 
irregular  singularity.



For point x→∞ :

set x = 1/z substitute into the differential equation 







The hypergeometric equation, with regular is taken as the standard 
form. The solutions of the other equations  may then be expressed 
in terms of its solutions, the hypergeometric functions.



9.5 SERIES SOLUTIONS—FROBENIUS’ METHOD 

The method, a series expansion, will always work to obtaining one 
solution of the linear, second-order, homogeneous ODE, provided 
the point of expansion is no worse than a regular singular point.

A linear, second-order, homogeneous ODE

the most general solution may be written as

The constants c1 and c2 will eventually be fixed by boundary 
conditions.



To illustrate, we apply the method the linear oscillator equation :

Now by supposing the solution in the form:  

The task now to find the exponent k and all the coefficients aλ.

1- By differentiating twice  and substituting into the oscillator 
equation 



2- the coefficients of each power of x on the left-hand side of Eq. 
(9.86) must vanish individually.

Starting with the coefficient of the lowest power of x, for λ = 0 , The 
requirement that the coefficient vanish yields indicial

Equation

we must require either that k = 0 or k = 1

The remaining coefficients vanish yields two-term recurrence 
relation, (the coefficient of xk+j (j ≥ 0), of Eq. (9.86). We set λ = j +2

in the first summation and λ = j in the second)



3- From the indicial equation  k=0  or k=1

we first try the solution k = 0, The recurrence relation becomes



If we choose the indicial equation root k = 1, the recurrence relation 
becomes 



This series substitution, known as Frobenius’ method.

However, there are two points about such series solutions

that must be strongly emphasized:

1. The series solution should always be substituted back into the 
differential equation, to see if it works, as a precaution against 
algebraic and logical errors. If it works, it is a solution.

2. The acceptability of a series solution depends on its convergence.



Expansion About x0

It is perfectly possible to replace Series solution with,

The point x0 should not be chosen at an essential singularity (x0 can 
only be an ordinary point or regular singular point) . The resultant 
series will be valid where it converges.



Symmetry of Solutions

Whenever the differential operator has a specific parity or 
symmetry, 

Then any solution may be resolved into even and odd parts,

•Legendre, Chebyshev, Bessel, simple harmonic oscillator, and 
Hermite equations all exhibit this even parity. Solutions of all of 
them may be presented as series of even powers of x and separate 
series of odd powers of x.

•The Laguerre differential operator has neither even nor odd 
symmetry; hence its solutions cannot be expected to exhibit even or 
odd parity



Limitations of Series Approach—Bessel’s Equation

try to solve Bessel’s equation,

Again, assuming a solution of the form

the indicial equation

with solutions k =±n.

the recurrence relation



The final solution take the form:

Notice that

When k =n , this solution identified as the Bessel function Jn(x), 
which has either even or odd symmetry.

When k =−n, and n is not an integer, we may generate a second 
distinct series, to be labeled J−n(x).

But if (n) an integer, the second solution simply reproduces the first.

We have failed to construct a second independent solution for 
Bessel’s equation by this series technique when n is an integer

This method of series solution will not always work.



Regular and Irregular Singularities :

The success of the series substitution method depends on the roots 
of the indicial equation and the degree of singularity of the 
coefficients in the differential equation.

So that, the method works with a regular singularity but failed when 
we had the irregular singularity. Also the method fail when the 
series solution diverges.

Fuchs’ Theorem

which asserts that we can always obtain at least one power-series 
solution, provided we are expanding about a point that is an 
ordinary point or at worst a regular singular point.



9.6 A SECOND SOLUTION

Linear Independence of Solutions
Given a set of functions ϕλ, the criterion for linear dependence is the 
existence of a relation of the form 

in which not all the coefficients kλ are zero, but, if the only solution is kλ = 
0 for all λ, the set of functions ϕλ is said to be linearly independent.

By assuming that  the functions ϕλ are differentiable as needed, we can 
construct  The Wronskian determinant,

If W≠0 The set of functions ϕλ is therefore linearly independent

If  W=0 over the entire range of the variable, the functions ϕλ are linearly 
dependent over this range







A Second Solution: 

Theorem : a second-order homogeneous ODE has two linearly 
independent solutions.

There is no guarantee that, the power series solution of a second-
order homogeneous ODE will yield the two independent solutions.

Ther e are two methods of obtaining such a second independent 
solution:

1- an integral method  

2- power series containing a logarithmic term.



1- an integral method  

Returning to our linear, second-order, homogeneous ODE of the 
general form

For the general case, let us now assume that we have one solution 
by a series substitution, a second independent Solution can be 
written as 

a, b are arbitrary constants. If we have the important special case of 
P(x) = 0, 

This means that, we can take one known solution and by integrating 
can generate a second, independent solution





2- power series containing a logarithmic term:
The second solution of our differential equation may be obtained by 
the following sequence of operations.

1- Express P(x) and Q(x) as

2. Develop the first few terms of a power-series solution, 
3. Using this solution as y1, obtain a second series type solution, y2, 
with Eq. 

And integrating term by term,  



we obtain

where n is zero or a positive integer

The integration indicated in leads to a coefficient of y1(x) consisting 
of two parts:

• A power series starting with x −n.

•A logarithm term from the integration of x−1



Exercises:

9.5.13

9.5.14

9.5.17


