9.3 SEPARATION OF VARIABLES

•Our first technique for solution, splits the partial differential equation of *n variables* into *n ordinary differential equations.*

•*Each separation introduces an arbitrary constant* of separation.

.

•If we have *n variables, we have to introduce n−1 constants, determined* by the conditions imposed in the problem being solved. we manipulate the equation so it was in the form

 $f(y) dy = q(x) dx$.

In other words, we separated x and y so each variable had

its own side, including the dx and the dy that formed the derivative expression $\frac{dy}{dx}$. This is why the method is called "separation of variables."

Not all differential equations are like that. For example, $\frac{dy}{dx} = x + y$ cannot be brought to the form $f(y) dy = g(x) dx$ no matter how much we try.

In fact, a major challenge with using separation of variables is to identify where this method is applicable. Differential equations that can be solved using separation of variables are called separable equations.

Cartesian Coordinates :

In Cartesian coordinates the Helmholtz equation becomes

$$
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + k^2 \psi = 0
$$

The equation separable and we can replace the function by product of three functions

$$
\psi(x, y, z) = X(x)Y(y)Z(z)
$$

Substitute

$$
YZ\frac{d^2X}{dx^2} + XZ\frac{d^2Y}{dy^2} + XY\frac{d^2Z}{dz^2} + k^2XYZ = 0.
$$

Dividing by *ψ = XYZ and rearranging terms*

$$
\frac{1}{X}\frac{d^2X}{dx^2} = -k^2 - \frac{1}{Y}\frac{d^2Y}{dy^2} - \frac{1}{Z}\frac{d^2Z}{dz^2}
$$

x, y, and z are all independent coordinates. Therefore, each side must be equal to a constant, a constant of separation

$$
\frac{1}{X}\frac{d^2X}{dx^2} = -l^2,
$$

$$
-k^2 - \frac{1}{Y}\frac{d^2Y}{dy^2} - \frac{1}{Z}\frac{d^2Z}{dz^2} = -l^2
$$

second separation

$$
\frac{1}{Y}\frac{d^2Y}{dy^2} = -k^2 + l^2 - \frac{1}{Z}\frac{d^2Z}{dz^2}
$$

by equating each side to another constant of separation*, −m2*

$$
\frac{1}{Y}\frac{d^2Y}{dy^2} = -m^2,
$$

$$
\frac{1}{Z}\frac{d^2Z}{dz^2} = -k^2 + l^2 + m^2 = -n^2.
$$

solution should be labeled according to the choice of our constants *l,m, and n;*

$$
\psi_{lm}(x, y, z) = X_l(x) Y_m(y) Z_n(z)
$$

Subject to the conditions of the problem and to the condition $k^2 = l^2$ *+ m² + n² , we may choose l, m, and n as we like*

the most general solution may be taken by taking a linear combination of solutions *ψlm ,*

$$
\Psi = \sum_{l,m} a_{lm} \psi_{lm}.
$$

The constant coefficients *alm are finally chosen to permit to satisfy the boundary conditions* of the problem, which, as a rule, lead to a discrete set of values *l,m.*

Circular Cylindrical Coordinates :

unknown function *ψ dependent on ρ,*ϕ*, and z, the Helmholtz equation becomes*

$$
\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial \varphi^2} + \frac{\partial^2 \psi}{\partial z^2} + k^2 \psi = 0
$$

assume a factored form for *ψ,*

$$
\psi(\rho,\varphi,z) = P(\rho)\Phi(\varphi)Z(z).
$$

Substituting

$$
\frac{\Phi Z}{\rho} \frac{d}{d\rho} \left(\rho \frac{dP}{d\rho} \right) + \frac{P Z}{\rho^2} \frac{d^2 \Phi}{d\varphi^2} + P \Phi \frac{d^2 Z}{dz^2} + k^2 P \Phi Z = 0
$$

Moving the *z derivative to the right-hand side yields*

$$
\frac{1}{\rho P}\frac{d}{d\rho}\left(\rho\frac{dP}{d\rho}\right) + \frac{1}{\rho^2\Phi}\frac{d^2\Phi}{d\varphi^2} + k^2 = -\frac{1}{Z}\frac{d^2Z}{dz^2}.
$$

each side equal to the same constant

$$
\frac{d^2Z}{dz^2} = l^2Z
$$

$$
\frac{1}{\rho P} \frac{d}{d\rho} \left(\rho \frac{dP}{d\rho}\right) + \frac{1}{\rho^2 \Phi} \frac{d^2\Phi}{d\varphi^2} + k^2 = -l^2.
$$

Setting *k ² +l² = n² , multiplying by ρ² , and rearranging terms*

$$
\frac{\rho}{P}\frac{d}{d\rho}\left(\rho\frac{dP}{d\rho}\right) + n^2\rho^2 = -\frac{1}{\Phi}\frac{d^2\Phi}{d\varphi^2}
$$

In the second separaion the right-hand side to *m²*

$$
\frac{d^2\Phi}{d\varphi^2} = -m^2\Phi.
$$

$$
\rho \frac{d}{d\rho} \left(\rho \frac{dP}{d\rho}\right) + \left(n^2\rho^2 - m^2\right)P = 0
$$

the most general solution of the Helmholtz equation is a linear combination of the product solutions:

 $\psi(\rho, \varphi, z) = P(\rho)\Phi(\varphi)Z(z).$

$$
\Psi(\rho,\varphi,z) = \sum_{m,n} a_{mn} P_{mn}(\rho) \Phi_m(\varphi) Z_n(z)
$$

Spherical Polar Coordinates :

Helmholtz equation, again with *k ²constant, in spherical polar* coordinates.

$$
\frac{1}{r^2 \sin \theta} \left[\sin \theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^2 \psi}{\partial \varphi^2} \right] = -k^2 \psi
$$

$$
\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)
$$

dividing by *RΘΦ :*

$$
\frac{1}{Rr^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{1}{\Theta r^2\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \frac{1}{\Phi r^2\sin^2\theta}\frac{d^2\Phi}{d\varphi^2} = -k^2
$$

By multiplying by $r^2 \sin^2 \theta$, we can isolate $(1/\Phi)(d^2 \Phi/d\varphi^2)$ to obtain

$$
\frac{1}{\Phi} \frac{d^2 \Phi}{d\varphi^2} = r^2 \sin^2 \theta \left[-k^2 - \frac{1}{r^2 R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - \frac{1}{r^2 \sin \theta \Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) \right]
$$

let us use −*m² as the separation constant*

$$
\frac{1}{\Phi} \frac{d^2 \Phi(\varphi)}{d\varphi^2} = -m^2
$$

$$
\frac{1}{r^2 R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{1}{r^2 \sin \theta \Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) - \frac{m^2}{r^2 \sin^2 \theta} = -k^2
$$

Multiplying by *r2 and rearranging terms*

$$
\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + r^2k^2 = -\frac{1}{\sin\theta\Theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \frac{m^2}{\sin^2\theta}.
$$

Again, the variables are separated.We equate each side to a constant, *Q,*

$$
\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) - \frac{m^2}{\sin^2\theta} \Theta + Q\Theta = 0,
$$

$$
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + k^2 R - \frac{QR}{r^2} = 0.
$$

general solution may be written

$$
\psi_{Qm}(r,\theta,\varphi) = \sum_{Q,m} a_{Qm} R_Q(r) \Theta_{Qm}(\theta) \Phi_m(\varphi)
$$

 $\psi = \sum_{l,m} a_{lm} \psi_{lm}$ $\nabla^2 \psi = 0$ $\psi_{lm} = \left\{ \begin{array}{c} r^l \\ r^{-l-1} \end{array} \right\} \left\{ \begin{array}{c} P_l^m(\cos \theta) \\ Q_l^m(\cos \theta) \end{array} \right\} \left\{ \begin{array}{c} \cos m\varphi \\ \sin m\varphi \end{array} \right\}^b$ $1.$ 2. $\nabla^2 \psi + k^2 \psi = 0$ $\psi_{lm} = \begin{cases} j_l(kr) \\ n_l(kr) \end{cases} \begin{cases} P_l^m(\cos \theta) \\ Q_l^m(\cos \theta) \end{cases} \begin{cases} \cos m\varphi \\ \sin m\varphi \end{cases}$
3. $\nabla^2 \psi - k^2 \psi = 0$ $\psi_{lm} = \begin{cases} i_l(kr) \\ k_l(kr) \end{cases} \begin{cases} P_l^m(\cos \theta) \\ Q_l^m(\cos \theta) \end{cases} \begin{cases} \cos m\varphi \\ \sin m\varphi \end{cases}$

Solutions in Spherical Polar Coordinates^a Table 9.2

Table 9.3 Solutions in Circular Cylindrical Coordinates^a

		$\psi = \sum a_{m\alpha}\psi_{m\alpha}$ m.a
	a. $\nabla^2 \psi + \alpha^2 \psi = 0$	$\psi_{m\alpha} = \begin{cases} J_m(\alpha \rho) \\ N_m(\alpha \rho) \end{cases} \begin{cases} \cos m\varphi \\ \sin m\varphi \end{cases} \begin{cases} e^{-\alpha z} \\ e^{\alpha z} \end{cases}$
	b. $\nabla^2 \psi - \alpha^2 \psi = 0$	$\psi_{m\alpha} = \begin{Bmatrix} I_m(\alpha \rho) \\ K_m(\alpha \rho) \end{Bmatrix} \begin{Bmatrix} \cos m\varphi \\ \sin m\varphi \end{Bmatrix} \begin{Bmatrix} \cos \alpha z \\ \sin \alpha z \end{Bmatrix}$
c_{n}	$\nabla^2 \psi = 0$	$\psi_m = \left\{ \begin{array}{c} \rho^m \\ \rho^{-m} \end{array} \right\} \left\{ \begin{array}{c} \cos m\varphi \\ \sin m\varphi \end{array} \right\}$

Exercises

9.2.4

9.2.12

9.2.13

Deadline : 22 – 3 -1442