CHAPTER 9 - DIFFERENTIAL EQUATIONS

9.1 PARTIAL DIFFERENTIAL EQUATIONS

*Almost all the elementary and numerous advanced parts of theoretical
physics are formulated in terms of differential equations, specially second
order differential equations.

Differential equations in one variable (abbreviated ODEs),
differential equations in two or more variables (abbreviated PDEs).

*Thus, ODEs and PDEs appear as linear operator equations,
Ly =F,
where F is a known (source) function,
L is a linear combination of derivatives,
and  is the unknown function or solution.

*Any linear combination of solutions is again a solutionif F=0
(homogeneous PDEs.)



Examples of PDEs

1. Laplace’s equation, V2¢ = 0.
2. Poisson’s equation, V2 =—p/<0.
3. time-independent and time-dependent diffusion equations

Vi £kl =0, =-5—5-V°

5. The time-dependent wave equation, 02y = 0.
6. The Klein—Gordon equation, 0%y =%y
8. The Schrédinger wave equation,

At
—— VY + Vi = Ey
2m



General techniques for solving second-order PDEs

*Separation of variables, where the PDE is split into ODEs that are
related by common constants.

*Conversion of a PDE into an integral equation using Green’s
functions applies to inhomogeneous PDEs,

*Other analytical methods, such as the use of integral transforms



Classes of PDEs and Characteristics
Linear PDEs : can be represented by a linear operator

32 a2 a2 3
b +e—4+d—+te—+f

L=a——= +2I :
. dx2 dxay 3y dx ay

which can be reduced to three classes according to whether the
discriminant D=ac-b2>0, =0, or <0.

(i) Elliptic PDEs V2 or ¢ 28%/81 + V2
(ii) parabolic PDEs. ad/dt + V2
(iii) hyperbolic PDEs. ¢—282%/at? — V2

Nonlinear PDEs : The simplest nonlinear wave equation, results if the
speed of propagation, ¢, is not constant but depends on the wave .
dr dr

—+clfr)— =10,
ar TeWo,



Boundary Conditions

Solutions usually are required to satisfy certain conditions.
einitial conditions
*Boundary conditions

boundary conditions may take three forms:

1. Cauchy boundary conditions. The value of a function and normal
derivative specified on the boundary

2. Dirichlet boundary conditions. The value of a function specified
on the boundary

3. Neumann boundary conditions. The normal derivative (normal
gradient) of a function specified on the boundary.



A summary of the relation of these three types of boundary conditions to
the three types of two-dimensional partial differential equations is given in
Table

Boundary Type of partial differential equation

conditions

Elliptic

Hyperbolic

Parabolic

Laplace. Poisson
in (x, v)

Wave equation 1n
(x, 1)

Diffusion equation
in (x, 1)

Cauchy
Open surface Unphysical results Unigue, stable Too restrictive
(instability) solution
Closed surface Too restrictive Too restrictive Too restrictive
Dirichlet
Open surface Insufficient Insufficient Unique, stable
solution in one
direction
Closed surface Unique, stable Solution not unique Too restrictive
solution
Neumann
Open surface Insufficient Insufficient Unique, stable
solution in one
direction
Closed surface Unique, stable Solution not unique Too restrictive

solution




9.2 FIRST-ORDER DIFFERENTIAL EQUATIONS

consider here differential equations of the general form

dy . v) P(x,v)
dx fx,y)= O(x,v)

(9.16)

It is first order ordinary differential equation, it may or may not be linear

Separable Variables
the special form of Eq. (9.16) Y _ rxy)= 2O
e special form of Eq. (9. i = fEV=—5

Pix)dx+ Q(y)dv=0.

X ¥
[ P(x)dx —f Q(v)dy =0.
Jxg Vo

Note that this separation of variables technique does not require that the
differential equation be linear.



Example 9.2.1

We want to find the velocity of the falling parachutist as a function
of time

For simplicity we assume that the parachute opens immediately. that 1s. at time t = 0.
where v(t = 0) = 0. our mitial condition. Newton’s law applied to the falling parachutist gives

. 7
muv=mg — bv-,

The terminal velocity, vg. can be found from the equation of motion as 1 — 00: when
there 1s no acceleration, v = 0. so

|j‘:',|"1':[.'-rr

bus = mg, or g =, [ —.
D‘ \‘Il EI?
The variables t and v separate

v
av = df,



which we integrate by decomposing the denominator into partial fractions. The roots of the
denominator are at v = +vg. Hence

S 1 1
g — v = — :
1 2vgb \ v+ vy v — v

Integrating both terms yields

/'” dVv 1 II.-'m hll-‘ﬂ—l—v

e—2v2: 2Veb "wo—u

Solving for the velocity vields

e/T 1 sinh & 3 t
v = vg = vo—— = vo tanh —,
e2/T 41 cosh £+ T
where T = ." = 1s the time constant governing the asymptotic approach of the velocity to

the limiting ‘irel-;::::l‘r} vo
Putting in numerical naluee-. g = 9.8 m/s? and taking b = 700 kg/m. m = 70 kg. gives
v = 4/9.8/10 ~ 1 m/s ~ 3.6 km/h ~ 2.23 mi/h. the walking speed of a pedestrian at

landing. and T = v."ﬁ = 1/4/10-9.8 ~ 0.1 s. Thus. the constant speed wvg 1s reached

within a second. Finally. because it is alwayvs important to check the solution. we verify
that our solution satisfies

cosht/T vy sinh? /T wvg () v b 2
— _ —_——-— — — — — 1
coshr/T T cc.ghlro T T T vo - & m

that 1s. Newton’s equation of motion. The more realistic case. where the parachutist 1s 1n

free fall with an initial speed v; = v(0) = 0 before the parachute opens, is addressed in
Exercise 9.2.18. H



Exact Differential Equations

This equation is said to be exact if can find function ¢(x, y) =
constantand d¢=0:

ag ag
Plx,v)dx + Q(x,v)dy = —Ef‘t + —u"r
ax ay
and
dg . dg .
— = P(x, v), — = ((x, v).
o (x,¥) 3y Q(x.y)

The necessary and sufficient condition for our equation to be exact is

e  AP(x,vy) _90(x.y) _ 32p
dydx dy dx ﬁn’h

If @(x, y) exists, then the solution is

@(x, y) = C.



It may well turn out that Eq. (9.16) is not exact and the previous
condition is not satisfied.

*In this case, there always exists at least one or more of integrating
factors a(x, y) such that.

aix,vIP(x,v)dx +a(x,v)Q(x,v)dy=10
Is exact.

Unfortunately, an integrating factor is not always obvious or easy to
find.

*A differential equation in which the variables have been separated
is automatically exact.

*An exact differential equation is not necessarily separable.



Linear First-Order ODEs

If f(x, y)in Eq. (9.16) has the form —p(x)y + q(x), then Eq. (9.16) becomes;
dy
— + plx)y =gqglx). (9.25)
d..'li.. ' r

*Equation (9.25) is the most general linear first-order ODE; the linearity refers to
the y and dy/dx. (There are no higher powers, that is, y?, and no products,

y(dy/dx)).
*Equation (9.25) may be solved exactly; the complete general solution of the
linear, first-order differential is

X X 5
vix) =e?;1:||:—f ,r:a{tjda‘“f exp[f p{f}fff:|q[.5'}u’ﬁ -I—C].

With integrating factor a(x) i
®(x) =ecxp [[ plx) fe‘_r]



Example 9.2.2  RL Circurr

For a resistance-inductance circuit Kirchhoff’s law leads to

dl(t)
LT + RI(t)=V(1t)

for the current 7 (t). where L is the inductance and R is the resistance. both constant. V(1)
1s the time-dependent input voltage.
From Eq. (9.29) our integrating factor w (1) 1s

"R Rt/L
a(t) =exp Edr =

Then by Eq. (9.30).
f AL
1(1) = e RU/L [f ER“L%}JI + C':|._

with the constant C to be determined by an 1mitial condition (a boundary condition).
For the special case V(1) = Vp. a constant.

me Vo L . Vi e
I(t)=e RUL) = . —pRU/L L C| = — + Ce /L,
¢) [L R R

If the imitial condition 1s /{0) = 0, then C = —Vy/R and

_E __ —Rt/L
[N =— [1—e ]- .







