
2.8 QUOTIENT RULE

Sometimes a tensor-like object  unknown if it is a tensor or not; in 
such cases a test based on the “quotient rule” can be used to clarify 
the situation. According to this rule if it is not known if (K) is a tensor 
but it is known that  (A) and (B) are tensors; the following relations 
holds true in all rotated coordinate frames , then A is also a tensor



2.9 PSEUDOTENSORS, DUAL TENSORS

•We have seen the transformations restricted to pure rotations. We

now consider the effect of reflections or inversions.

•The tensors that are invariant under  transformations involving 
inversion of coordinate axes through the origin, are called polar( 
true) tensors and have odd parity.

•While the tensors that are not invariant under  transformations 
involving inversion of coordinate axes through the origin, are called 
pseudo (axial) tensors and have even parity.



•The direct product of even number of pseudo tensors is a true 
tensor,

while the direct product of odd number of pseudo tensors is a 
pseudo tensor.  The direct product of true tensors is obviously a true 
tensor.

• The direct product of a mix of true and pseudo tensors is a true or 
pseudo tensor depending on the number of pseudo tensors involved 
in the product as being even or odd respectively.

Examples of polar vectors are displacement and acceleration, while 
examples of axial vectors are angular momentum and cross product 
of polar vectors in general



Dual Tensors

•With any antisymmetric second-rank tensor Cij (in three-
dimensional space) we may associate a dual pseudovector Ci

defined by

Levi-Civita symbol εij k

ε123 = ε231 = ε312 = 1,

ε132 = ε213 = ε321 =−1, 

all other εij k = 0.

•The pseudovector Ci and the antisymmetric tensor  Cij are 
identified as dual tensors; they are simply different representations 
of the same information 



2.10 GENERAL TENSORS

Metric Tensor : 

Consider the transformation of vectors from one set of coordinates 
(q1, q2, q3) to another r = (x1, x2, x3). 

The new coordinates are (in general nonlinear) functions xi(q1, q2, 
q3) of the old , so that 

The εi are related to the unit vectors ei by the scale factors hi. The ei

have no dimensions; the εi have the dimensions of hi 

A contravariant vector V i under general coordinate transformations   
its components  transforms  according to 



the square of a differential displacement

we identify εi · εj as the covariant

metric tensor gij

Properties of metric tensor :

The metric tensor has also a contravariant form, i.e. gij

The mixed type metric tensor is given by



For Cartesian coordinate systems, which are orthonormal at-space 
systems,

The metric tensor is symmetric,

The contravariant metric tensor is used for raising indices of 
covariant tensors and the covariant metric tensor is used for 
lowering indices of contravariant tensors,

As well as a mixed form. But, the order of the indices should be 
respected in this process,



The covariant and contravariant metric tensors are inverses of each 
other,

For orthogonal coordinate systems the metric tensor is diagonal, i.e. 
gij = gij = 0 for i ≠ j.



For flat-space orthonormal Cartesian , cylindrical  and spherical 
coordinate systems in a 3D space, the metric tensor is given by,



Christoffel Symbols and Covariant Derivative 

Direct differentiation of  a tensor  of the following form 

Is given by 

This differs from the transformation law for a second-rank mixed

tensor by the second term

Now by defining the Christoffel symbol of the second kind Γk
ij

The direct differntiation will take the form



The quantity in parenthesis is labeled a covariant derivative, Vi
;j

The ;j subscript indicates differentiation with respect to qj . 

it is important to realize that although they bristle with indices, 
neither  have individually the correct transformation 
properties to be tensors. It is only the combination that  has the 
requisite transformational attributes.

The differential dV becomes

the covariant derivative of a covariant vector is given by



Christoffel symbols are symmetric in the two lower indices 

It is often convenient to have an explicit expression for the Christoffel
symbols in terms of derivatives of the metric tensor.

For Cartesian coordinate systems, the Christoel symbols are zero for all the 
values of indices. The covariant derivative is the same as the normal partial 
derivative for all tensor ranks.

The covariant derivative of the metric tensor is zero in all coordinate 
systems.

Several rules of normal differentiation similarly apply to covariant 
differentiation.



2.11 TENSOR DERIVATIVE OPERATORS

Gradient

Divergence

Laplacian



Curl

The difference of derivatives that appears in the curl has  
components that can be written 



Exercises : 

2.5.17

2.9.11


