
1.14 GAUSS’ LAW, POISSON’S EQUATION

Gauss’ Law
The electric field E of point charge q at the origin of our coordinate 
system given by

1- If we have a surface (S = ∂V)does not include the origin, it is easily 
to prove that ( see Example 1.7.2)

2- If q is within the volume V, Gauss’ theorem cab be applied to 
region V’ which include three part

•surface S’ ,surround r = 0 by a small spherical hole (of radius δ)

•boundary of V

•and connect the hole with the boundary of V via a small tube



The contribution from the connecting tube will become negligible

in the limit that it shrinks toward zero cross section, as E is finite 
everywhere on the tube’s surface.

The integral will thus be over  S  plus S’. But note that the “outward” 
direction for S’ is toward smaller r , so 

Because the modified volume contains no charge, we have



Writing dΩ as the element of solid angle

Rearranging eq. ( 1 ) ,

In that case, q can be replaced  by

If we apply Gauss’ theorem

Since our volume is completely arbitrary, then 



Poisson’s Equation
From Gauss’ law

If we replace E by −∇ϕ, assuming a situation independent of time,

which is Poisson’s equation. For the condition ρ = 0 this reduces to 
an even more famous equation,



1.16 HELMHOLTZ’S THEOREM
A vector V satisfying 

with both source and circulation densities vanishing at infinity may be 
written as the sum of two parts, one of which is irrotational, the other of 
which is solenoidal

Where,

Here the argument r1 indicates the field point; r2, the coordinates of the 
source point

•If s = 0, then V is solenoidal (i.e. divergence-less) and that implies ϕ = 0. 
and V = ∇ × A, 

•If c = 0, then V is irrotational (i.e. curl-less) and that implies A = 0, and 
V=−∇ϕ, 



Additional   part



Additional   part



CHAPTER 2
VECTOR ANALYSIS IN CURVED COORDINATES

AND TENSORS

2.1 ORTHOGONAL COORDINATES IN R3
Not all physical problems are well adapted to a solution in Cartesian 
coordinates. For example, the Schrödinger equation for the hydrogen atom 
is best solved using spherical polar coordinates.

The point is that the coordinate system should be chosen to fit the 
problem, to exploit any constraint or symmetry present in it.

We only look at orthogonal coordinate systems, so that locally the three 
axes (such as r,θ,φ ) are a mutually perpendicular set. 

We may describe any point (x, y, z) as the intersection of three planes in 
Cartesian coordinates or as the intersection of the three surfaces
that form our new, curvilinear coordinates.



we may identify our point by (q1, q2, q3) as well as by (x, y, z):

we can associate a unit vector ˆqi normal to the surface qi = constant 
and in the direction of increasing qi . In general, these unit vectors

will depend on the position in space.  Then a vector V may be 
written



Differentiation of r in vector notation

square of the distance element can be written as

gij may be viewed as specifying the nature of the coordinate system. 
Collectively these coefficients are referred to as the metric



•At usual we limit ourselves to orthogonal (mutually perpendicular 
surfaces) coordinate Systems

So that , 

scale factors h1, h2, and h3. may be conveniently identified by the 
relation, so the product hi dqi must have a dimension of length. 

Here, dsi is a differential length along the direction ˆqi



The differential distance vector dr may be written as

a line integral becomes

and the area and volume elements

A surface integral becomes



The vector algebra is the same in orthogonal curvilinear 
coordinates as in Cartesian coordinates

For example the dot product,

For the cross product,



2.2 DIFFERENTIAL VECTOR OPERATORS

Gradient
Because our curvilinear coordinates are orthogonal, the gradient 
takes the same form as for Cartesian coordinates, providing we use 
the differential displacements



Divergence

This operator must have the same meaning as in Cartesian coordinates, so    

must give the net outward flux of V per unit volume at the point of 
evaluation

Combining this with the q2 and q3 outflows and dividing by the differential 
volume  h1h2h3 dq1dq2dq3, we get



From the formulas for the gradient and divergence, we can form the 
Laplacian in curvilinear coordinates



Curl
apply Stokes’ theorem, we can find 

Remember that, because of the presence of the differential 
operators, this determinant must be expanded from the top down. 
Note that this equation is not identical with the form for the cross 
product of two vectors. ∇ is not an ordinary vector; it is a vector 
operator
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