1.14 GAUSS’ LAW, POISSON’S EQUATION
Gauss’ Law

The electric field E of point charge g at the origin of our coordinate

system given by g8
E =

— -
A1 eqr-

1- If we have a surface (S = dV)does not include the origin, it is easily
to prove that ( see Example 1.7.2)

(Gauss’ theorem ,
f V-E=0 ?gli -do = (0 1f @V does not enclose g.
v av
2- If g is within the volume V, Gauss’ theorem cab be applied to

region V’ which include three part
esurface S’,surround r = 0 by a small spherical hole (of radius 6)
*boundary of V
*and connect the hole with the boundary of V via a small tube



The contribution from the connecting tube will become negligible

in the limit that it shrinks toward zero cross section, as E is finite
everywhere on the tube’s surface.

r

The integral will thus be over S plus S’. But note that the “outward”
direction for S’ is toward smallerr, so do'=—-rdA

Because the modified volume contains no charge, we have

‘ ‘ q r-do’
E-do=@QE- -do+ — =0, (1)
41’-!'!?{] 5=

avs 5 5




Writing dQ as the element of solid angle

& do’ . i
jﬁ' 7 ;-{—F54dﬂ;=—fff§a=—4n.
52 52

p
Rearranging eq. (1),

?g[{.mm— T —amy=+2,
5

dmeg £0)

In that case, g can be replaced by |, pdr

f[{-r::’a= £ ar.
£

If we apply Gauss’ theorem

fv Edr= | Lar.
£

V V
Since our volume is completely arbitrary, then

v.E=2

£0



Poisson’s Equation

From Gauss’ law

v.E=2

£0
If we replace E by -V ¢, assuming a situation independent of time,

"Ef’-?q.::'=—£.

£0

which is Poisson’s equation. For the condition p = 0 this reduces to
an even more famous equation,

"'i-_"r - l"'q-_"ri;ﬂ':ﬂ,.



1.16 HELMHOLTZ’S THEOREM

A vector V satisfying
V-Vi=s, VxVi=c¢

with both source and circulation densities vanishing at infinity may be
written as the sum of two parts, one of which is irrotational, the other of
which is solenoidal

V=—Vp+VxA,

1 5(r2) 1 c(ro)
piry) = d1o, A= dr.
4w | ri2 dr | rp

Where,

Here the argument r, indicates the field point; r,, the coordinates of the
source point

*If s =0, then V is solenoidal (i.e. divergence-less) and that implies ¢ = 0.
and V=V x A,

If c =0, then V is irrotational (i.e. curl-less) and that implies A =0, and
V==V ¢,



Additional part

A. Example in electrostatics

We have
v.E="L, (184)
€0
VxE = 0, (18b)

where FE is the electric field and p the charge density. Hence |E = — WV, | where the scalar potential
V is given by the familiar expression

1 p(r) '
| = ; 19
(r) dmeg |r - r’| s (19)

as discussed in the course.

B. Example in magnetistatics

We have

V.B =0 (20a)
VxB = pupld. (20b)

where B is the magnetic field and J the current density. Hence (B =WV x A, | where the vector
potential A is given, in the gange with V- A =1, by

_ Ho *]{ra} ; ‘
Ar) = In f |l“ ] dr’. (21)




Additional part

Fepresenting the Coulomb gauge magnetic vector potential A, magnetic flux density B, and current density J fields =
around a taroidal inductor of circular cross section. Thicker lines indicate field lines of higher average intensity. Circles in
the cross section ofthe core represent the B-field coming out ofthe picture, plus signs represent B-field going into the
picture. ¥ - A = 0 has heen assumed.



CHAPTER 2
VECTOR ANALYSIS IN CURVED COORDINATES
AND TENSORS

2.1 ORTHOGONAL COORDINATES IN R3

Not all physical problems are well adapted to a solution in Cartesian
coordinates. For example, the Schrodinger equation for the hydrogen atom
is best solved using spherical polar coordinates.

The point is that the coordinate system should be chosen to fit the
problem, to exploit any constraint or symmetry present in it.

We only look at orthogonal coordinate systems, so that locally the three
axes (such as r,0,¢ ) are a mutually perpendicular set.

We may describe any point (x, y, z) as the intersection of three planes in
Cartesian coordinates or as the intersection of the three surfaces

that form our new, curvilinear coordinates.



we may identify our point by (g1, g2, g3) as well as by (x, vy, z):

General curvilinear coordinates Circular cylindrical coordinates
q1.42.43 2., L
x =x(g1.g2.g3) —00 =X = peos@ = X
v =y(q1,42, g3) —00 <y =psme < 00
z=12(41.492.43) —00 = Z=7=00

specifying x. y. z in terms of g1. g2. g3 and the inverse relations

1."'3

g1 =q1(x,y,7) 0<p=(x2+y3)"" =
g2 =q2(x,v, 1) 0 < @ =arctan(yv/x) < 2m
g3 =¢qg3(x,v,z) —00 <z =2 < 0OQ.

we can associate a unit vector "g, normal to the surface g, = constant
and in the direction of increasing q; . In general, these unit vectors
will depend on the position in space. Then a vector V may be

written V=aiVi+@V2+4q3Vs,



Differentiation of r in vector notation
dr=) ;3 " dyg;

square of the distance element can be written as

dr dr
ds® = dr - dr = dr* = - dg; dq ;
': Z Ei-:}'f' HEH 1i dd j

— e11dgi + egnndq1dar + g13dq1d g3
+ gndgrdgr + g2 ﬂ’ff% +223dgrdg;

+ g31dqidql + gandqidgr + ¢33 f-’JFf-i"E‘-E
= Zé’_{',‘j Efi}';‘ dt]"j.
J]

g; may be viewed as specifying the nature of the coordinate system.
Collectively these coefficients are referred to as the metric



*At usual we limit ourselves to orthogonal (mutually perpendicular
surfaces) coordinate Systems

gij=0, i#j, andgq;-q;=3d; and 2 =Fif = (0,

So that,

2

d:;j = (h1 Eftﬂ:lj + (h> r:f’c;j}‘:‘r + (h3 r:f’c;:a}‘:‘r = Z[}’n degi)”.
i
scale factors h1, h2, and h3. may be conveniently identified by the
relation, so the product h; dq; must have a dimension of length.

ar

ds; = h; dg;, Ag;
[

= hidy

Here, ds; is a differential length along the direction "q;



The differential distance vector dr may be written as

dr=h1dg1q1 +h2dgrq + h3dgs qz = Zhg dqi q;.

i

a line integral becomes
f‘f-dr=2f Vihi dg;.
]

and the area and volume elements
da =dsydsyq1 +dssds) qo +dsy ds» q3
— hyh3dgadqs q1 + hsh1dgsdq) qo
+ hih2dg1dq? q3.

dt =dsydsodszs = hihohydgydgr dgs.
A surface integral becomes

[T-d{r =fV1hjh3d::;jdc}3 —I—f';fjhjhldqjdfn

-I-f Vihi1hadgydgs.



The vector algebra is the same in orthogonal curvilinear
coordinates as in Cartesian coordinates

For example the dot product,
A-B=) Aiqi-@Bi=)_ AiBidi
ik ik

— ZA{BI— =A1B1+ A2By+ A3B;s,
I

For the cross product,

a1 9 q3
AxB=|A1 Ay A3zl.
B1 B> B3




2.2 DIFFERENTIAL VECTOR OPERATORS
Gradient

Because our curvilinear coordinates are orthogonal, the gradient

takes the same form as for Cartesian coordinates, providing we use
the differential displacements

| oar oy adyr
Viilgi. 2. @3)=qu— + o — + @3 —
a1 d 52 d53

. lﬁtff_l_n 1 a1 o
B qlhl dq qlhj dgo 1 h3 dgs

I e
T h; 8g;

I




Divergence

This operator must have the same meaning as in Cartesian coordinates, so

v . v must give the net outward flux of V per unit volume at the point of
evaluation

d
Net g; outflow = [‘r"lhghg + ﬁ—{lflhgh;}dql} dgrdgs — Vihahydgrdgs
g1

d
=—(Vih2h3) dg1 dgr dgs.
dqi

Combining this with the g, and q; outflows and dividing by the differential
volume h,h,h;dq,dq,dq, we get

1
h |1'!ijl'_:_,

d a d
V-Vig1,q92.q3) = [ﬁ'c’;] (Vihah3) + 5 (Vahahy) + H_%h]hz}}

q2 q3



From the formulas for the gradient and divergence, we can form the
Laplacian in curvilinear coordinates v =vyui.0.49

V.V 1 d [ hahsy o i) (h;hl ﬁy{r)+ d (.I’flhj dilr
- VVa1.92. 43) ~ hihahs| g1\ hy gy dgr \ h> dga dgy \ h3y dg3



Curl

apply Stokes’ theorem, we can find

qih1  qeh2  q3hs

d d d

hih2h3 | 31  d8g7  dg3
hiVi haVa h3Vs

VxV=

Remember that, because of the presence of the differential
operators, this determinant must be expanded from the top down.
Note that this equation is not identical with the form for the cross
product of two vectors. V is not an ordinary vector; it is a vector

operator
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