
10.2 HERMITIAN OPERATORS

Hermitian, or self-adjoint, operators with appropriate boundary 
conditions have three properties

1. The eigenvalues of a Hermitian operator are real.

Real eigenvalues of Hermitian operators have a fundamental 
significance in quantum mechanics . With the theory formulated in 
terms of Hermitian operators, this proof of real eigenvalues
guarantees that the theory will predict real numbers for these 
measurable physical quantities.



2. A Hermitian operator possesses an orthogonal set of eigenfunctions.

If we now take i ≠ j and if λi ≠ λj in, the integral of the product of the two 
different eigenfunctions must vanish:

This condition, called orthogonality, but This proof of orthogonality is not 
quite complete. because we may have ui ≠ uj but still have λi = λj . Such a 
case is labeled degenerate, the the integral need not vanish.

This means that linearly independent eigenfunctions corresponding to the 
same eigenvalue are not automatically orthogonal, but linear combinations 
of degenerate functions can be formed that  will be orthogonal to each 
other.

3. The eigenfunctions of a Hermitian operator form a complete set.



10.3 GRAM–SCHMIDT ORTHOGONALIZATION

The Gram–Schmidt orthogonalization is a method that takes a 
nonorthogonal set of linearly independent functions  and constructs 
an orthogonal set of functions over an arbitrary interval and with 
respect to an arbitrary weight or density function.

We consider three sets of functions:









10.4 COMPLETENESS OF EIGENFUNCTIONS

The third important property of an Hermitian operator is that its 
eigenfunctions form a complete set. This completeness means that 
any well-behaved function F(x) can be approximated by a series

the set ϕn(x) is called complete  if the limit of the mean square error 
convergence to zero:

the expansion coefficients am may be determined by

For a known function F(x), Eq. gives am as a definite integral that 
can always be evaluated, by computer if not analytically.



Setting the weight function w(x) = 1 for simplicity, completeness in 
operator form for
a discrete set of eigenfunctions |ϕi > becomes

Multiplying the completeness relation by |F > we obtain the eigenfunction
expansion

with the generalized Fourier coefficient ai = <ϕi |F>.

It may also happen that the eigenfunction expansion, Eq. (|F>), is the 
expansion of an unknown F(x) in a series of known eigenfunctions ϕn(x) 
with unknown coefficients an. An example would be the quantum 
chemist’s attempt to describe an (unknown) molecular wave function as a 
linear combination of known atomic wave functions. The unknown
coefficients an would be determined by a variational technique—Rayleigh–
Ritz



The concept of completeness has been developed for finite vector 
spaces and carries over into infinite vector spaces. 

For  summarizing some properties of vector spaces , 

Vector Space Function Space 

1v. We shall describe our vector space 
with a set of n linearly independent 
vectors ei , i = 1, 2, . . . , n. If n = 3, then e1 
= ˆx, e2 = ˆy, and e3 = ˆz. The nei span 
the linear vector space.

1f. We shall describe our vector 
(function) space with a set of n linearly 
independent
functions, ϕi(x), i = 0, 1, . . . , n − 1. The 
index i starts with 0 to agree with the 
labeling of the classical polynomials. Here 
ϕi(x) is assumed to be a polynomial of 
degree i. The nϕi(x) span the linear vector 
(function) space.



Vector Space Function Space 

2v. The vectors in our vector space satisfy 
the following relations
a. Vector addition is commutative u+ v = 
v+u
b. Vector addition is associative [u +v] + w 
= u + [v+ w]
c. There is a null vector 0+ v = v
d. Multiplication by a scalar
Distributive a[u+ v] = au+av
Distributive (a +b)u = au+ bu
Associative a[bu] = (ab)u
e. Multiplication
By unit scalar 1u = u
By zero 0u = 0
f. Negative vector (−1)u=−u.

2f. The functions in our linear function 
space satisfy the properties listed for 
vectors: 
f (x) +g(x) = g(x)+ f (x)
f (x)+ g(x) + h(x) = f (x)+ g(x)+h(x)
0 +f (x) = f (x)
a [f (x)+ g(x)] = af (x)+ ag(x)
(a + b)f (x) = af (x)+ bf (x)
abf (x)= (ab)f (x)
1 · f (x) = f (x)
0 · f (x) = 0
(−1) · f (x)=−f (x).



Vector Space Function Space 

3v. In n-dimensional vector space an 
arbitrary vector c is described by its n 
components

When nei (1) are linearly independent and 
(2) span the n-dimensional vector space, 
then the ei form a basis and constitute a 
complete set.

3f. In n-dimensional function space a 
polynomial of degree m ≤ n −1 is described 
by

When the nϕi(x) (1) are linearly 
independent and (2) span the n-
dimensional function space, then the ϕi(x) 
form a basis and constitute a complete set 
(for describing polynomials of degree m ≤ 
n− 1). 



Vector Space Function Space 

4v. An inner product (scalar, dot product) 
of a vector space is defined by

If c and d have complex components in an 
orthogonal coordinate system, the inner 
product is defined as  

The inner product has the properties of
a. Distributive law of addition c · (d +e) = c · 
d+c · e
b. Scalar multiplication c · ad = ac · d
c. Complex conjugation c · d = (d · c) ∗.

4f. An inner product of a linear space of 
functions is defined by 

The choice of the weighting function w(x) 
and the interval (a, b) follows from the 
differential equation satisfied by ϕi(x) and 
the boundary conditions
The inner product has the properties listed 
for vectors:
a. <f |g +h> =< f |g + f |h>
b. <f |ag> = <af |g>
c. <f |g = g|f >∗. 



Vector Space Function Space 

5v. Orthogonality: 

If the nei are not already orthogonal, the 
Gram–Schmidt process may be used to 
create an orthogonal set.

5f. Orthogonality:

If the nϕi(x) are not already orthogonal, 
the Gram–Schmidt process  may be
used to create an orthogonal set.



Vector Space Function Space 

6v. Definition of norm:

The basis vectors ei are taken to have unit 
norm (length) ei · ei = 1. The components 
of c are given by

6f. Definition of norm:

The basis functions ϕi(x) may be taken to 
have unit norm (unit normalization),

The expansion coefficients of our 
polynomial f (x) are given by





Exercises:

10.2.3

10.2.6

10.3.7


