9.7 NONHOMOGENEOUS EQUATION—GREEN’S
FUNCTION

In this section we turn to a different method of solution— Green’s function
method, as applied to the solution of a nonhomogeneous PDE

For the second-order, linear, but nonhomogeneous differential

equation,

Ly(ry)=—f(r1)

Then the particular solution y(r1) becomes

y(ry) = f G(ry.12) £ (r2) dos
The Green’s function

Giry.rp) =

4m|ry — 2|

is taken to be a solution of

LG(r1. ) =—8(r1 —r).



Symmetry of Green’s Function

An important property of Green’s function is the symmetry of its two
variables;

G(rl, r2) = G(r2, r1)

Provided that G(r, r1) satisfy self adjoint differential equations with
general form

V- [p)VG(r.r) ]| +ig(r)G(r,r)) = —8(r —ry)



Form of Green’s Functions

assume that L is a self-adjoint differential operator of the general

form
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“These are the Green's functions satisfying the boundary condition Giry.ry) =0 as r] — oo for the Laplace and modified
Helmholiz operators. For the Helmholiz operator, Gir),ry) corresponds to an owigoing wave. H&l} 15 the Hankel finction of

Section 11 4. K 13 he modified Bessel function of Section 11.5.



Spherical Polar Coordinate Expansion

As an alternate determination of the Green’s function of the Laplace
operator

! f
G(ry,ry) = Z > T .r+1 V" (61, 91) Y, (62, @2).
=0 m=—I

or
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From the generating expression for Legendre polynomials



From the generating expression for Legendre polynomials

1 1

. Pi(cosy).
At ri—12| 4w ; rfj‘l

where y is the angle included between vectors r1 and r2,

A
P;(cnay)—rﬂ Z Y™ (61, 01) Y (02, @2).

m=—/

Spherical polar coordinates.



Example 9.7.1 QUANTUM MECHANICAL SCATTERING — NEUMANN SERIES SOLUTION

The quantum theory of scattering provides a nice illustration of integral equation tech-
niques and an application of a Green’s function. Qur physical picture of scattering 1s as
follows. A beam of particles moves along the negative z-axis toward the origin. A small
fraction of the particles is scattered by the potential V(r) and goes off as an outgoing
spherical wave. Our wave function ¥ (r) must satisty the time-independent Schrédinger

equation
h s
—2—?‘1,&{1‘}4—‘if"[r}t,ﬂfl'r}qu,fr[r]._ (9.198a)
m
or
Zm 2mE
VU (r) + k2 (r) = —[— = V{r}xﬂr{l‘]} k? = PR (9.198b)
i” i”
From the physical picture just presented we look for a solution having an asvmptotic
form
. ik
Wr(r) ~ e T o fi(®. ) —. (9.199)

Here ¢'¥0T s the incident plane wave?® with kg the propagation vector carrying the sub-

script 0 to indicate that it 1s mn the # = 0 (z-axis) direction. The magmitudes ko and k are
equal (ignoring recoil). and ¢'*" /r is the outgoing spherical wave with an angular (and
energy) dependent amplitude factor f3(8, ¢).2° Vector k has the direction of the outgoing
scattered wave. In quantum mechanics texts 1t 1s shown that the differential probability of
scattering. do /d 2. the scattering cross section per unit solid angle. is given by | fi (8. ¢|>.

Identifying [—(2m ATV (e)r(r)] with £(r) of Eq. (9.158). we have

2m 3
viry) = — ?V{I‘lliﬁf{l‘z}ﬁil‘lq r2)d r2 (9.200)



by Eq. (9.170). This does not have the desired asymptotic form of Eq. (9.199). but we may
add to Eq. (9.200) ¢¥071 3 solution of the homogeneous equation, and put ¥ (r) into the
desired form:

1- 2
1,65'1.’1'11=f’]‘”'r1 —f ;f Vll.’rj}i,ﬂ'{rglﬂ{r].1‘2}d3r1. (9.201)

5 <

Our Green's function is the Green’s function of the operator £ = V2 + k% (Eq. (9.198)).
satisfying the boundary condition that 1t describe an outgoing wave. Then. from Table 9.5,
G(ry, r2) =explik|ry —ra2|)/(4m|ry — r2|) and

g kiri—13

. 2
Y (ry) =Ko —fgvil‘j}hﬂf{rzl d*ry. (9.202)
fi 4w |ry — 1ol

This mntegral equation analog of the original Schrédinger wave equation 1s exact. Employ-
ing the Neumann series technique of Section 16.3 (remember. the scattering probability 1s
very small). we have

Yo(ry) = e X (9.203a)
which has the physical interpretation of no scattering.
Substituting Yro(r2) = eF0T2 jnto the integral, we obtain the first correction term.
iklry—ral

N 2m € -1
Urp(ry) = 'EoTL f ?wm}hlrl — ﬁle"-ﬂ"‘! d3rs. (9.203b)

This 15 the famous Born approximation. It is expected to be most accurate for weak poten-
tials and high incident energy. If a more accurate approximation is desired. the Neumann
series may be continued.?? |



CHAPTER 10
STURM-LIOUVILLE
THEORY—ORTHOGONAL
FUNCTIONS

°In the preceding chapter we developed two linearly independent
solutions of the second order linear homogeneous differential
equation

°In this chapter the emphasis shifts to developing and understanding
general properties of the solutions

*There is a close analogy between the concepts in this chapter and
those of linear algebra. Functions here play the role of vectors , and
linear operators that of matrices in linear algebra .



10.1 SELF-ADJOINT ODES

If we define a linear, second-order differential operators of the general

form 42 J
Lu(x) = Po(x)——u(x) + p1(x)_—u(x) + p2(x)u(x).
X X

P(x) = p,(x)/p,(x) and Q(x) = p,(x)/p,(x). Hence, p,(x) must not vanish for a <
x <b. Also if we define the linear operator as the adjoint operator

N d
Lu = E[PUH] — E[PIH] + Pou
When this condition is satisfied, (p’,(x) = p,(x), Jthe operator L is said to be

SEIf-adjOint. _ I‘i dH{I}
Lu=Lu= I [p x) T ] + g(x)uix),

In general we can always transform the non-self-adjoint operator into the
required self-adjoint form. If we multiply L by

I * oy (6)
— —dr|
pn(x}“PU Po(7) I]




Eigenfunctions, Eigenvalues

Schrodinger’s wave equation
Hyr(x) = E¥(x)
is the major example of an eigenvalue equation in physics
*eigenvalue equation takes the more general self-adjoint form
Lu(x) +riw(x)u(x) =0
* A is the eigenvalue and w(x) is density function; w(x) > 0.

*A function uA(x), which satisfies the imposed boundary conditions,
is called an eigenfunction corresponding to A.

*Indeed, the requirement that there be an eigenfunction often
restricts the acceptable values of A to a discrete set



Table 10.1

Equation pix) glx) ) wix)
Legendre” 1 —x? 0 I+1) 1
Shifted Legendre” x(1—x) 0 II+1) 1
Associated Legendre” 1 —x2 —mi1-xhH W+ 1
Chebyshev I (1—x2)12 0 n? (1—x3)~1/2
Shifted Chebyshev I [x(1— 1)) 0 n? [x(1—x)]~1/2
Chebyshev 11 (1—x2)3/2 0 nin+2) (1—xHl
Ultraspherical (Gegenbaver) (1 — x2)2+1/2 0 a(n+2e)  (1—x3ye 12
Bessel” 0 <x <a X —nzlf.r a* X
Laguerre, 0 < x = o xe ¥ 0 " et
Associated Laguerre® xftl—x 0 o —k xke™*
Hermite, 0 < x < oC E""E 0 2 F_Iz
Simple harmonic oscillator? 1 0 n2 1

T=0,1,..., —l=m=[aremtegersand —1 <=x <1, 0 < x <1 for shifted | egendre.

b Ortho gonality of Bessel functions 15 rather special. Compare Section 11.2. for details. A second type of orthogonality
15 developed m Eq. (11.174).

“k iz a non-negative integer. For more details, see Table 10.2.

4 This will form the basis for Chapter 14, Founer series,



Exampl'e 10.1.1  LEGENDRE’S EQUATION

Legendre’s equation 1s given by
(1—-x*)u” = 2xu'+n(n+Du=0, -l=x=1l. (10.9)
From Eqs. (10.1). (10.8). and (10.9).

pox)=1—-x*=p, wx)=1,
p1(x) =—2}f=p’~ A=n(n+1),

px) =0=gq.

Recall that our series solutions of Legendre’s equation (Exercise 9.5.5)° diverged unless n
was restricted to one of the mtegers. This represents a quantization of the eigenvalue A. W



Example 10.1.2  DeuTeroN

Further insight into the concepts of eigenfunction and eigenvalue may be provided by an
extremely simple model of the deuteron. a bound state of a neutron and proton. From
experiment, the binding energy of about 2 MeV& Mc?, with M = M p = M,,. the common
neutron and proton mass whose small mass difference we neglect. Due to the short range
of the nuclear force. the deuteron properties do not depend much on the detailed shape of
the interaction potential. Thus. the neutron—proton nuclear interaction may be modeled by
a spherically symmetric square well potential: V=Vy <0for0<=r <=a,V =0forr > a.
The Schrédmger wave equation 1s

Hl

—— VU 4+ VY =Ey. (10.10)

M
where the energy eigenvalue E < 0 for a bound state. For the ground state the orbital angu-
lar momentum / = 0 because for [ £ 0 there 1s the additional positive angular momentum
barrier. So, with ¥ = ¥ (r), we may write u(r) = rir(r). and. using Exercise 2.5.18. the
wave equation becomes

d’u

r

with

. M
k%:E{E—Vg}}{} (10.12)



tor the interior range, 0 < r < a. Fora < r < 00, we have

ﬁ;l
d_j_kguzu (10.13)
r
with
) ME

The boundary condition that 1 remain fimte at r = 0 mimplies u(0) = 0 and
ui(r) =smkyr. 0=r<=a. (10.15)

In the range outside the potential well, we have a linear combination of the two exponen-
tials.

uz(r) = Aexpkar + Bexp(—kar), (d =< Fr = 00, (10.16)

Continuity of particle and current density demand that u1(a) = u2(a) and that H’l{a} —
u5(a). These joining. or matching, conditions give

sinkja = A expkra + Bexp(—koa),
(10.17)
k1coskia =kxAexphra — k2 B exp(—kaa).
The condition that we actually have a bound proton—neutron combination is that
fﬂx u2(r)ydr = 1. This constraint can be met if we impose a boundary condition that 1 (r)



remain finite as r — 00. And this. in turn. means that A = 0. Dividing the preceding pair
of equations (to cancel B). we obtain

tankia = —E = — .’fﬂ,

ko V —E
a transcendental equation for the energy E with only certain discrete solutions. If E 1s such
that Eq. (10.18) can be satished. our solutions u1(r) and u2(r) can satisfy the boundary
conditions. It Eq. (10.18) 1s not satisfied. no acceptable solution exists. The values of
E for which Eq. (10.18) 1s satisfied are the eigenvalues: the corresponding functions u
and u> (or ¥r) are the eigenfunctions. For the deuteron. problem there 1s one (and only one)

negative value of E satistying Eq. (10.18): that s, the deuteron has one and only one bound
state.

(10.18)
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FIGURE 10.1 A deuteron eigenfunction.

Now. what happens i1f E does not satisfy Eq. (10.18). that 1s. 1f E # Ep 1s not an
eigenvalue? In graphical form, imagine that E and therefore k; are varied slightly. For
E = Ey <= Ep, k1 1s reduced and sin kya has not turned down enough to match exp(—koa).
The joining conditions., Eq. (10.17). require A > 0 and the wave function goes to +00 ex-
ponentially. For E = E> = Ey, k1 1s larger. sinkja peaks sooner and has descended more
rapidly at r = a. The joining conditions demand A < 0, and the wave function goes to —00
exponentially. Only for E = Ep. an eigenvalue, will the wave function have the required
negative exponential asymptotic behavior (see Fig. 10.1). H



Boundary Conditions

In the foregoing definition of eigenfunction, it was noted that the
eigenfunction uA(x) was required to satisfy certain imposed
boundary conditions.

£ ok
vopu |x=ﬂ_vpu |x=b'

in which u(x) and v(x) are solutions of the differential equation
corresponding to the same or to different eigenvalues.



Example 10.1.3  INTEGRATION INTERVAL [a, b]

For £ = d*/dx?. a possible eigenvalue equation is

d2

—u(x) +n’u(x) =0, (10.21)

dx
with eigenfunctions

U, = COSNX, Uy = SILMX.
Equation (10.20) becomes
: . b b
—n sinmx 5u1r1x|ﬂ =0, or mcosmx cosnx| =0,

mterchanging u, and v,,. Since smnmx and cosnx are periodic with period 2 (for n and
m mtegral). Eq. (10.20) 1s clearly satisfied if @ = xp and b = xg 4+ 2. If a problem pre-
scribes a different interval, the eigenfunctions and eigenvalues will change along with the
boundary conditions. The functions must always be chosen so that the boundary condi-
tions (Eq. (10.20) ete.) are satisfied. For this case (Fourier series) the usual choices are
x0 = 0 leading to (0, 2mr) and xo = — leading to (—m, ). Here and throughout the fol-
lowing several chapters the orthogonality interval is so that the boundary conditions
(Eq. (10.20)) will be satisfied. The interval [a, b] and the weighting factor w(x) for the
most commonly encountered second-order differential equations are listed in Table 10.2. W



Table 10.2

Equation 1 b wix)
Legendre —1 1 1
Shifted Legendre 0 1 1
Associated Legendre —1 1 1
Chebyshev I 1 1 (1—xH L
Shifted Chebyshev I 0 1 [x(l-x) 14
Chebyshev IT -1 1 (1—xht2
Laguerre 20 e ¥
Associated Laguerre 0 o xke™X
Hermite —0C oo E'_'IE
Simple harmonic oscillator 0 2x 1

—TT T 1

1. The orthogonality interval [a, ] 15 determuned by the boundary condi-
tions of Section 10.1.

2. The weighting function i1s established by putting the ODE m self-
adjoint form.



Hermitian Operators in QuantumMechanics

*The operator L is called Hermitian if
fﬂﬁ‘ﬁzdf =f{ﬁﬂf1)*¢‘1dr-

So that the wave functions satisfy appropriate boundary conditions

Clearly, if A = AT (self-adjoint) and satisfies the aforementioned
boundary conditions, then A is Hermitian.

*If we require L to be Hermitian, it is easy to show that L is real

= [€wryar = [vievar =



Exercises :
9.7.7, 10.1.1, 10.1.10



