Chapter 9

Settlement of Shallow Foundations

Omitted parts:
Section 9.7 & 9.8 & 9.9



CAUSES OF SETTLEMENT

Settlement of a structure resting on soil may be caused by two distinct
kinds of action within the foundation soils:-

|. Settlement Due to Shear Stress (Distortion Settlement)

In the case the applied load caused shearing stresses to develop within
the soil mass which are greater than the shear strength of the material,
then the soil fails by sliding downward and laterally, and the structure
settle and may tip of vertical alignment. This is what we referred to as

BEARING CAPACITY.

ll. Settlement Due to Compressive Stress (Volumetric Settlement)

As aresult of the applied load a compressive stress is transmitted to the
soil leading to compressive strain. Due to the compressive strain the
structure settles. This is important only if the settlement is excessive

otherwise it is not dangerous.




ALLOWABLE BEARING CAPACITY

The allowable bearing capacity is the smaller of the following
two conditions:

du (to control shear failure )
FS
g,y = smallest of

Jallsettlement (t0 control settlement)



CAUSES OF SETTLEMENT

Causes of Settlement

Alien
Causes

=» Subsidence
=» Cavities

=» Excavation
= etc..




Mechanisms of Compression

Compression of soil is due to a number of mechanisms:

- Deformation of soil particles or grains
- Relocations of soil particles

* Expulsion of water or air from the void spaces




Components of Settlement

Settlement of a soil layer under applied load is the sum of two broad
components or categories:

1. Elastic settlement (or immediate) settlements

2. Consolidation settlement

1. Elastic settlement (or immediate) settlements

Elastic or immediate settlement takes place instantly at the moment of the
application of load due to the distortion (but no bearing failure) and
bending of soil particles (mainly clay). It is not generally elastic although
theory of elasticity is applied for its evaluation. It is predominant in

coarse-grained soils.



Consolidation settlement

Consolidation settlement is the sum of two parts or types:

A. Primary consolidation settlement

In this the compression of clay is due to expulsion of water from pores. The
process is referred to as primary consolidation and the associated
settlement is termed primary consolidation settlement. Commonly they are
referred to simply as consolidation and consolidation settlement (CE 481)

B. Secondary consolidation settlement

The compression of clay soil due to plastic readjustment of soil grains
and progressive breaking of clayey particles and their inter-particles
bonds is known as secondary consolidation or secondary compression,
and the associated settlement is called secondary consolidation
settlement or secondary compression.



Components of Settlement

The total settlement of a foundation can be expressed as:
S;=S.+S,+S,

S; = Total settlement
S, = Elastic or immediate settlement
S. = Primary consolidation settlement

S,= Secondary consolidation settlement

_

S S

£

Ss

O It should be mentioned that S, and S, overlap each other and impossible to
detect which certainly when one type ends and the other begins. However,
for simplicity they are treated separately and secondary consolidation is
usually assumed to begin at the end of primary consolidation.



Components of settlement

The total soil settlement $; may contain one or more of these types:

Due to distortion or

_ elastic deformation

with no change in
water content

Occurs rapidly
- during the
application of load

Quite small quantity
- In dense sands,
gravels and stiff clays

Decrease in voids
volume due to squeeze
of pore-water out of the

soil

Occurs in saturated
fine grained soils (low
coefficient of
permeability)

Time dependent

Only significant in
clays and silts

Due to gradual
a changes in the
particulate structure of
the soil

Occurs very slowly,
long after the primary
- consolidation is
completed

Time dependent

Most significant in
— saturated soft clayey and
organic soils and peats



In granular soils, settlement occurs almost
immediately upon applying the load.

In clay, most of the settlement occurs during the
consolidation process.

Secondary consolidation is assumed to occur on
completion of primary consolidation. It is more
significant than primary consolidation in organic
soils.



Elastic Settlement of Shallow Foundation on
Saturated Clay (. = 0.5)
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A, =f(H/B, L/B)
A, = f(Dy /B)
L = length of the foundation
B = width of the foundation
D¢ = depth of the foundation
H = depth of the bottom of the foundation to a ngid layer
g, = net load per unit area of the foundation
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Elastic Settlement of Shallow Foundation on
Saturated Clay (. = 0.5)

E, = B,
where ¢ = undrained shear strength.

TABLE 9.1 Range of 8 for Saturated Clay [Eq. (9.2)]?

B
Plasticity
index OCR =1 OCR =2 OCR =3 OCR =4 OCR =5
<30 1500-600 1380500 1200-580 950-380 730-300
30 to 50 600-300 550-270 580-220 380-180 300-150
=50 300-150 270-120 220-100 180-90 150-75

“Based on Duncan and Buchignani (1976)



Elastic Settlement of Shallow Foundation

TABLE 9.2 Influence Factors to Compute Aver-
age Settlement of Flexible and Rigid

Foundation
m' = LIB Flexible Rigid

Circle (.85 0.79

1 0.95 0.82

1.5 1.20 1.07

2 1.30 1.21

3 1.52 1.42

5 1.82 1.60

10 2.24 2.00

100 2.96 3.40




Example 9.1

EXAMPLE 9.1

Conzider a shallow foondation 2 m * | m in plan in a saturated clay layer. A rigid
rock layer is located 8 m below the bottom of the foundation. Given:

Foundation: Dy =1m,g, = 120 kN/m*
Clay: ¢, = 130 kN/m®, OCR = 2, and plasticity index, PI = 35
Estimate the elastic settlement of the foundation.

SOLUTION
From Eq. (2.1},
g. 8
Se = Ay —
¥
Given:
L 2
Bo1°
D_r 1
Bl !
H 8
B 1
E, = Bc,

For OCR = 2 and PI = 35, the value of 8 = 480 (Table 9.1). Hence,
E, = (4BO)(150) = 72,000 kN/m*
Also, from Figure 9.1, A, = 0.9 and 4; = 0.92. Hence,

5, = A,Af_;ﬂ — 09092220 _ 600138 m = 1.38 mm




Settlement Based on the Theory of Elasticity

For a flexible rectangular foundation of dimensions B X L lying on an
elastic half-space, the elastic settlement under a point on the
foundation is

q B 2
° _(1-— I
- (1—4)

S

S, =

Where | is the influence factor that depends on the location of the
point of interest on the foundation.

&iii%
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Settlement Based on the Theory of Elasticity
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Settlement Based on the Theory of Elasticity
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Elastic Settlement in Granular Soil




Settlement Based on the Theory of Elasticity

= Fal Mg
f'.;F = shape factor = [, T
2] s
F :l(A +4) (1+\/m'2+1)x/m'2+n'2
1 0 1 '
P A =m'In ' '
n' ) m'(1+\/m2+n2+1)
F,=—tan A, i
A 2P | , ,
(m +\/m2+1)\/1+n2
A =In
1 m'+m?+n’+1
-
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Settlement Based on the Theory of Elasticity

TABLE 9.3 Variation of F, with ' and n’
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Settlement Based on the Theory of Elasticity

TABLE 9.4  Variation of /' with m and &'
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Settlement Based on the Theory of Elasticity
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Settlement Based on the Theory of Elasticity
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Settlement Based on the Theory of Elasticity
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Example 9.2

A flexible shallow foundation 1 m > 2 m is shown in Figure 9.6. Calculate the elastic
settlement at the center of the foundation.

I q, = 150 kN/m*
Im
LI e o oo
0 I *
|
|—-e—m,1:-|:-n—:-1:
n, =03 |
2 - —
o BODD |
3+ L
|
4~ 12,000 —»]
I
5 |

Bock
zimj



Example 9.2

SOLUTION

We are given that 8 = 1 mand L = 2 m. Note that 7 = 3 m = 58. From Eq. (9.23),
ZEy

1 —

I
_ [10,000)(2) + (8000)(1) + (12,000)(2)
5

For one of the four quarters of the foundation, # = 0.5 mand L. = 1.0m. Also, H =
6.0 m (Mote: The Steinbrenner factors in Tables 9.3 and 9.4 are for surface founda-

tions with Dj-= 0.}

= 10,400 kN/m*

m' =L/B=20andn’ = HIE = 12.0

From Table 9.3, F, = 0.653, and from Table 9.4, F, = 0.028.
From Eq. (9.11), with g, = 0.3,

1-2p,

I — py

1—2%03
L = 0.653 + | —————
1 —03

I,=F, + ( )(u.nzm = 0.669

For p, = 0.3, /B = 2 and I}/B = 1 {using 8 = | m for the entire foundation); from
Figure 9.5b, Iy = 0.71.

From Eq. (9.22) and considering the four quarters,

21— wdg

5 =
e E’

_ [151]}['“-5}[1 — 0.3%)(0.669 » 4)(0.71) = 0.0124 m = 12.4 mm

(10,400)



Improved Equation for Elastic Settlement

The improved formula takes into account | 1 9o lB" l lJ x
« the rigidity of the foundation, v _ .
* the depth of embedment of the foundation, —;— ! X ? >E,
* the increase in the modulus of elasticity of ¢, essible T 5
the soil with depth, and soil layer  H E + i
» the location of rigid layers at a limited depth i
q B I I I Rigid layer
_ 1P 6 FE [ D
) - (1 nj)
m o Equivalent diameter B, of
where 4BL

Rectangular foundation 5. = -

I; = influence factor for the vanation of E; with depth

’{H_w H)

I = foundation ngidity commection factor Ej — Ea 1 k-ﬂ

. = foundation embedment correction factor

Circular foundation g = g




Improved Equation for Elastic Settlement

The foundation rigidity correction factor is

=" 1
F_4 ( \ ;
E
4.6+10 ;3 (2’5]
E +—=k B,
\ 2 )

1

3.5exp(1.224, —0.4) ge +1.6

f




Improved Equation for Elastic Settlement
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Example 9.3

EXAMPLE 9.3

For a shallow foundation supported by a silty sand, as shown in Figure 9.7,
Length =L =3m
Width=8=135m
Depth of foundation = D, = 1.5m
Thickness of foundation =t = 0.3 m

Load per unit area = g, = 240 kN/m?
Ep= 16 X 10° kN/m*
The silty sand =oil has the following properties:

H=3T7m
=03

E, = 9700 kN/m*

k = 575 kN/m*%m
Estimate the elastic settlement of the foundation.

B )

o I

i 5 B,
Cum_;mﬁhleI E,=
sogver H E+ i
o

Rigid layer




Example 9.3

SOLUTION
From Eq. (9.24), the equivalent diameter is

5 \/4:_:, _ \/H](l:}@ e

S0
E, Q700
== =7.06
8=, " 59
and
E_ﬂ_l_ﬁ
B, 239
From Figure 9.8, for B = 7.06 and H/B, = 1.55, the value of I = 0.7. From
Eq. (9.28),
qm 1
IF—I‘I'
3
46+ 10 5 E)
E+5k B.
)
_T, ! = 0789
-3 :
4.6+ 10

16 x 10° [{2}{&3}
5)

o+ ()



Example 9.3

From Eg. (9.29),

1
Ip=1-

B,
1.5 expl(1.22u, — 0.4) == + 1.5)
B Dy

—1- - = 0.907
3.5 exp[(1.22)(0.3) — u.4](% + 1.5)

From Eq. (2.27),

_apdile,

s, with g, = 240 kN/m?, it follows that

_ (240)(2.39)(0.7){0.725)(0.907) (1 — 0.3%) = 0.0269 m = 27 mm

S,

8,
“ 9700







Settlement of Sandy Soil: Use of Strain Influence Factor

|. Solution of Schmertmann et al. (1978)

— Z, I

— A
S =C,C,(q- q)ZE—DZ
P 0 g
where
I, = strain influence factor
C, = a correction factor for the depth of foundation embedment = 1 — 0.5 [g/(g — g]]
C’; = a correction factor to account for creep in soil

= 1 + (.2 log (time in years,/0.1)
stress at the level of the foundation

1Ly = effective stress at the base of the foundation
maodulus of elasticity of =ml

q
)
E,



Settlement of Sandy Soil: Use of Strain Influence Factor

The recommended variation of the strain influence factor I, for square (L /B = 1)
or circular foundations and for foundations with L /B >= 10 is shown in Figure
The |, diagrams for 1 < L /B < 10 can be interpolated.

|

Zz:ﬂ'l-ﬂ
Yz



Settlement of Sandy Soil: Use of Strain Influence Factor

Note that the maximum value of I, [that is, I, ;] occurs at z = z; and then reduces to
zero at z = z,. The maximum value of |, can be calculated as:

L, =05+0.1 |11
q.1)

where
9’ = effective stress at a depth of z, before construction of the foundation



Settlement of Sandy Soil: Use of Strain Influence Factor

The following relations are suggested by Salgado (2008) for interpolation
of |, at z =0, z,/B, and z,/B for rectangular foundations.

» Latz=0 Schmertmann et al. (1978) suggested that
=01 +u.n1||(£- |)5u.1 L
8 and
*  Variation of 7;/B for Iy, E, = 335g_(for L/B = 10)
%= 05 + D.'IJSSS{% B 1) = where g, = cone penetration resistance.

It appears reasonable to wnte { Terzaghi et al., 1996)

»  Variation of 7,/B E —{1+041 L
srecangiel . "’EE Fisquareh

i L
—=2402221—-1|=4
2ol



Procedure for calculation of S, using
the strain influence factor

Step 1. Plot the foundation and the variation of I, with depth to scale (Figure 9.12a).

Step 2. Using the correlation from standard penetration resistance (Ng,) or cone penetration resistance
(g.), plot the actual variation of E, with depth (Figure 9.12b).

Step 3. Approximate the actual variation of E; into a number of layers of soil having a constant E, such
as Eqqy By - -+ s Eggyr - - - Egny (Figure 9.12b).

Step 4. Divide the soil layer from z =0to z = z, into a number of layers by drawing horizontal lines. The
number of layers will depend on the break in continuit i~ the |, and E_ diagrams.

Step 5. Prepare atable (such as Table 9.5) to obtain EI_IM_
Step 6. Calculate C, and C.,. Es
Step 7. Calculate S, from Eq. (9.30).

— z, I
S.=CC,(a- 9) 2D
2l 0 s

(a) Depth, z



Procedure for calculation of S, using
the strain influence factor

. I,
TABLE 9.5 Calculation of EE Az

5

Layer I, at the middle I .
no. Az E, of the layer E,
1 Az, Eg, Ly, Ly,
&zl
Esi 1
2 Az E 3 I3
i ﬁzh‘} Es[r’i Iz[r'] Izi il
i
Es[i I
n '&z[n} E.f{ nl 1 ziml I il
Az,
Eslnﬁ

zjza
E Z




Example 9.4

EXAMPLE 9.4

Consider a rectangular foundation 2 m = 4 m in plan at a depth of 1.2 m in 3 sand
deposit, as shown in Figere 9.13a. Given: y = 17.5 kN/m®, § = 145 kN/m?, and the
following approximated variation of g, with z:

1 im} g (kN

0ns 2250
05235 3430
15 40 2050

Estimate the elastic settlement of the foundation using the strain influence factor method.

T TN
|f1-' =175 kN

B 2|

L=d4m




Example 9.4

SOLUTION
From Eq. (9.33),
205 +[m555{£— |}-nj+un555[:i— 1) = 0,56
B F; 7
- (D.56M2) = 112 m
From Eg. (934),

%-2+1m[:%—1)-1+ﬂ.121ﬂ—1}—111
5= (2207 = 444 m
From Eq. (932), atz = 0,
L=01 +tu]||1(£— |] -0l +11ﬂ1||{i— |}u11|1
B 7
From Eq. (931),
~ 145 — (12 % 1T5)P*
r,;_]-usw.l,ﬂ—ﬁg,m 05+ u'[EI-IH-II}EITﬁ}r 0.675

The plot of I, versus 7 is shown in Figore 9.13c. Agpain, from Eq. (9.37),

e vt s -5




Example 9.4
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Example 9.4

The soil layer is divided into four layers as shown in Figures 9.13b and 0.13c.
Mow the following table can be prepared.

1. ot middle I
Layerne.  Az(m) K, (kNim') of layer E, () E,aNnf} gy
I 0.50 5300 0.23 1.E7 % 10* m--.ﬂﬂ; ______
7 062 o604 0.519 335 » 10 e S e 112 -
i 1.38 Oe0d 0.535 T&B » 1077 1) e
[
4 1.94 260 0157 462 = 102 25+ 0 Lo
E17.52 % 10 S g
KN
I, 40
5 = CiCHg - q}EE&: B
21
Cp=1- EII.SI[_L) -] - ﬂj{—) = 0015
qg—4 145 — 21
€ fms} £ os} (2]
Assume the time for creep is 10 vears. 5o,
L1
Ca=1+021 E} - |4

Hence,
8, = (0015K1.4K145 — 211752 = 10~ = 2783 % 10* m — 2783 mm



Settlement of Sandy Soil: Use of Strain Influence Factor

ll. Solution of Terzaghi et al. (1996)




Settlement of Sandy Soil: Use of Strain Influence Factor

Terzaghi, Peck, and Mesn (1996) pronosed a shightly different form of the stramn influence
factor diagram, as shown in Figure . According to Terzagha et al. (1996,

Atz = 0,1, = 0.2 (for all L/B values)

Atz =z, = 03B, I, = 0.6 (for all L/B values)
Atz =gz =2B,I = 0 (for L/B = 1)

Atz =5, = 4B, I, = Oifor L/B = 10

4 o 0.5B

=28

IZ (m) = 0.6

0.2

£

|~

21 =058

2= 4B

Iz (m) = 0.6

Yz



Settlement of Sandy Soil: Use of Strain Influence Factor

For L/R between 1 and 10 {or > 10),

. _ 2[| .\ 'aE(EJ] TABLE 9.6 Variation of C, with D;/B*
B B D,/B o)
In Eq. (7.29), g, is in MN/m?. 0.1 1
The relabonships for E, are 0.2 0.96
E, = 3.5g, (for square and circular foundations) 03 0.92
and 0.5 0.86
L 0.7 0.82
E siectangain} = [I + n_A(EﬂE,[w. (for L/B = 10) o 077
2.0 0.68
3.0 0.65

*Based on data from Terzaghi et al. (1996)



Example 9.5

Solve Example 0.4 using the method of Terzaghi et al. (1996).

ExAmpLE 9.4

Consider a rectangular foundation 2 m X 4 m in plan at a depth of 1.2 m in a sand
deposit, as shown in Figure 9.13a. Given: y = 175 kN/m’, 7 = 145 kN/m?, and the
following approximated variation of g, with 2:

z(m) !:(WI‘)

005 2250
0525 3430
15460 2950

Estimate the elastic settlement of the foundation using the strain influence factor method.

SYIFT SH F=145xN
lj. y=17.5 kN

*—c-z-_q-_

IL=4m




Example 9.5

SOLUTION
Given: L/B = 4/2 =12
Figure 9.15a shiows the plot of [ with depth below the foundation. Note that

1+ ]n-g[%}] = 2[1 + log (2)] - 26

Z
2.2
B

Za= (26)B) = (2602 =52 m
Also, from Egs. (2.40) and (9.41),

RO S (T

The following table can be prepared and shows the vanation of E, with depth, which

iz shown in Figure 915k
7 (mj) g, (EN/m) E, (kN/m?)
0-05 X250 BEA
0525 3430 14,445 6
2516 2550 11564 w2 {m] - ()

=) rhj



Example 9.5

Again, [ /B = 1.2/2 = (6. From Table 9.6, C, = 0.85.

i
The following table is used to calculabe g:—’ﬁz.
L]

E
r E, ety
I, at the middle I,
Laperno.  Az(m)  E, &N/ of the Inyer Eﬂiﬂm a8

1 0.5 BE30 03 1.7 102

2 0.5 14.445.6 05 173 x 10-2 ) P N

3 1.5 14,445.6 0.493 512 1070

14 A445.0
4 27 11.564 [R5 45 10-3
E 1306 % 10-* m¥kN
Thus,
CiF — q]i%ﬁ., = (IAF)(145 — 21){13.06 = 10-%) = 13765 = 10-3m
1]
Postconstruction creep is
0.1 f days
m{ EWMJ‘“’"“{I day:] 11564
T
2(3.A2) _ (2250 % 0.5) + (3430 X 2) + (2950 X 2.7)
48 52
- 6T A ENME = IO0TMMN@E A e
Hence, the elastic seitlement is .2 (m) ¥ )
0.1 10 % 365 days (= oy
- = — ———————————————
5 = 13765 % 107* + m[mr _'l}l-ng{ oy :]

- 25833 = 10*m
= 35 83 mm



Example 9.5

Nole: The magnitede of 5, is about 03% of that found in Example 9.4. In Exampée 9.4,
the elastic settlement was about 1988 mm, and seftlement due o creep was about
7.95 mm. However, in Example 0.3, elastic setflement is about 13.77 mm, and the
seitlement due to creep is abowut 1207 mm Thus the magnitude of creep setilement
is about 30% more in Example 0.5, However, the magnitude of elastic settlement in
Example 9.4 is abowt 30% more compared to that in Example 935, This is because of
the assumption of the E, - g. relationship.




Settlement of Foundation on Sand Based on
Standard Penetration Resistance

Terzaghi and Peck’s Method

S =S| (1) wheresi
'r, Iourckazion g T ENE iR where B is in meters

The last term takes into account the reduction in I

settlement with the increase in foundation depth. (D Il M0 N0 M0 SN 60 T 0 90 10w
Leonards (1986) suggested replacing ¥ by 1/3, based 3\ accaicad SRS RASRY ARAI ARAERROSYDARAT AR

on additional load test data. The values of Se, plate can =R TR

be obtained from Figure 9.16,which summarizes the W "w.\ Hu:"‘ﬁ HH

plate loading test data given by Terzaghi and Peck
(1967). These load tests were carried out on thick .
deposits of normally consolidated drained sand. This s 11, \
method was originally proposed for square foundations :
but can be applied to rectangular and strip foundations @
with caution. The deeper influence zone and iNcrease  FcURES.1E Seilement of 300 mm 5 300 mem plate (Load tesi data from Late
in the stresses within the underlying soil mass in the = e fere ey

case of rectangular or strip foundations are

compensated by the increase in the soil stiffness.

Senle ment (mm)
=

&

&

N
Ny ={10




Example 9.6

A 2.5 m square foundation placed at a depth of 1.5 m within a sandy soil applies a net
pressure of 120 kN/m® to the underlying ground. The sand has v = 185 kN/m” and
Ny = 25, What would be the settlement?

SOLUTION
I-hrnetq:ﬂ'uimm—I‘Iﬂﬂﬁ&n‘aﬂlﬁm—ﬁ:ﬁmﬁmﬂ.lﬁ,.ﬂl#—im
From Eg. (9.43),
5, - 2B 1|_lﬂ
fomadation - Seple| B 03 EN] Net applied pressure ()
1x25 2 T 0 0 00 300 400 500 &0 TO0 BO0 900 1000
0 ]
_4 - 1__:.:__]!1 i iJ-..I.J._l_I.I_.:-‘:".I-IIIIIIIIIIIIIIIIIIIIIIIIII
“[u +113}( 3 15) i . %:‘"-ﬁ.ﬁ ................ ] eojiene
: “\._H ""-.,._‘__H“. -‘El_l T
'ﬁ“m : e l|““"'-.
8 - '\‘ Denze
ot R
& 40 : 1 '|I'I|I
- \ '|
AT T W= 30
C i
&0 L N 510

FIGURE 9.16 Settlement of 300 mm > 300 mm plate {Load test datn from Lage
Professor (G.A. Leonards, Pordue University)



Settlement of Foundation on Sand Based on
Standard Penetration Resistance

Mevyerhof’s Method

_ 1.25g e {kN/m)
NeoF 4

S,(mm) (for B = 1.22m)

2 (e KN/m°)

S/{mm) = NF,

B 2
(ﬂ+l]3) {for B=1.22m)

oy (KN/M?) =

N A
8 F ] (for B = 1.22 m)
0.05 925

N [B+03\V (S,
qmt{ﬂ*fﬁn’}—um( 5 )FE) (for B = 1.22 m)

The Ny, Is the standard penetration resistance between
the bottom of the foundation and 2B below the bottom.



Settlement of Foundation on Sand Based on
Standard Penetration Resistance

Burland and Burbidge’s Method

1. Variation of Standard Penetration Number with Depth:
Obtain the field penetration numbers Ng, with depth at the location of the foundation The
following adjustments of N4, may be necessary:
For gravel or sandy gravel
Neo@ = 1.25 Ngg
For fine sand or silty sand below the groundwater table and Ny, >15,
Nego@ = 15+0.5(Ngp -15)
where Ngq,) = adjusted Ng, value.
2. Determination of Depth of Stress Influence (2):
In determining the depth of stress influence, the following three cases may arise:
Case I. If Ngg [0r Ngo(o ] is @approximately constant with depth, calculate z' from

r g \0™
N .4 —
By 4(31!)

= | ft (if B is in ft)
= 0.3 m (if B is in m)
B = width of the actual foundation
Case II. If Ng, [or Ny, ] is increasing with depth, use the above Equation.
Case T T Ngo Tor Neo )] is decreasing with depth, z'= 2B or to the bottom of soft soil
layer measured from the bottom of the foundation (whichever is smaller).

where

By = reference w:idm[




Settlement of Foundation on Sand Based on
Standard Penetration Resistance

Burland and Burbidge’s Method

3. Calculation of Elastic Settlement §, TABLE D7 . "
The elastic settlement of the foundation, 5, can be calculated from -/ Summary of g, oy, oz, and oy

Soil type q o .+ @
L : Naormally consofidated ok 014 1.71
1.23 E ( )D.T[q ) sand [le:r m]u
— = — — H H
By - L Be/ \Py Owerconsolidated ot 0047 057 L =—.(1 - —.]
0.5 +|—= T T z
sand (o = o) [Fi or Mg (if H =z
ara, = 1 (if B>z
where
o = preconsofidation -
where pressure Pl
Overconsolidaled Gt — 05T 014 05T
o; = 4 constant sand (i, = o) [Nn.:- :'-Iq“:“]u-

at, = compressibility index

ity = correction for the depth of influence

p, = atmospheric pressure = 100 kN/m*
L. = length of the foundation

Table 9.7 summarizes the values of g, ¢4, a,, and o5 to be used in Equation
for various types of soils. Note that, in this table, N or Ny, = average value of
Ngo [Or Ngo(s) IN the depth of stress influence.



Example 9.7

A shallow foundation measuring 1.75 m = .75 m is to be constructed over a layer
of sand. Given [y = 1 m: Ny is generally increasing with depth; Ny in the depth of
stress infloence = 10, g, = 130 kN/m®. The sand is normally consolidated. Estimate
the elastic seitlement of the foundation. Use the Burland and Burbidge method.

SOLUTION
From Bq. (9.52),
I‘ B Lk )
71
Depth of stress infloence,
7 - 1A{B£)mﬁ'. - (1.4)03 InaE " e 158m
£
From Eq. (9.53),
L I
S N (D1
B, O E iy — {E) Be Pa
B
For normally consolidated sand (Table 9.7),
oy =014
171 1.7
ST e
=1
g = o, = 120 kN/m?
S,

PO i (E

a3 (D-14N006EKT) (I.TS) 100
025 + | —

03
L5

&, e 0LO1TE m = 1.5 mm



Effect of the Rise of Water Table on Elastic Settlement

Terzaghi (1943) suggested that the submergence of soil mass reduces the soil
stiffness by about half, which in turn doubles the settlement. In most cases of
foundation design, it is considered that, if the ground water table is located
1.5B to 2B below the bottom of the foundation, it will not have any effect on
the settlement. The total elastic settlement (S,) due to the rise of the ground
water table can be given as:
S’._S.C,

where
S.= elastic settlement before the rise of ground water table
Cw = water correction factor . Peck, Hansen, and [Thornburn (1974):

1

= =1
) n5+u5( Du )
' “\Ds+ B
*  Teng (1982):
| for water table below the
C,= =72 ]
D, — Dy base of the foundation
0.5 + 0.5 7

=  Bowles (1977)




Example 9.12

A shallow foundation measuaring .75 m = 1.75 m is to be constructed over a layer
of sand. Given Oy = 1 m; Ny, is generally increasing with depth; Ny in the depth of

stress influence = 10, g, = 120 kN/m*. The sand is normally consolidated. Estimate
Consider the shallow foundati . - 9.7, Due to . the the elastic settlement of the foundation. Use the Burland and Borbidge method.
waler table rose from [, = 4 mto 2 m (Figure 9.28). Estimate the ioial elastic settle- § e 00118 m = 11.5 mm
ment 5, after the risa of the water table. Use Eq. (9.800. ‘
SOLUTION
From Eq. (9.79),
L=30
From Eq. (9.80),
O = I 0 - ! 3 = |.158 _
0.5+ 05 = 05+ 05 -
(ﬂ:ﬁ H') {I -|-I.T5)
o,
5 = (11.8 mm){1.158) = 13.66 mm
oy

Groundwater ol

FHGURE 928 Effect of rise of groundwater able on elosiic selilement in granular soil



Effect of the Rise of Water Table on Elastic Settlement

Method of Shahriar et al. (2014)

When the water table is present in the vicinity of the foundation, the unit weight of the soil has
to be reduced for calculation of bearing capacity. Any future rise in the water table can reduce
the ultimate bearing capacity. A future water table rise in the

vicinity of the foundation in granular soil can reduce the soil stiffness and, hence, produce
additional settlement. Terzaghi (1943) concluded that when the water table rises from very
deep to the foundation level, the settlement will be doubled in granular soil. Provided that the
settlement is doubled when the entire sand layer beneath the foundation is submerged,
laboratory model test results and numerical modeling work by Shahriar et al. (2014) show that

the additional settlement produced by the rise of water table to any height can be expressed
as:

-

S, mbtioend =

where S, is the elastic settlement computed in dry soil, A, is the area of the strain influence
diagram submerged due to water table rise, and A, is the total area of the strain influence
diagram under the foundation



Example 9.13

A pad foundation 2.5 m > 2.5 m in plan, when placed at a depth of 1.5 min sand, ap-
plies 175 kN/m* pressure to the undedying ground. Given: v = 1 8.0 kN/m”. Currently
the water table is at 6.5 m below the foundation, and the expected settlement is
15.0 mm. In the futare, as the worst-case scenarso, it is expected that the water table
could rise by 4.0 m, as shown in Figure 0209, What would be the total settlement of
the foundation if this occurs? Use Eg. (9.37).

SOLUTION
The infleence factor diagram meeds to be drawn first From BEg. (9.31) and
Figare 0.11,
- 175 — (18.00(1
Ly =05+ 014 /T =05 +01 'I UEDHY __ g 67

= w5



Example 9.13

FIGURE 329

The [, versus ; diagram is shown in Figure 020h Currently. the water table is
balow the influence zone. 5, = 15.0 mm. The total area of the infloence diagram
A, is given by

Ai_(n'—m;ﬂ'ﬁ?)xlﬁ + X067 X375 = 178 m

|
A,—EHH}{M—ME
From Eqg. (9.83),
A, 0.563
S.r,.ua'.-J-‘TFSf- I_Tnxliﬂ- 4.9 mm

The total settlement would be 15.0 + 4.9 = 199 mm.



SUMMARY

Theory of Strain
Elasticit Influence
y Factor, |,
Meyerhof Burland
Granular
Soils Terzaghi and Peck
Saturated _
clay Schmertmann Terzaghi
s = 0.5

Conventional Improved



Stresses Distribution in Soils

By: Kamal Tawflg, Ph.D., P.E

Stress Distribution in Soils

Geostatic Stresses Added Stresses (Point, line, strip, triangular, circular, rectangular)
Total Stress Westergaard's Method
Effective Stress {For Pavement)

Pore Water Pressure Bossinisque E ions
1_Point Load .
l Lo o &Em_ imate Method

Total Stress= Effective Stress+ Pore Water Pressure 3 Sirip Load - 122 Method

4 Triangular Load Oy
= 5.Circular Load T
Ciotal — Oeff + U 6.Rectangular Load —2X

_ /\
Stress Bulbs
Influence Charts T Newmark Charts
.,f e L S
n Lk ﬁ.n), - 'I_U - :.—I.F ..;-_':--i.-- .-;'I,-' I';




Calculation of Primary Consolidation Settlement

a) Normally Consolidated Clay (’y=0_.")

Ae A

- 2% H
C 1+e0

S

'
O
0

o +Ac e
Ae=Cclog( 0 }

C.H o, + Ao’
S, = log

|1 + e, o,

log o’



Calculation of Primary Consolidation Settlement

b) Overconsolidated Clays :,
S, =% H
1+eO
Casel: oc’ytAc’<ao.’

Ae = Clog(o, + Ac") — log o]

CH o, + Ao’ A
S log

° l+e, o,

¢ €

Casell:oc’y+tAc’> 0.’

G H o. CH o, + Ao’
S, log

log— +

_l+eo g. 1 e




Summary of calculation procedure

Calculate ¢’ at the middle of the clay layer
Determine o’ from the e-log o plot (if not given)
Determine whether the clay is N.C. or O.C.

Calculate Ac

L A

Use the appropriate equation
o I.I: NC S, — C.H ]Dg(g; + FA{TI)

_l+EG o,

«If O.C. |5

CH "+ Ao’ / ,
E— log(gﬂ : ”’) If o, +tAo <o;
1 +e, T,

i

C.H .. CH o, + Ao’
S. = log— + lo

If o~+Ac > o
“ l14+e, "o, 1+e, 0

C

o




Nonlinear pressure increase

Approach 1: Middle of layer (midpoint rule)

g
LU
* For settlement calculation, the i Sai | \
pressure increase Ac, can be B A
approximated as : Comfsgf'b'e
Ao, = Ao,
where Ag;,represent the
Increase in the effective .

pressure in the middle of the

Ac, under the center
layer. of foundation



Approach 2: Average pressure increase | chf

Nonlinear pressure increase

For settlement calculation we
will use the average pressure

increase Ac,, , using weighted Compressible

) Layer
average method (Simpson’s
rule):
, Ao, + 4Ao,, + Aoy,
Ao, = 6 74
Ac, under the center

of foundation

where Ao, , Ac,, and Ac, represent the increase in the pressure
at the top, middle, and bottom of the clay, respectively, under
the center of the footing.



Stress from Approximate Method

2:1 Method

4 E 1 l . L Foundation & = L

h: o XBxL _‘ri-"l'ﬂlﬁl'-ﬂ‘lﬁ * B * ]haﬁulm
(B+ (L +23)




Stress below a Rectangular Area

/o
| ) ¥
Cw s R
ﬁn:L:uLﬂiﬂ{i’id:]::}m=# /l "'ﬁl l/

P l(hh’h"m’+ri’+l m+ o +2

T P R e
4

— i-nn\-"m’+n1+l)

m+nt+ 1 —m'n’ T ;
L |
ol o
__B m (2) | O
z _i_ i

[
=
ol



Stress below a Rectangular Area

Table 6.4 Varation of Influence Yalue 1 [Eq. (6, 10}

m (1N ] oz 03 [LE (1R (LK) or B [1E:] 1.0 12 1.4

o T 000917 aiiA2y 00eTs 00197a 002223 002420 0 002STe Ouiess 00eTed 00ees 003007
02 oooelT 000790 00XEES 003280 006G 00dME 004735 00s0d2 0 0.0528% 00547 005733 005894
03 001323 002585 003735 004742 005593 006294 006858 007308 007661 007938 008323 0.08561
04 D0EETAE  00E2A0 o4z 0oel2d 00 00 008734 O0edd 00en 029 0oa3 s 0010
05 001978 006G 00559 007111 0.0840%  0.0947% 000340 0 fioaE 00 1EE 002008 02626 013003
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Three-Dimensional Effect on
Primary Consolidation Settlement

Seipy = Kert Seip)—oed Seipr = Kedoo) Seip)—oed

TABLE 9.9 Variation of K,y with OCR and B/ H,
l-npl:p

R B/H, =40 B/H. = L0 B/H =02

1 1 1 1
2 [ 0957 0425
3 0572 0914 B4
4 0564 0ETL (e}

o
E" 5 0550 RIS 0707
E fi 0543 T LG43
g 7 0579 0757 L5B6
E o g 0914 0729 0529
- ) g 05900 U700 L.493
Circular 10 DLERE 0ET1 L45T
0.2 - foundation
: _ 11 0ETI 0643 0425
----- Continuous
. 12 [ DLE2G 414
foundation
0 13 DLEST n&14 L400
T T T T 1

0 0.2 0.4 L6 0.8 1.0 14 0250 0607 0386
Pore water pressure parameter, A 15 B4 L& a3
16 DB OLE00 L357

Figure 7.22 Settlement ratios for circular (K_,) and continuous (K}
foundations




Example 9.14

EXAMPLED.14

A plan of a foundation | m = 2 m is shown in Figure 0.13. Estimate the consolids-
tion settlement of the foundation, taking into account the three-dimensional effect.

Given: A = (L6
i

1 g = 150 ENim®
Im | o I{lu:l.::l::.i:m::zll::I

Bxl=lm=*2m Sand
15m ¥ = 16.5 kNim

]  ‘Croundwater table

- = Sand
fsm vy = 17.5 kNim®
Narmally consolidaied clay
75 y= l6kNm g =0%
- E, = 6000 kNm? C, =032
1. p, =05 C, =009

FIGURE 9.33 Calculation af primary consolidation settlement for 2 foundation



Example 9.14

S0OLUTION
The clay is normally consolidated. Thus,
C.H, oy, + Ao,

St = - ME ——
50
o = (X5)16.5) + 05175 — 081) + (12516 — 0.81)
- 4125 + 385 + 7.74 = 52.84 kN/m?
From Eq. (8.26),

Aerjy = gler] + dAerl, + Ao
We divide the foundation into four quarers, comgpute the stress increase under a cor-
ner of each gquarter using Bg. (810}, and muoltiply by four. For each quarter, B = 0.5 m

and [ = 1.0m.
Location zimj) o= RS n o= L I A’ = gt
Top k] .25 050 00475 RS = Ao
Middle 1375 oUIsd 0308 = 00Z13 1275 = A,
Boliom 45 ol 222 = 00113 675 = Ay,
Mow

A, = 285 + 4 % 1275 + 6.75) = 14.38 kN/m?

5 03NS . (5284 + 1438
A== T+ 08 "”'3[: 5234

)-osesa

= 6.5 mm



Example 9.14

Now assuming that the 2: | method of stress increase (see Figune 8.9) holds, the area
of distnibution of stress at the top of the clay layer will have dimensions

B =width=-8F+z=1+(1.5+05=3m
and

L'=width=L+z=2+(15+05=4m
The dismeter of an equivalent circular area, 8. can be given as

L rrr
TE“.,—EL
50 Eheat
48"
N e L }'M_gg
ar )
Also,
H. 25
By 391
FME;LI‘EQE!,[EI‘A—D.Emiff‘fﬂq—ﬂ.ﬁd,ﬂﬂ:mﬂ.!{ﬂlfﬂnffnﬂ-ﬂ.m
Hence,

S = Kooy e = (0.7EN46.5) = 363 mm



Secondary Consolidation Settlement

The magnitude of the secondary consolidation can be calculated as:

=

H Q

S. = Ae )

S 1+e, ©

O

e void ratio at the end of S

P, .
primary consolidation,

H thickness of clay layer.

Ae = Cylog (t,/t4)

C, = coefficient of secondary
compression

C.H t,
Ss = 1+e, log (a)

Time. t (log scale)




Secondary Consolidation Settlement

Ses = CaH loglta/n)

Co=Cf1 + &)
ep = voud ratio at the end of primary consolidation
H. = thickness of clav layer

Mesri (1973) correlated C7, with the natural moisture content (10) of several soils,
from which it appears that

C, = 0000w

where w0 = natural moisture content, in percent. For most overconsolidated soils, C; varies
between 0.0005 10 0.001.

Mesri and Godlewski (1977) compiled the magnitude of C,/C, (C, = compression
index) for a number of soils. Based on their compilation, it can be summanzed that

*  For inorganic clays and silts:

C,/C. =004 =001
» For organic clays and silts:

C,/C.= 005 = 0.01
« For peats:

C,/C.= 0075 =001



Example 9.15

Refer to Example 0.14. Given for the clay layer: C, = (.02, Estimate the total consoli-
dation settlement five years after the completion of the primary consolidation settle-
ment. (Nofe: Time for completion of primary consolidation setilement is 1.3 years.)

oy
| gy = 150 ENAmr®
I m | o I{lﬂ:t:-i.nu:l-:]
'|' BxL-lm=2m -
15m ¥ = 16.5 kN/m’
¥  ‘croundwater iabhle
T = mand
| = y, = 175 kNim’
Worrmally consolidaied clay
15 y=l6kNm' g =08
- E, = 6000 kNm® C, =032
l g, =05 C, =009




Example 9.15

SOLUTION
From Eq. (2.53),

g T Ey
oy
s (2)
Faor this problem_ ¢, — £, — Ar. Refeming to Example 914, we have

of = ol + Ao’ = 52.B4 + 14.38 = 67.22 kN/m?
o} = o, = 52.54 kN/m®
C, = 0.32

C -

ol + Ao
g = qm{%}—nﬂm{%}—nm&s
Given: g, — 0.E. Hanoa,

g, =&, — =08 — 00335 = 0.7665

From Eq. (9.92),

Ly o2

C - -
= 1+e 1+07665

- 00113

From Eq. (9091,
Sun = Ctttog (7]
|
Moge: 1) = | 3 years; f; = 1.3 + 5 = 6.5 years.
Thus,
&3
S = (DU I3W2S m) lot{ﬁ‘] = BB m = 19.4 mm

Total consalidation settlement is

363 mm + 194 = 55.7m

.Tn.
Example D14
(primary
consolidation
seftlemeani)



Field Load Test

The Plate Load Test (PLT)

The ultimate load-bearing capacity of a foundation, as well as the
allowable bearing capacity based on tolerable settlement considerations,
can be effectively determined from the field load test, generally referred
to as the plate load test. The plates that are used for tests in the field are
usually made of steel and are 25 mm thick and 150 mm to 762 mm in
diameter. Occasionally, square plates that are 305 mm 3 305 mm are
also used.

To conduct a plate load test, a hole is excavated with a minimum
diameter of 4B (B is the diameter of the test plate) to a depth of D; , the
depth of the proposed foundation.

The plate is placed at the center of the hole, and a load that is about
one-fourth to one-fifth of the estimated ultimate load is applied to the
plate in steps by means of a jack. During each step of the application of
the load, the settlement of the plate is observed on dial gauges. At least
one hour is allowed to elapse between each application.

The test should be conducted until failure, or at least until the plate has
gone through 25 mm of settlement.

Lioadfunit ar=a

Bezlemenl



Field Load Test

The Plate Load Test (PLT)

For tesis mn clay,

Guity = JuiP
where

g = ulumate bearing capacity of the proposed foundation
§um = ulimate beaning capacity of the test plate

For tests 1in sandy sols,
By
Wb = -
L q"[ﬁﬂr

where

By = width of the foundaton FIGURE 9.36 Plate kad test in the field (Courtesy of Braja M. D, Henderson, Nevada)

Bp = width of the test plate
The allowabde bearing capacity of a foundation, based on settlement consider-
aticns and for a given intensity of load, g, is

M
By = .S',H—' ifor clayey soil)

r

2B,
S=-X fi i
— ‘{H,.+H,.1II (for sandy soil)






