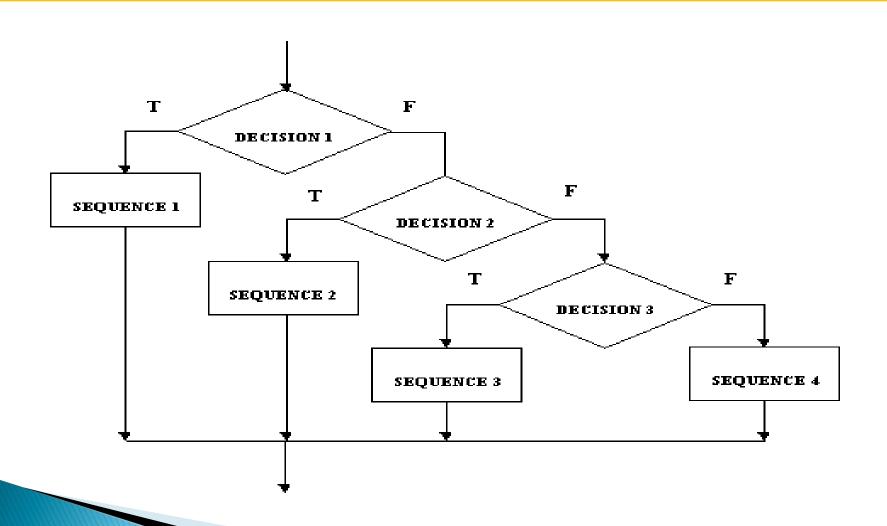
SELECTION STATEMENTS (2)

Nested if Switch

Outline


- 1. Nested if
- 2. Switch
- 3. Programming hint

1. Multiple Selection: Nested if

Syntax:

```
if (expression1)
    statement1
else
    if
(expression2)
        statement2
    else
        statement3
```

- Multiple if
 statements can be
 used if there is more
 than two
 alternatives
- else is associated with the most recent if that does not have an else.

PROGRAM 1 - ANALYSIS

Write a program that identifies if a number is positive, negative or zero.

INPUT

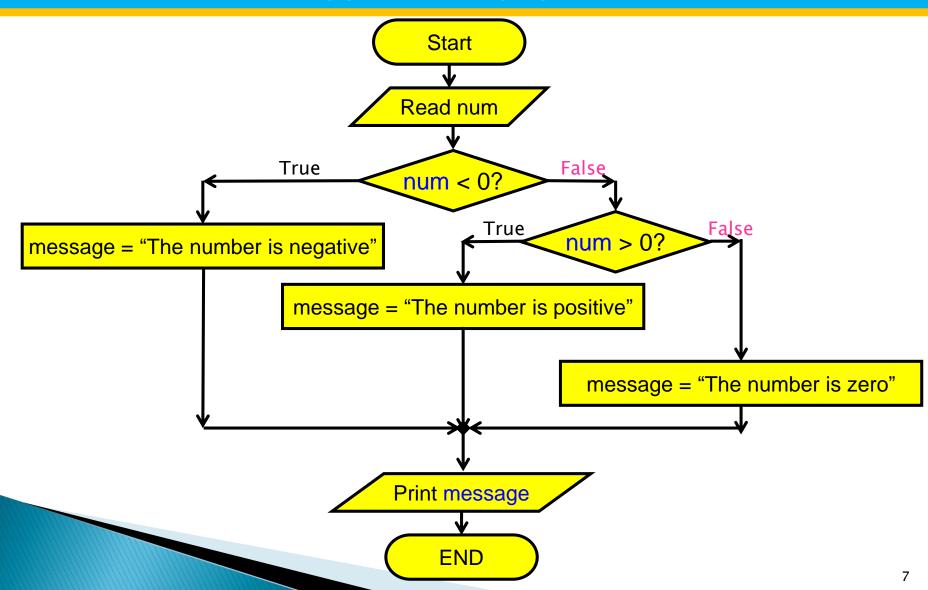
Number (variable: number, type: double or int)

OUTPUT

An appropriate message (variable: message, type: string)

PROCESS

```
if (number < 0)
  message = "The number is negative"
otherwise
  if (number > 0)
    message = "The number is positive"
  otherwise
    message = "The number is zero"
```


PROGRAM 1 - ALGORITHM

- 1. Start the program
- 2. Read the number and save it in the variable num

```
3. if (num < 0)
    message = "The number is negative"
    else
    if (num > 0)
        message = "The number is positive"
        else
        message = "The number is zero"
4. Print message
```

5. End the program

PROGRAM 1 - FLOWCHART

PROGRAM 1 – CODE

```
// import necessary libraries
 2
                                      //contains the class Scanner
     import java.util.*;
 3
     public class nestedIf1
 4
 5
       static Scanner console = new Scanner (System.in);
 6
       public static void main (String[] args)
 8
             // Declaration section: to declare needed variables
 9
                int num;
10
                String message;
             // Input section: to enter values of used variables
11
12
                System.out.println ("Enter an integer number"); //prompt
                num = console.nextInt();
13
             // Processing section: processing statements
14
15
                if (num < 0)
                  message = "The number is negative";
16
                else
17
18
                    \epsilonif (num > 0)
                       message = "The number is positive";
19
                    Lelse
20
21
                        message = "The number is zero";
22
23
             // Output section: display program output
                System.out.printf ("%25s", message);
         } // end main
     } // end class
```

PROGRAM 1 – NOTES

```
// Processing section: processing statements

if (num < 0)

message = "The number is negative";

else

if (num > 0)

message = "The number is positive";

else

message = "The number is zero";
```

Each else corresponds to the <u>closer</u> if

PROGRAM 1 - NOTES

```
14
     // Processing section: processing statements
15
            if (num < 0)
16
              message = "The number is negative";
17
            else
18
                    message = "The number is not negative";
19
20
                    if (num > 0)
21
                      message = "The number is positive";
22
                    else
23
                      message = "The number is zero";
                 } //end else... if (num < 0)</pre>
24
```

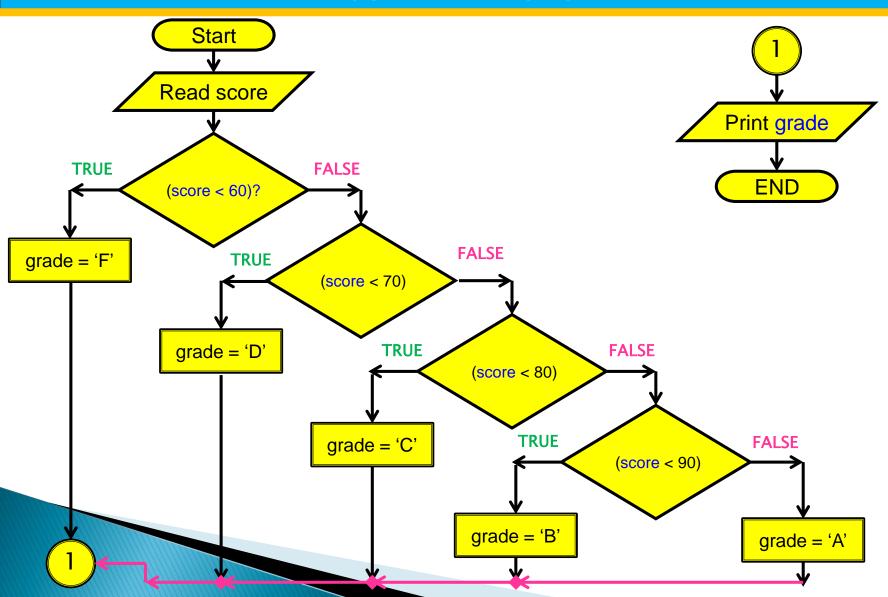
Block statements may be used as shown above.

PROGRAM 2 – ANALYSIS

Write a program that calculates the letter grade of a student.

INPUT

Student's score (variable: score, type: double)


OUTPUT

Student's letter grade (variable: grade, type: char)

PROCESS

```
if (score less than 60.0) grade = 'F'
otherwise
  if (score between 60.0 and 70.0) grade = 'D'
  otherwise
  if (score between 70.0 and 80.0) grade = 'C'
  otherwise
  if (score between 80.0 and 90.0) grade = 'B'
  otherwise grade = 'A'
```

PROGRAM 2 - FLOWCHART

PROGRAM 2 – CODE

```
// import necessary libraries
 2
     import java.util.*;
                                      //contains the class Scanner
 3
     public class nestedIf2
 4
 5
       static Scanner console = new Scanner (System.in);
 6
       public static void main (String[] args)
 8
             // Declaration section: to declare needed variables
 9
                double score:
10
                char grade;
11
             // Input section: to enter values of used variables
12
                System.out.println ("Enter score"); //prompt
                score = console.nextDouble();
13
14
             // Processing section: processing statements
```

PROGRAM 2 - CODE (cont'd)

```
14
     // Processing Section: processing statements
   if (score < 60.0)
15
16
       grade = F';
    else
     \rightarrow if (score < 70.0)
19
          grade = 'D';
20
        else
21
       → if (score < 80.0)
22
            grade = 'C';
23
          else
24
          \rightarrow if (score < 90.0)
25
              grade = 'B';
26
            else
27
              grade = 'A';
28
     // Output Section: display program output
29
     System.out.printf ("Student's grade = %c", grade);
30
      } //end main
31
     } //end class
```

The following code does not work as intended. Trace for score = 62.

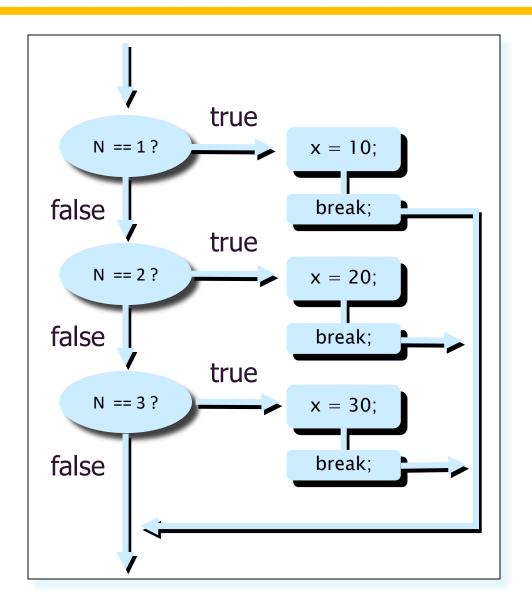
This is corrected as follows:

```
if (score > 60.0)
{
    if (score > 65.0)
        System.out.println ("Score is greater than 65");
}
else
System.out.println ("Score is less than 60");
```

Enter student's score

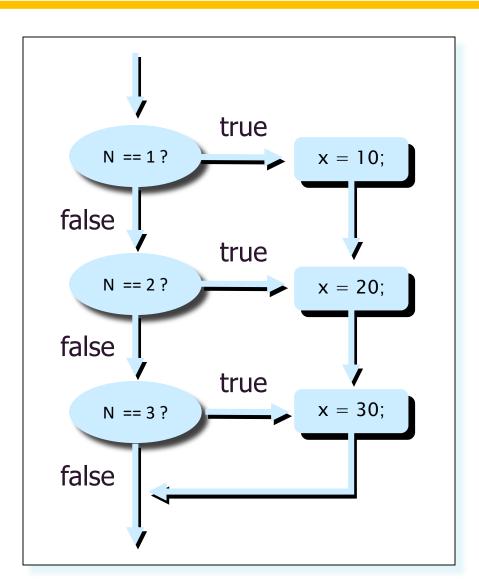
2 62.0

1. The switch Statement


SYNTAX

```
switch (identifier)
   case value 1:
                 statement(s) 1;
                 break;
   case value 2:
                 statement(s) 2;
                 break;
   case value n:
                 statement(s) n;
                 break;
   default:
                 statement(s);
  } //end switch
```

- Expression is also known as selector.
- Expression can be an identifier.
- Value can't be double or float.


switch With Break Statement

```
switch (N) {
   case 1: x = 10;
           break;
   case 2: x = 20;
           break;
   case 3: x = 30;
           break;
```


switch With NO Break Statement

```
switch (N) {
   case 1: x = 10;
   case 2: x = 20;
   case 3: x = 30;
}
```


Switch With Break And Default Statements

```
char grade=read.next().charAt(0);
switch (grade)
   case 'A': System.out.println("The grade is A.");
          break;
   case 'B': System.out.println("The grade is B.");
          break;
   case 'C': System.out.println("The grade is C.");
          break:
   case 'D': System.out.println("The grade is D.");
          break;
   case 'F': System.out.println("The grade is F.");
          break:
   default: System.out.println("The grade is invalid.");
```

New enhanced switch syntax

```
char grade=read.next().charAt(0);
switch (grade)
{
   case 'A'-> System.out.println("The grade is A.");
case 'B'-> System.out.println("The grade is B.");
case 'C'-> System.out.println("The grade is C.");
   case 'D'-> System.out.println("The grade is D.");
case 'F'-> System.out.println("The grade is F.");
   default -> System.out.println("The grade is invalid.");
}
```

Same example with Nestedif

```
if (qrade == 'A')
      System.out.println("The grade is A.");
else
    if (grade == 'B')
        System.out.println("The grade is B.");
else
    if (grade == 'C')
        System.out.println("The grade is C.");
else
    if (grade == 'D')
        System.out.println("The grade is D.");
else
    if (grade == 'F')
        System.out.println("The grade is F.");
else
      System.out.println("The grade is invalid.");
```

1.3 Programming hint

EXAMPLE 3

When the same action is to be taken for several case labels, then we may write the program as follows:

```
public static void main (String[] args)
 2
       //Declaration section
       Scanner read = new Scanner (System.in);
 5
       char letter:
       String vowel = "This is a vowel";
       //input section
                                            This is equivalent to:
       letter = read.next().charAt(0);
 9
       //processing section
                                            if (letter=='a') || (letter=='e') ||
10
       switch (letter)
                                            (letter=='o') || (letter=='i') ||
11
                                            (letter=='u')
12
         case 'a':
13
         case 'e':
                                                  System.out.println (vowel);
         case 'o':
14
15
         case 'i':
         case 'u': System.out.println (vowel);
16
17
                  break:
18
        default: System.out.println ("This is not a vowel");
       } //end switch
     } //end main
```

1.3 New enhanced switch syntax

EXAMPLE 3

Using the enhanced version, It could be rewritten as following

```
public static void main (String[] args)
 2
       //Declaration section
       Scanner read = new Scanner (System.in);
 5
       char letter:
 6
       String vowel = "This is a vowel";
       //input section
 8
       letter = read.next().charAt(0);
 9
       //processing section
10
      switch (letter) {
11
      case 'a', 'e', 'i', 'o', 'u' -> System.out.println(vowel);
     default -> System.out.println("This is not a vowel");
12
13
       //end switchtch
     } //end main
14
```

2. switch vs. nested if

- The switch statement is an elegant way to apply multiple selections. It is less confusing.
- However, the programmer is forced sometimes to use the nested if. Examples of such cases include:
 - If the selection involves a range of values.
 - Example: if (score >= 60) && (score < 70)
 - If the selector's type is double or float.
 - Example: if (salary == 5000.0)

Self-Check Exercises (1)

Given that speed = 75 and fee = 0 what is the output of the following code

```
if (speed > 35)
fee = 20.0;
else if (speed > 50)
fee = 40.0:
else if (speed > 75)
fee = 60.0;
System.out.printf ("Fee = %6f.1", fee):
if (speed < 35)
fee = 20.0;
if (speed < 50)
fee = 40.0:
else if (speed > 75)
fee = 60.0;
System.out.printf ("Fee = %6f.1", fee);
if (speed < 35)
if (speed < 50)
fee = 40.0;
else fee = 60.0;
System.out.printf ("Fee = %6f.1", fee);
```

Self-Check Exercises (2)

Given that salary = 2000.0, what is the output of the following:

```
double lowtax = 0.15;
double hightax = 0.25;
double tax, salary;
tax = (salary >= 5000.0) ? lowtax : hightax;
System.out.println (tax);
```

Given that transactions = 500, what is the output of the following:

```
boolean vip;
int transactions, offer = 10;
vip = (transactions >= 200) ? (offer > 5) : (offer < >=5);
System.out.println (vip);
```

Self-Check Exercises (3)

Write a complete program that calculates and prints the bill for Riyadh's power consumption. The rates vary depending on whether the user is residential, commercial, or industrial. A code of R corresponds to a Residential, C corresponds to a Commercial, and I to Industrial. Any other code should be treated as an error.

The program should read the power consumption rate in KWH (Kilowatt per Hour); then it calculates the due amount according to the following:

The rate is SAR 5 per KWH for Residential, SAR 10 per KWH for Commercial and SAR 20 per KWH for Industrial.

Self-Check Exercises (1)

Solve the following program using the switch statement:

Write a complete program that calculates and prints the bill for Riyadh's power consumption. The rates vary depending on whether the user is residential, commercial, or industrial. A code of R corresponds to a Residential, C corresponds to a Commercial, and I to Industrial. Any other code should be treated as an error.

The program should read the power consumption rate in KWH (Kilowatt per Hour); then it calculates the due amount according to the following:

The rate is SAR 5 per KWH for Residential, SAR 10 per KWH for Commercial and SAR 20 per KWH for Industrial.

W5.3 Switch

Self-Check Exercises (2)

Write a complete program that calculates and prints the bill for a cellular telephone company. The company offers two types of service: regular and premium. The regular service is coded as 'r' or 'R'; the premium service is coded as 'p' or 'P'. Any other character should be treated as an error.

Rates vary based on the type of service and computed as follows:

Regular service: \$10.00 plus first 50 minutes are given free. Charges for over 50 minutes are \$0.20 per minute.

Premium service: \$25.00 plus:

- For calls made from 6:00 am and 6:00 pm, the first 75 minutes are free; charges for over 75 minutes are \$0.10 per minute.
- For calls made from 6.00 pm and 6:00 am, the first 100 minutes are free; charges for over 100 minutes are \$0.05 per minute.

