
Chapter 5
Adversarial Search

Adversarial search

• Search problems seen so far:
• Single agent.

• No interference from other agents and no competition.

• Game playing: Multi-agent environment.
1. Cooperative games.

2. Competitive games → adversarial search or games.

2

Types of games

Deterministic Chance

Perfect Information Chess, Checkers, Go, Othello Backgammon, Monopoly

Imperfect Information Battleship Bridge, Poker, Scrabble,

3

Adversarial search vs. search problems

• Unlike classic search problems, the outcome of the game depends not
only on the action of the agent but also on the actions of the other
agent(s).

• The action of the opponent agent are not known in advance → we
need specify a move for every possible opponent reply.

• Time limits: game playing is limited by time → we need to
approximate and not search for an optimal solution.

4

Planning ahead in a world that includes a
hostile agent
• Games as search problems

• Idealization and simplification:
• Two players

• Alternate moves
• MAX player

• MIN player

• Available information:
• Perfect: chess, chequers, tic-tac-toe… (no chance, same knowledge for the two players)

• Imperfect: poker, Stratego, bridge…

Setup

• At the end of the game, points are awarded to the winning player and
penalties are given to the loser.

• We consider two-player games:
• One agent tries to maximize the utility function, the other tries to minimize it.

• As a convention our protagonist agent is a maximizer.

6

MAX MIN

Problem Formulation

• Initial state: initial configuration of the game.
• Example: initial board configuration in chess.

• Player: Defines which player has the turn in the state.

• Actions: set of legal moves from a state.

• Result: The transition model, which defines the result of a move

• Terminal test: decide if the game has finished.

• Utility function: produces a numerical value for (only) the terminal
states.

• Example: In chess, outcome = win/loss/draw, with values +1, 0, ½ respectively.

7

Game representation

• In the general case of a game with two players:
• General state representation

• Initial-state definition

• Winning-state representation as:
• Structure

• Properties

• Utility function

• Definition of a set of operators

9

Example: game tree for tic-tac-toe

• 9! combinations, but actually less
because of repetition

• MAX needs a strategy to move down the tree
• What to do for every move MIN makes

• Is tic-tac-toe zero-sum?

Search with an opponent

• Trivial approximation: generating the tree for all moves

• Terminal moves are tagged with a utility value, for example: “+1” or “-
1” depending on if the winner is MAX or MIN.

• The goal is to find a path to a winning state.

• Even if a depth-first search would minimize memory space, in
complex games this kind of search cannot be carried out.

• Even a simple game like tic-tac-toe is too complex to draw the entire
game tree.

Search with an opponent

Search with an opponent

Search with an opponent

• Heuristic approximation: defining an evaluation function which indicates how
close a state is from a winning (or losing) move

• This function includes domain information.

• It does not represent a cost or a distance in steps.

• Conventionally:
• A winning move is represented by the value“+∞”.

• A losing move is represented by the value “-∞”.

• The algorithm searches with limited depth.

• Each new decision implies repeating part of the search.

Minimax

• Minimax-value(n): utility for MAX of being in state n, assuming both players
are playing optimally =

• Utility(n), if n is a terminal state

• maxs ∈ Successors(n) Minimax-value(s), if n is a MAX state

• mins ∈ Successors(n) Minimax-value(s), if n is a MIN state

Example: tic-tac-toe

• e (evaluation function → integer) = number of available rows,
columns, diagonals for MAX - number of available rows, columns,
diagonals for MIN

• MAX plays with “X” and desires maximizing e.

• MIN plays with “0” and desires minimizing e.

• Symmetries are taken into account.

• A depth limit is used (2, in the example).

Example: tic-tac-toe

Example: tic-tac-toe

Example: tic-tac-toe

Minimax algorithm

• Idea: choose move to position with highest minimax value = best
achievable payoff against best play

• This definition of optimal play for MAX assumes that MIN also plays
optimally—it maximizes the worst-case outcome for MAX

• What if MIN does not play optimally? Then MAX will do even better

19

20

The minimax algorithm

• The minimax algorithm computes the minimax decision from
the current state.

• It uses a simple recursive computation of the minimax values of
each successor state:

• directly implementing the defining equations.

• The recursion proceeds all the way down to the leaves of the
tree.

• Then the minimax values are backed up through the tree as the
recursion unwinds.

20

Zero-sum games

• Zero-sum game: defined as one where the total payoff to all players is
the same for every instance of the game.

• Total payoff ≠ 0

• Example: Chess is zero-sum because every game has a payoff of either
0 + 1, 1 + 0 or ½ + ½

• “Constant-sum” would have been a better term, but zero-sum is
traditional

21

Simple game tree

• Given a game tree, the optimal strategy can be determined from the
minimax value of each node

• 𝑀𝐼𝑁𝐼𝑀𝐴𝑋 𝑛 : Utility (for MAX) of being in the corresponding state
• We assume that both players play optimally from there to the end of the

game

22

Simple game tree

𝑀𝐼𝑁𝐼𝑀𝐴𝑋 𝑠 =

൞

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑠 𝑖𝑓 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 − 𝑇𝑒𝑠𝑡(𝑠)

𝑀𝑎𝑥𝑎∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑠 𝑀𝐼𝑁𝐼𝑀𝐴𝑋(𝑅𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑎) 𝑖𝑓 𝑃𝑙𝑎𝑦𝑒𝑟 𝑠 = 𝑀𝐴𝑋

𝑀𝑖𝑛𝑎∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑠 𝑀𝐼𝑁𝐼𝑀𝐴𝑋(𝑅𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑎) 𝑖𝑓 𝑃𝑙𝑎𝑡𝑦𝑒𝑟 𝑠 = 𝑀𝐼𝑁

23

Minimax
algorithm

24

Minimax algorithm

25

return arg maxa ∈ ACTIONS(s) MIN-VALUE(RESULT(state=A, a))
a1 → state = B , a2 → state = C , a3 → state = D

Minimax algorithm

26

return arg maxa ∈ ACTIONS(s) MIN-VALUE(RESULT(state=A, a))
a1 → state = B , a2 → state = C , a3 → state = D

MIN-VALUE(B) MIN-VALUE(C) MIN-VALUE(D)

Minimax algorithm

27

if TERMINAL-TEST(B) then return UTILITY(B)
𝑣 ← ∞
for each a in ACTIONS(B) do //a= b1,b2,b3

 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(B, a)))
return 𝑣

𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(B, b1)))
𝑣 ← MIN(𝑣, MAX-VALUE(B1))
𝑣 ← MIN(𝑣, MAX-VALUE(B2))
𝑣 ← MIN(𝑣, MAX-VALUE(B3))

B1 B2 B3

Minimax algorithm

28

if TERMINAL-TEST(B1) then
 return UTILITY(B1) = 3

B1 B2 B3

Minimax algorithm

29

if TERMINAL-TEST(B) then return UTILITY(B)
𝑣 ← ∞
for each a in ACTIONS(B) do //a= b1,b2,b3

 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(B, a)))
return 𝑣

𝑣 ← MIN(∞, 3)
𝑣 ← MIN(3, 12)
𝑣 ← MIN(3, 8)

B1 B2 B3

Minimax algorithm

30

B1 B2 B3

Minimax algorithm

31

B1 B2 B3

Minimax algorithm

32

B1 B2 B3

Minimax algorithm

33

B1 B2 B3

Properties of minimax

• Minimax performs a complete DFS exploration of the game tree

• Completeness: Yes (if tree is finite)

• Optimality: Yes (against an optimal opponent)

• Time complexity: 𝑂(𝑏𝑚)

• Space complexity: 𝑂(𝑏𝑚)

Example: Chess: 𝑏 ≈ 35, 𝑚 ≈ 100 for “reasonable” games

➢Exact solution infeasible

➢ Use alpha–beta pruning

34

35

The minimax algorithm: problems

• For real games the time cost of minimax is totally impractical, but this
algorithm serves as the basis:

• for the mathematical analysis of games and

• for more practical algorithms

• Problem with minimax search:
• The number of game states it has to examine is exponential in the number of

moves.

• Unfortunately, the exponent can’t be eliminated, but it can be cut in
half.

35

36

Alpha-beta pruning

• It is possible to compute the correct minimax decision without
looking at every node in the game tree.

• Alpha-beta pruning allows to eliminate large parts of the tree from
consideration, without influencing the final decision.

36

Why is it called 𝛼 − 𝛽?

• 𝛼 = the value of the best (i.e., highest-value) choice we have found so
far at any choice point along the path for MAX.

• 𝛽 = the value of the best (i.e., lowest-value) choice we have found so
far at any choice point along the path for MIN.

37

Pruning in 𝛼 − 𝛽

• Consider node 𝑛 that the player
(MAX) can move to

• If 𝑚 is a better node higher up in
the tree, then 𝑛 will never be
reached

• MIN applies the same ideas in
their turn

38

39

B

Alpha-beta pruning

39

• The leaves below B have the values 3, 12 and 8.

• The value of B is exactly 3.

• It can be inferred that the value at the root is at least 3,
because MAX has a choice worth 3.

• C, which is a MIN node, has a value of at most 2.

• But B is worth 3, so MAX would never choose C.

• Therefore, there is no point in looking at the other successors of C.

40

Alpha-beta pruning

40

B C

• D, which is a MIN node, is worth at most 14.

• This is still higher than MAX’s best alternative (i.e., 3), so D’s other
successors are explored.

41

Alpha-beta pruning

41

B C D

42

• The second successor of D is worth 5, so the exploration continues.

Alpha-beta pruning

42

B C D

43

• The third successor is worth 2, so now D is worth exactly 2.

• MAX’s decision at the root is to move to B, giving a value of 3

Alpha-beta pruning

43

B C D

44

Alpha-beta pruning

• Alpha-beta pruning gets its name from two parameters.
• They describe bounds on the values that appear anywhere along the path

under consideration:
• α = the value of the best (i.e., highest value) choice found so far along the path for MAX

• β = the value of the best (i.e., lowest value) choice found so far along the path for MIN

44

45

Alpha-beta pruning

• Alpha-beta search updates the values of α and β as it goes along.

• It prunes the remaining branches at a node (i.e., terminates the
recursive call)

• as soon as the value of the current node is known to be worse than the
current α or β value for MAX or MIN, respectively.

45

The 𝛼 − 𝛽
algorithm

46

MAX

Vi

{α, β}

If Vi > α, modify α

If Vi ≥ β, β pruning

Return α

{α, β}

If Vi < β, modify β

If Vi ≤ α, α pruning

Return β

MIN

Vi

α and β bounds are transmitted from parent to child in the

order of node visit. The effectiveness of pruning highly

depends on the order in which successors are examined.

Alpha-beta pruning

The I subtree can be

pruned, because I is a

min node and the value

of v(K) = 0 is < α = 3

A

CB

ED

3

{-∞, +∞}

A

CB

ED

3 5

3

{-∞, 3}

A

CB

D

3

HF

{3, +∞}

G

JI

LK

{3, +∞}

{3, +∞}

{3, +∞}

0

{alpha = -∞, beta = +∞}

{-∞, 3}

{-∞, +∞}

{3, +∞}

The G subtree can be

pruned, because G is a

max node and the value

of v(M) = 7 is > β = 5

A

CB

D

3

HF

{3, +∞}

G

J

{3, +∞}

{3, +∞}

5

5

A

CB

D

3

HF

{3, +∞}

G

J

{3, 5}

5

5

NM 7
A

CB

D

3

HF

4

J

4

{3, 5}

5

5
4

Properties of 𝛼 − 𝛽

• Pruning does not affect the final result

• Good move ordering (i.e. which nodes to examine first) improves
effectiveness of pruning

• With “perfect ordering”, time complexity = 𝑂 𝑏 Τ𝑚
2 instead of 𝑂(𝑏𝑚)

• doubles depth of search

50

𝛼 − 𝛽 pruning

51

Remember, Max is searching
𝛼 = the highest-value found so far at any choice point along the path for MAX

𝛽 = the lowest-value found so far at any choice point along the path for MIN

𝛼 − 𝛽 pruning

52

The best MAX can get is 3 The best MAX can get is 2, which is worse than
3 from node B, so MAX doesn’t bother looking
in the rest of the sub-tree. Stop.

MAX can get at least 3

Remember, Max is searching
𝛼 = the highest-value found so far at any choice point along the path for MAX

𝛽 = the lowest-value found so far at any choice point along the path for MIN

𝛼 − 𝛽 pruning

53

The best MAX can get is 14,
keep looking (better than 3)

The best MAX can get
now is 5, keep looking
(still better than 3)

The best MAX can get
now is 2, stop

Remember, Max is searching
𝛼 = the highest-value found so far at any choice point along the path for MAX

𝛽 = the lowest-value found so far at any choice point along the path for MIN

Example

54

𝑣 ←MAX-VALUE(state,−∞,+∞)
𝑣 ←MAX-VALUE(A,−∞,+∞) function MAX-VALUE(A,−∞,+∞) returns a utility value

 if TERMINAL-TEST(A) then return UTILITY(A)
 𝑣 ← −∞
 for each 𝑎 in ACTIONS(A) do
 𝑣 ← MAX(𝑣, MIN-VALUE(RESULT(A,𝑎), 𝛼, 𝛽))

B, −∞,+∞
C
D

−∞

Second Loop
Third Loop

MAX-VALUE(A, −∞,+∞)

Example

55

MIN-VALUE(B, −∞,+∞)

function MIN-VALUE(B, α, β) returns a utility value
 if TERMINAL-TEST(B) then return UTILITY(B)
 𝑣 ← +∞
 for each 𝑎 in ACTIONS(B) do
 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(B,𝑎), 𝛼, 𝛽))

B1, −∞,+∞
B2
B3

𝑣 ← MIN(+∞, 3) 𝑣 = 3, 𝛼 = −∞, 𝛽 = +∞
If 𝑣 ≤ 𝛼 then return 𝑣 3 ≤ −∞? No
𝛽 ← MIN(+∞, 3) 𝛽 = 3

+∞

Example

56

B1, −∞,+∞
B2, −∞, 3
B3,

𝑣 ← MIN(3, 12) 𝑣 = 3, 𝛼 = −∞, 𝛽 = 3
If 𝑣 ≤ 𝛼 then return v 3 ≤ −∞? No
𝛽 ← MIN(3, 3) 𝛽 = 3

3

MIN-VALUE(B, −∞,+∞)

function MIN-VALUE(B, α, β) returns a utility value
 if TERMINAL-TEST(B) then return UTILITY(B)
 𝑣 ← +∞
 for each 𝑎 in ACTIONS(B) do
 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(B,𝑎), 𝛼, 𝛽))

Example

57

B1, −∞,+∞
B2, −∞, 3
B3, −∞, 3

3

𝑣 ← MIN(3, 8) 𝑣 = 3, 𝛼 = −∞, 𝛽 = 3
If 𝑣 ≤ 𝛼 then return v 3 ≤ −∞? No
𝛽 ← MIN(3, 3) 𝛽 = 3

return 𝑣 𝑣 = 3 Loop of state B finished, return to
MAX-VALUE(A, −∞,+∞)

MIN-VALUE(B, −∞,+∞)

function MIN-VALUE(B, α, β) returns a utility value
 if TERMINAL-TEST(B) then return UTILITY(B)
 𝑣 ← +∞
 for each 𝑎 in ACTIONS(B) do
 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(B,𝑎), 𝛼, 𝛽))

Example

58

function MAX-VALUE(A, α, β) returns a utility value
 if TERMINAL-TEST(A) then return UTILITY(A)
 𝑣 ← −∞
 for each 𝑎 in ACTIONS(A) do
 𝑣 ← MAX(v, MIN-VALUE(RESULT(A,a), α, β))

 𝑣 ← MAX(−∞, 3), 𝑣 = 3
 If 𝑣 ≥ 𝛽 then return 𝑣 3 ≥ +∞? No
 𝛼 ← MAX (𝛼, 𝑣) MAX(−∞, 3), 𝛼 = 3

B, −∞,+∞
C
D

−∞

MAX-VALUE(A, −∞,+∞)

Example

59

function MAX-VALUE(A, α, β) returns a utility value
 if TERMINAL-TEST(A) then return UTILITY(A)
 𝑣 ← −∞
 for each 𝑎 in ACTIONS(A) do
 𝑣 ← MAX(v, MIN-VALUE(RESULT(A,a), α, β))

B, −∞,+∞
C, 3, +∞
D

3

MAX-VALUE(A, −∞,+∞)

Example

60

MIN-VALUE(C, 3,+∞)

function MIN-VALUE(C, α, β) returns a utility value
 if TERMINAL-TEST(C) then return UTILITY(C)
 𝑣 ← +∞
 for each 𝑎 in ACTIONS(C) do
 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(C,𝑎), 𝛼, 𝛽))

𝑣 ← MIN(+∞, 2) 𝑣 = 2, 𝛼 = 3, 𝛽 = +∞
If 𝑣 ≤ 𝛼 then return 𝑣 2 ≤ 3? YES
So: Return 2 to MAX-VALUE(A, −∞,+∞)
We don’t check C2 and C3

C1, 3,+∞
C2
C3

+∞

Example

61

function MAX-VALUE(A, α, β) returns a utility value
 if TERMINAL-TEST(A) then return UTILITY(A)
 𝑣 ← −∞
 for each 𝑎 in ACTIONS(A) do
 𝑣 ← MAX(v, MIN-VALUE(RESULT(A,a), α, β))

 𝑣 ← MAX(3, 2), 𝑣 = 3
 If 𝑣 ≥ 𝛽 then return 𝑣 3 ≥ +∞? No
 𝛼 ← MAX (𝛼, 𝑣) MAX(3, 3), 𝛼 = 3

MAX-VALUE(A, −∞,+∞)

B, −∞,+∞
C, 3, +∞
D

3

Example

62

function MAX-VALUE(A, α, β) returns a utility value
 if TERMINAL-TEST(A) then return UTILITY(A)
 𝑣 ← −∞
 for each 𝑎 in ACTIONS(A) do
 𝑣 ← MAX(v, MIN-VALUE(RESULT(A,a), α, β))

MAX-VALUE(A, −∞,+∞)

B, −∞,+∞
C, 3, +∞
D, 3, +∞

3

Example

63

MIN-VALUE(D, 3,+∞)

function MIN-VALUE(D, α, β) returns a utility value
 if TERMINAL-TEST(D) then return UTILITY(D)
 𝑣 ← +∞
 for each 𝑎 in ACTIONS(D) do
 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(D,𝑎), 𝛼, 𝛽))

𝑣 ← MIN(+∞, 14) 𝑣 = 14, 𝛼 = 3, 𝛽 = +∞
If 𝑣 ≤ 𝛼 then return 𝑣 14 ≤ 3? No
𝛽 ← MIN(+∞, 14) 𝛽 = 14

D1, 3,+∞
D2
D3

+∞

Example

64

MIN-VALUE(D, 3,+∞)

function MIN-VALUE(D, α, β) returns a utility value
 if TERMINAL-TEST(D) then return UTILITY(D)
 𝑣 ← +∞
 for each 𝑎 in ACTIONS(D) do
 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(D,𝑎), 𝛼, 𝛽))

𝑣 ← MIN(14, 5) 𝑣 = 5, 𝛼 = 3, 𝛽 = 14
If 𝑣 ≤ 𝛼 then return 𝑣 5 ≤ 3? No
𝛽 ← MIN(14, 5) 𝛽 = 5

D1, 3,+∞
D2, 3, 14
D3

14

Example

65

MIN-VALUE(D, 3,+∞)

function MIN-VALUE(D, α, β) returns a utility value
 if TERMINAL-TEST(D) then return UTILITY(D)
 𝑣 ← +∞
 for each 𝑎 in ACTIONS(D) do
 𝑣 ← MIN(𝑣, MAX-VALUE(RESULT(D,𝑎), 𝛼, 𝛽))

𝑣 ← MIN(5, 2) 𝑣 = 2, 𝛼 = 3, 𝛽 = 5
If 𝑣 ≤ 𝛼 then return 𝑣 2 ≤ 3? YES
So: Return 2 to MAX-VALUE(A, −∞,+∞)
We don’t check any more, unfortunately,
it is the last node

D1, 3,+∞
D2, 3, 14
D3, 3, 5

5

Example

66

function MAX-VALUE(A, α, β) returns a utility value
 if TERMINAL-TEST(A) then return UTILITY(A)
 𝑣 ← −∞
 for each 𝑎 in ACTIONS(A) do
 𝑣 ← MAX(v, MIN-VALUE(RESULT(A,a), α, β))

 𝑣 ← MAX(3, 2), 𝑣 = 3
 If 𝑣 ≥ 𝛽 then return 𝑣 3 ≥ +∞? No
 𝛼 ← MAX (𝛼, 𝑣) MAX(3, 3), 𝛼 = 3

MAX-VALUE(A, −∞,+∞)

B, −∞,+∞
C, 3, +∞
D

3 B, −∞,+∞
C, 3, +∞
D, 3, +∞

Return 𝑣 = 3

return the action in ACTIONS(A) with value 𝑣 = 3

Resource limits

• The minimax algorithm generates the entire game search space

• Alpha–Beta algorithm allows us to prune large parts of the search
space

• Still must search all the way to terminal states: not practical

• Programs should cut off the search earlier and apply a heuristic
evaluation function to states in the search:

1. Replace the Utility function by a heuristic evaluation function EVAL

2. Replace the Terminal Test by a Cutoff Test that decides when to
apply EVAL

67

Improved algorithm with cutoff

𝐻 − 𝑀𝐼𝑁𝐼𝑀𝐴𝑋(𝑠, 𝑑) =

൞

𝐸𝑉𝐴𝐿 𝑠 𝑖𝑓 𝐶𝑈𝑇𝑂𝐹𝐹 − 𝑇𝐸𝑆𝑇(𝑠, 𝑑)

𝑚𝑎𝑥𝑎∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠(𝑠) 𝐻 − 𝑀𝐼𝑁𝐼𝑀𝐴𝑋(𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎), 𝑑 + 1) 𝑖𝑓 𝑃𝐿𝐴𝑌𝐸𝑅(𝑠) = 𝑀𝐴𝑋

𝑚𝑖𝑛𝑎∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠(𝑠) 𝐻 − 𝑀𝐼𝑁𝐼𝑀𝐴𝑋(𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎), 𝑑 + 1) 𝑖𝑓 𝑃𝐿𝐴𝑌𝐸𝑅(𝑠) = 𝑀𝐼𝑁

68

Summary

• Use Minimax: not practical for large games.

• Apply alpha-beta cuts → exact solution, but the gain depends on
move ordering and still not practical for large games.

• Memory and time limitations → search with cutoff and evaluation
function.

69

	Slide 1: Chapter 5
	Slide 2: Adversarial search
	Slide 3: Types of games
	Slide 4: Adversarial search vs. search problems
	Slide 5: Planning ahead in a world that includes a hostile agent
	Slide 6: Setup
	Slide 7: Problem Formulation
	Slide 8: Game representation
	Slide 9: Example: game tree for tic-tac-toe
	Slide 10: Search with an opponent
	Slide 11: Search with an opponent
	Slide 12: Search with an opponent
	Slide 13: Search with an opponent
	Slide 14: Minimax
	Slide 15: Example: tic-tac-toe
	Slide 16: Example: tic-tac-toe
	Slide 17: Example: tic-tac-toe
	Slide 18: Example: tic-tac-toe
	Slide 19: Minimax algorithm
	Slide 20: The minimax algorithm
	Slide 21: Zero-sum games
	Slide 22: Simple game tree
	Slide 23: Simple game tree
	Slide 24: Minimax algorithm
	Slide 25: Minimax algorithm
	Slide 26: Minimax algorithm
	Slide 27: Minimax algorithm
	Slide 28: Minimax algorithm
	Slide 29: Minimax algorithm
	Slide 30: Minimax algorithm
	Slide 31: Minimax algorithm
	Slide 32: Minimax algorithm
	Slide 33: Minimax algorithm
	Slide 34: Properties of minimax
	Slide 35: The minimax algorithm: problems
	Slide 36: Alpha-beta pruning
	Slide 37: Why is it called alpha minus beta ?
	Slide 38: Pruning in alpha minus beta
	Slide 39: Alpha-beta pruning
	Slide 40: Alpha-beta pruning
	Slide 41: Alpha-beta pruning
	Slide 42: Alpha-beta pruning
	Slide 43: Alpha-beta pruning
	Slide 44: Alpha-beta pruning
	Slide 45: Alpha-beta pruning
	Slide 46: The alpha minus beta algorithm
	Slide 47: Alpha-beta pruning
	Slide 48
	Slide 49
	Slide 50: Properties of alpha minus beta
	Slide 51: alpha minus beta pruning
	Slide 52: alpha minus beta pruning
	Slide 53: alpha minus beta pruning
	Slide 54: Example
	Slide 55: Example
	Slide 56: Example
	Slide 57: Example
	Slide 58: Example
	Slide 59: Example
	Slide 60: Example
	Slide 61: Example
	Slide 62: Example
	Slide 63: Example
	Slide 64: Example
	Slide 65: Example
	Slide 66: Example
	Slide 67: Resource limits
	Slide 68: Improved algorithm with cutoff
	Slide 69: Summary

