# Chapter 5

Adversarial Search

# Adversarial search

- Search problems seen so far:
  - Single agent.
  - No interference from other agents and no competition.
- Game playing: Multi-agent environment.
  - 1. Cooperative games.
  - 2. Competitive games  $\rightarrow$  adversarial search or games.

# Types of games

|                       | Deterministic                | Chance                   |
|-----------------------|------------------------------|--------------------------|
| Perfect Information   | Chess, Checkers, Go, Othello | Backgammon, Monopoly     |
| Imperfect Information | Battleship                   | Bridge, Poker, Scrabble, |

# Adversarial search vs. search problems

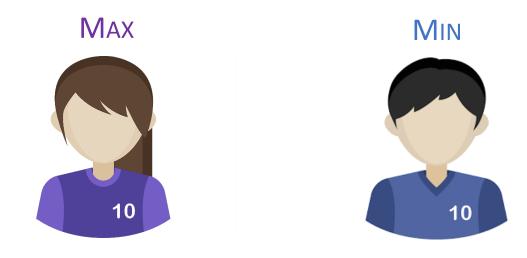
- Unlike classic search problems, the outcome of the game depends not only on the action of the agent but also on the actions of the other agent(s).
- The action of the opponent agent are not known in advance → we need specify a move for every possible opponent reply.
- Time limits: game playing is limited by time → we need to approximate and <u>not search</u> for an optimal solution.

# Planning ahead in a world that includes a hostile agent

- Games as search problems
- Idealization and simplification:
  - Two players
  - Alternate moves
    - MAX player
    - MIN player
  - Available information:
    - Perfect: chess, chequers, tic-tac-toe... (no chance, same knowledge for the two players)
    - Imperfect: poker, Stratego, bridge...

# Setup

- At the end of the game, points are awarded to the winning player and penalties are given to the loser.
- We consider two-player games:
  - One agent tries to maximize the utility function, the other tries to minimize it.
  - As a convention our protagonist agent is a maximizer.



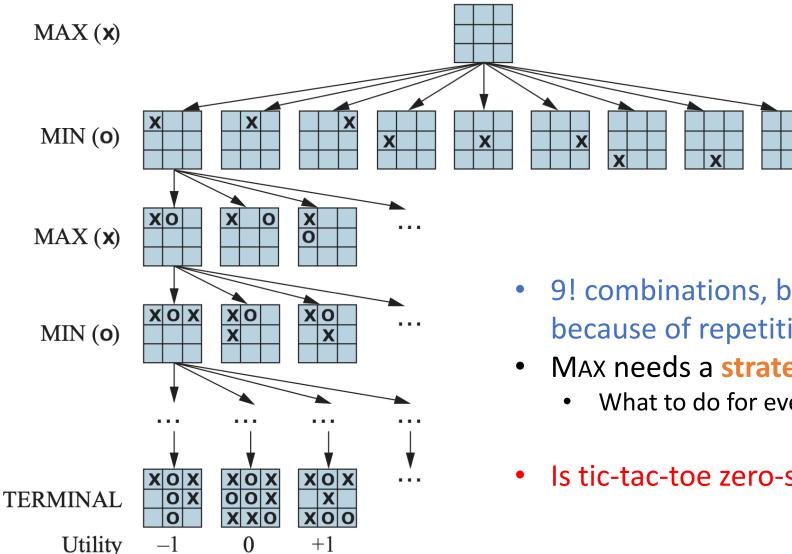
# **Problem Formulation**

- Initial state: initial configuration of the game.
  - Example: initial board configuration in chess.
- Player: Defines which player has the turn in the state.
- Actions: set of legal moves from a state.
- Result: The transition model, which defines the result of a move
- Terminal test: decide if the game has finished.
- Utility function: produces a numerical value for (only) the terminal states.
  - Example: In chess, outcome = win/loss/draw, with values +1, 0, <sup>1</sup>/<sub>2</sub> respectively.

# Game representation

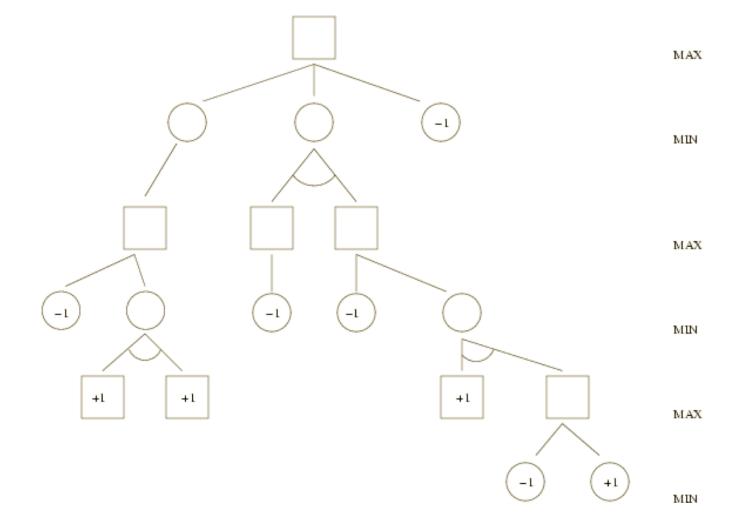
- In the general case of a game with two players:
  - General state representation
  - Initial-state definition
  - Winning-state representation as:
    - Structure
    - Properties
    - Utility function
  - Definition of a set of operators

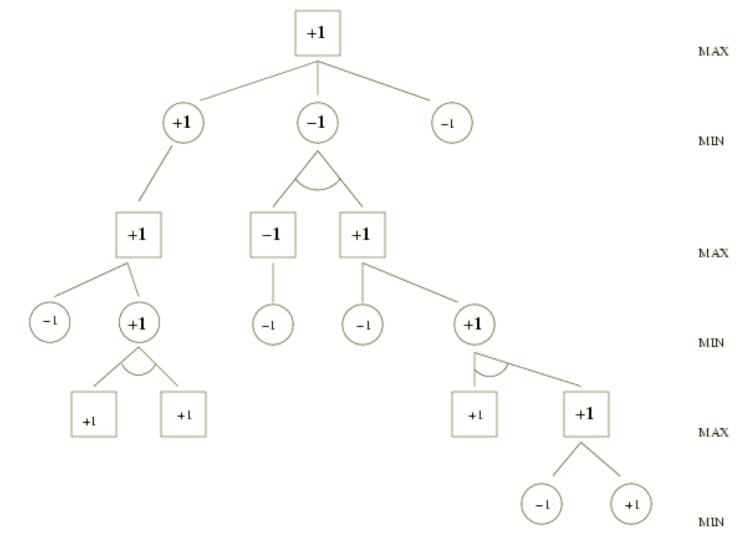
# Example: game tree for tic-tac-toe



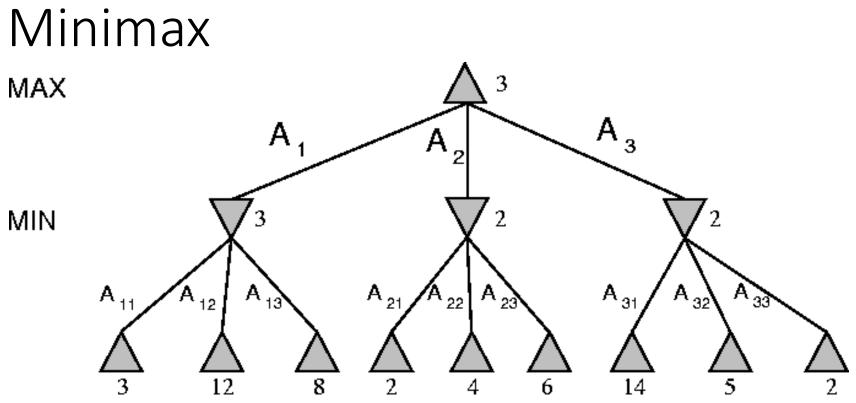
- 9! combinations, but actually less because of repetition
- Max needs a strategy to move down the tree
  - What to do for every move MIN makes
- Is tic-tac-toe zero-sum?

- Trivial approximation: generating the tree for all moves
- Terminal moves are tagged with a utility value, for example: "+1" or "-1" depending on if the winner is MAX or MIN.
- The goal is to find a path to a winning state.
- Even if a depth-first search would minimize memory space, in complex games this kind of search cannot be carried out.
- Even a simple game like tic-tac-toe is too complex to draw the entire game tree.





- Heuristic approximation: defining an evaluation function which indicates how close a state is from a winning (or losing) move
- This function includes domain information.
- It does not represent a cost or a distance in steps.
- Conventionally:
  - A winning move is represented by the value"+ $\infty$ ".
  - A losing move is represented by the value "- $\infty$ ".
  - The algorithm searches with limited depth.
- Each new decision implies repeating part of the search.



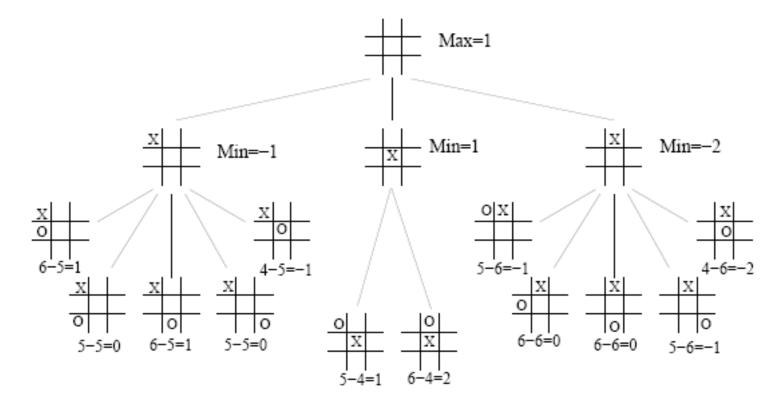
- Minimax-value(n): utility for MAX of being in state n, assuming both players are playing optimally =
  - Utility(*n*),
  - max<sub>s ∈ Successors(n)</sub> Minimax-value(s),
  - min<sub>s ∈ Successors(n)</sub> Minimax-value(s),

if *n* is a terminal state if *n* is a MAX state if *n* is a MIN state

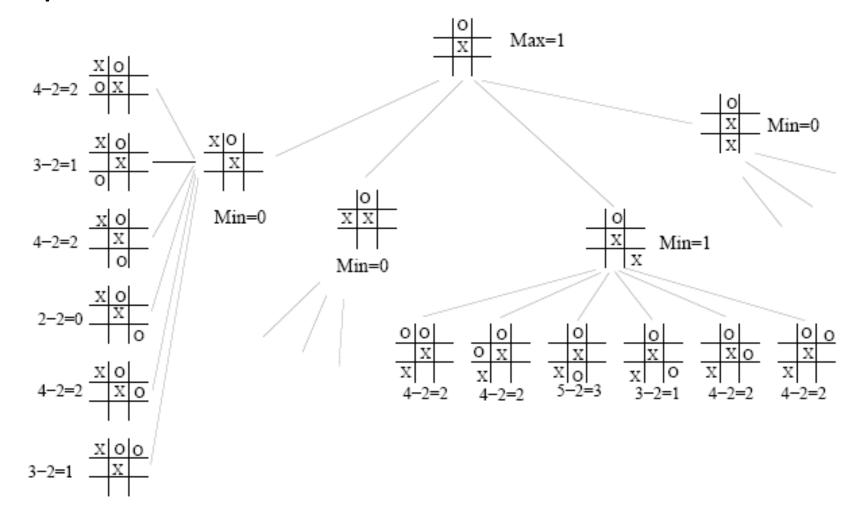
#### Example: tic-tac-toe

- e (evaluation function → integer) = number of available rows, columns, diagonals for MAX - number of available rows, columns, diagonals for MIN
- MAX plays with "X" and desires maximizing e.
- MIN plays with "0" and desires minimizing e.
- Symmetries are taken into account.
- A depth limit is used (2, in the example).

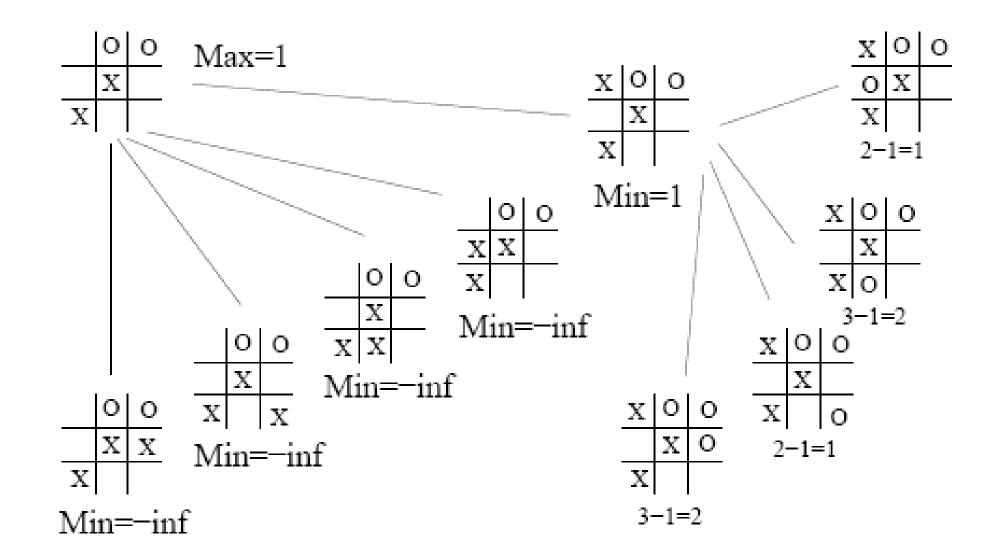
Example: tic-tac-toe



#### Example: tic-tac-toe



Example: tic-tac-toe



- Idea: choose move to position with highest minimax value = best achievable payoff against best play
- This definition of optimal play for MAX assumes that MIN also plays optimally—it maximizes the *worst-case* outcome for MAX
- What if MIN does not play optimally? Then MAX will do even better

# The minimax algorithm

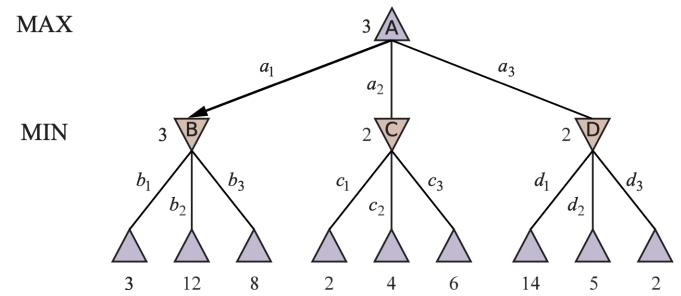
- The **minimax algorithm** computes the minimax decision from the current state.
- It uses a simple recursive computation of the minimax values of each successor state:
  - directly implementing the defining equations.
- The recursion proceeds all the way down to the leaves of the tree.
- Then the minimax values are **backed up** through the tree as the recursion unwinds.

# Zero-sum games

- Zero-sum game: defined as one where the total payoff to all players is the same for every instance of the game.
  - Total payoff  $\neq 0$
- Example: Chess is zero-sum because every game has a payoff of either 0 + 1, 1 + 0 or  $\frac{1}{2} + \frac{1}{2}$
- "Constant-sum" would have been a better term, but zero-sum is traditional

# Simple game tree

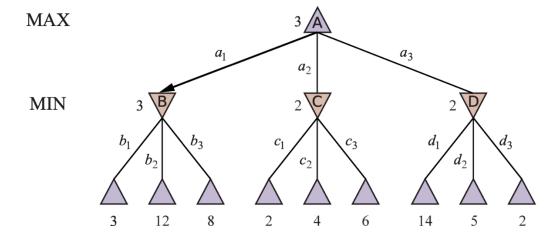
- Given a game tree, the optimal strategy can be determined from the minimax value of each node
- *MINIMAX*(*n*): Utility (for MAX) of being in the corresponding state
  - We assume that both players play optimally from there to the end of the game



#### Simple game tree

#### MINIMAX(s) =

 $\begin{aligned} & Utility(s) & Utility(s) \\ & Max_{a \in Actions(s)}MINIMAX(Result(s,a)) & if Player(s) = MAX \\ & Min_{a \in Actions(s)}MINIMAX(Result(s,a)) & if Platyer(s) = MIN \end{aligned}$ 

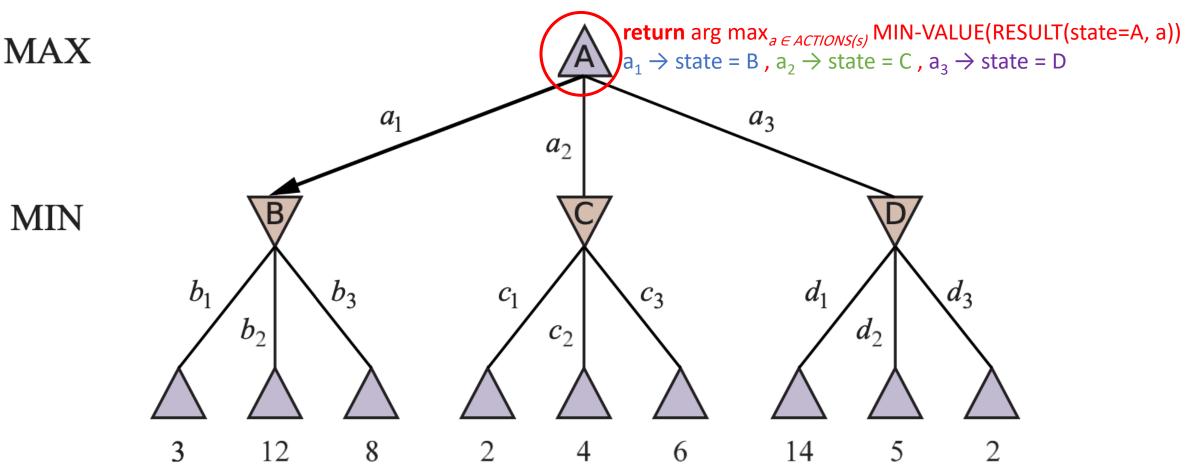




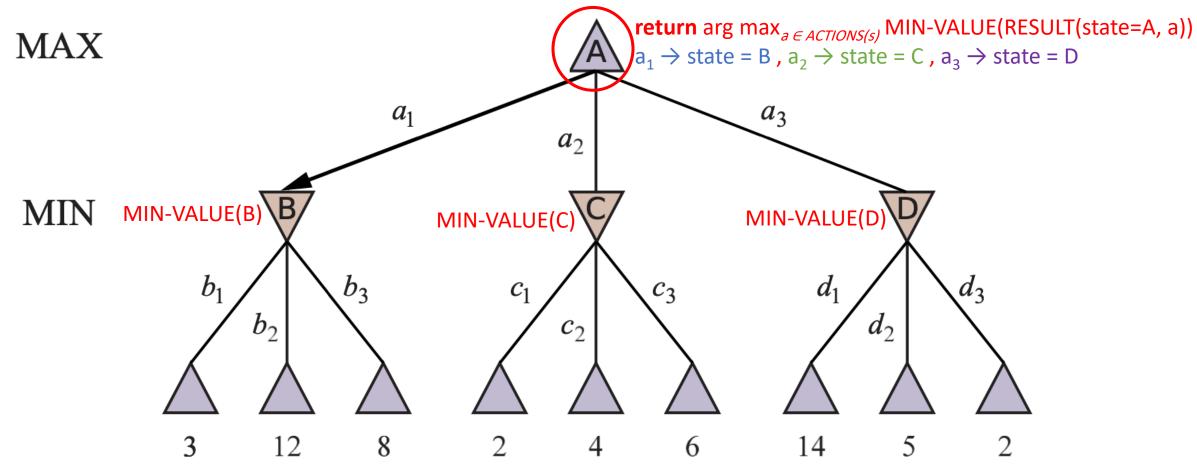
function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow -\infty$ for each a in ACTIONS(state) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a)))$ return v

function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow \infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a)))$ return v

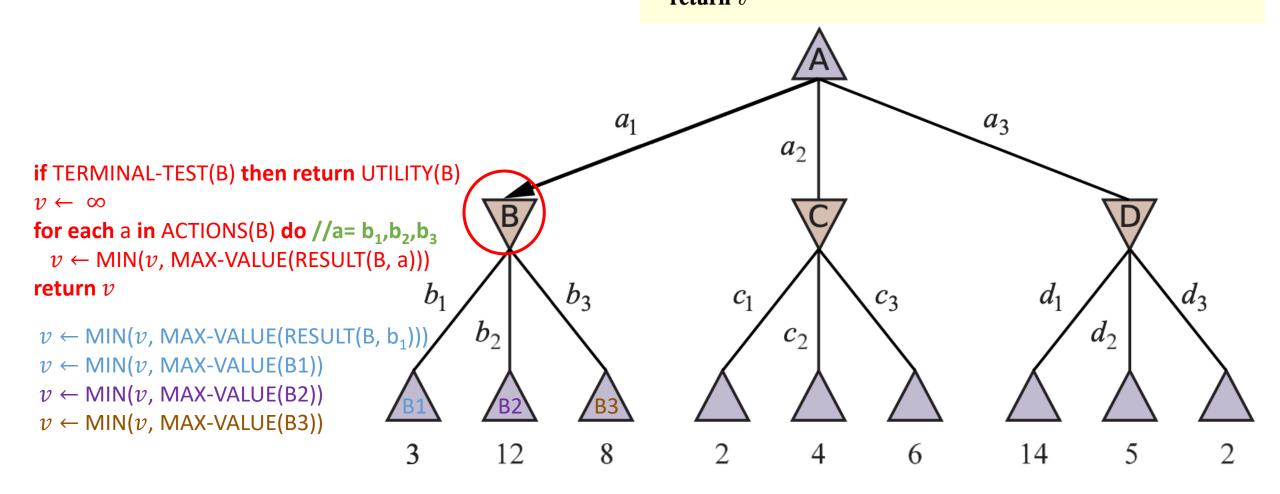
#### Minimax algorithm



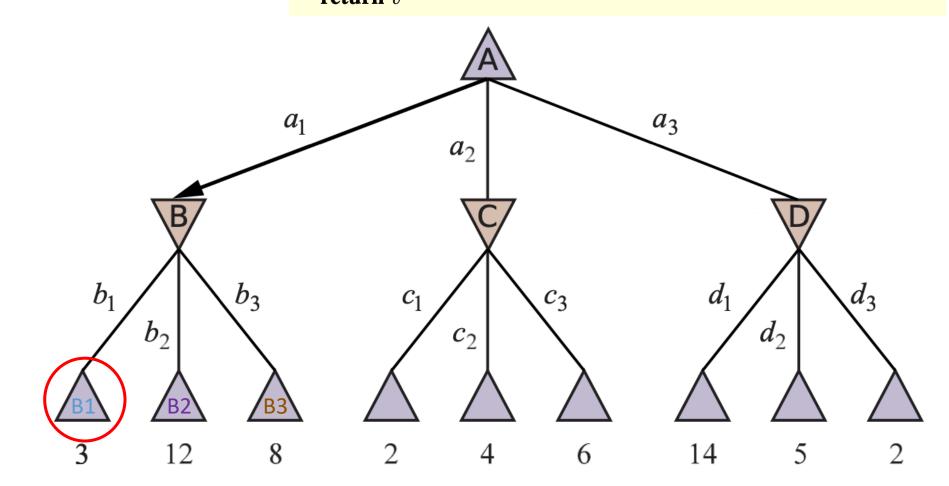
#### Minimax algorithm



function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow \infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a)))$ return v

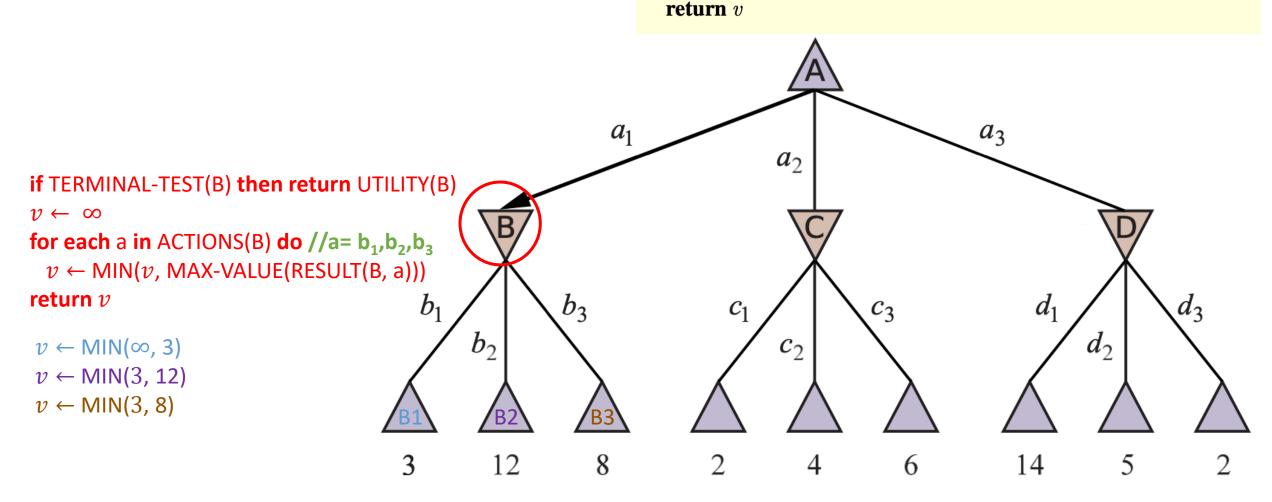


function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow -\infty$ for each a in ACTIONS(state) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a)))$ return v



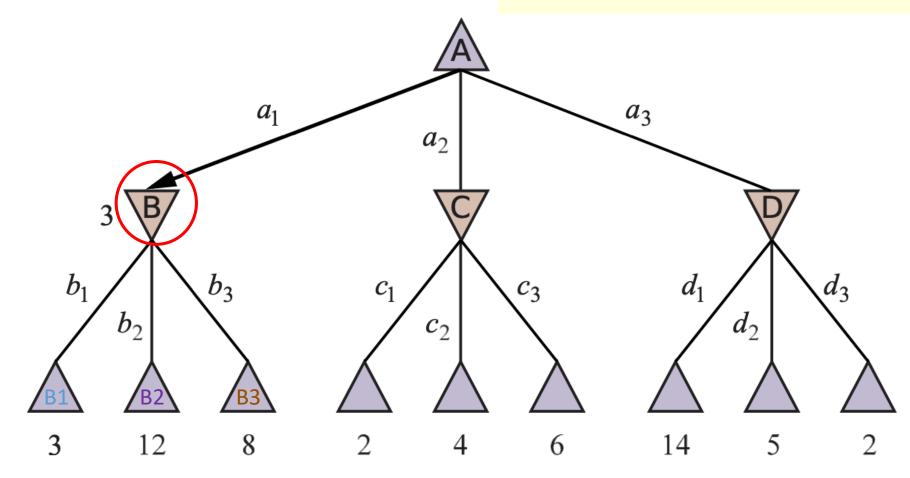
if TERMINAL-TEST(B1) then
return UTILITY(B1) = 3

function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow \infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a)))$ 



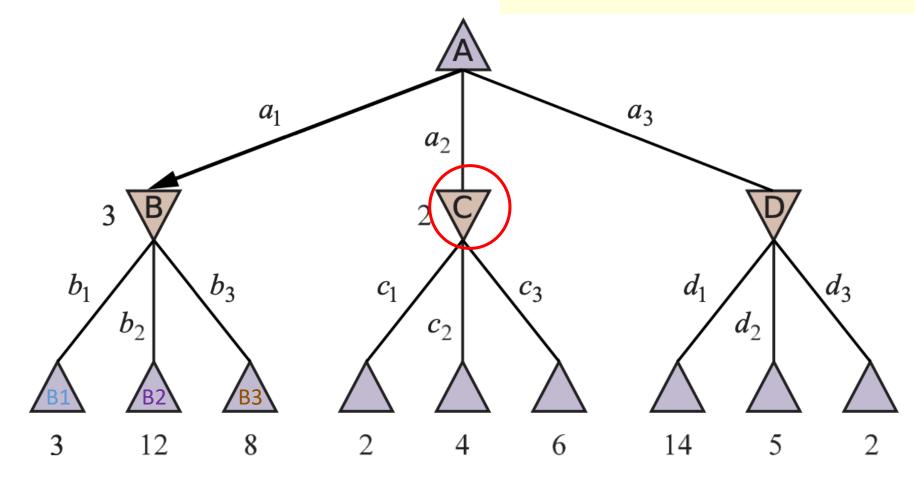
function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow \infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a)))$ 

return v



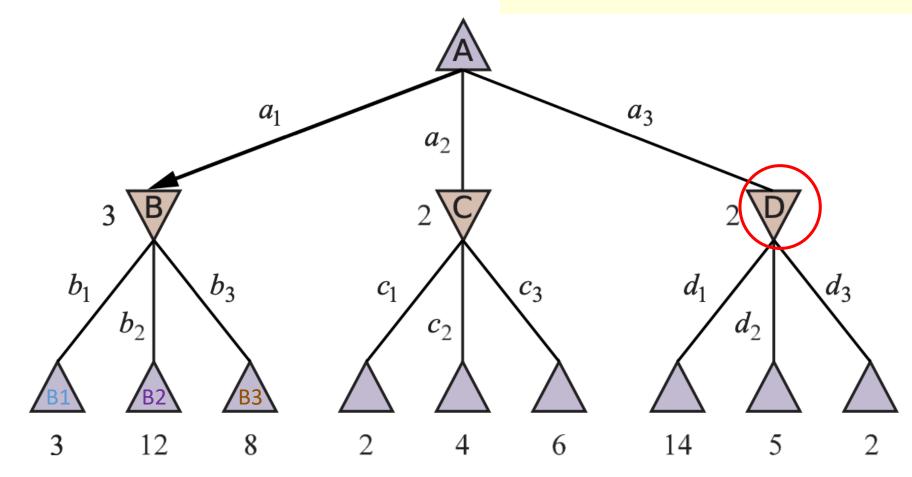
function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow \infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a)))$ 

return v

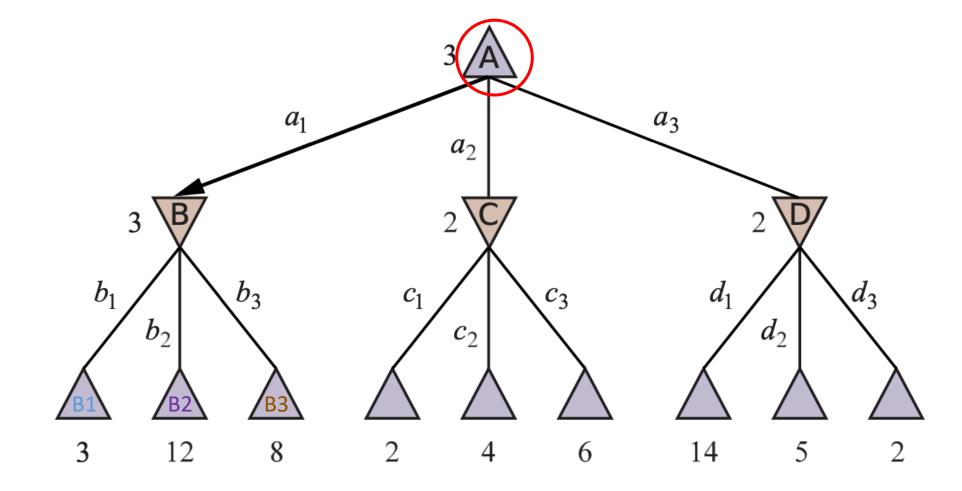


function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow \infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a)))$ 

return v



#### Minimax algorithm



# Properties of minimax

- Minimax performs a complete DFS exploration of the game tree
- Completeness: Yes (if tree is finite)
- Optimality: Yes (against an optimal opponent)
- Time complexity:  $O(b^m)$
- Space complexity: O(bm)

Example: Chess:  $b \approx 35$ ,  $m \approx 100$  for "reasonable" games

- Exact solution infeasible
- Use alpha-beta pruning

# The minimax algorithm: problems

- For real games the time cost of minimax is totally impractical, but this algorithm serves as the basis:
  - for the mathematical analysis of games and
  - for more practical algorithms
- Problem with minimax search:
  - The number of game states it has to examine is exponential in the number of moves.
- Unfortunately, the exponent can't be eliminated, but it can be cut in half.

# Alpha-beta pruning

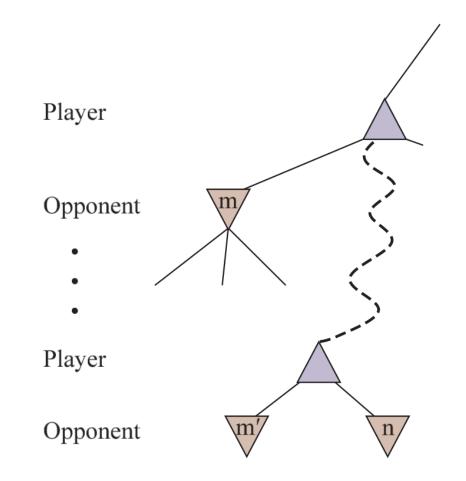
- It is possible to compute the correct minimax decision without looking at every node in the game tree.
- Alpha-beta pruning allows to eliminate large parts of the tree from consideration, without influencing the final decision.

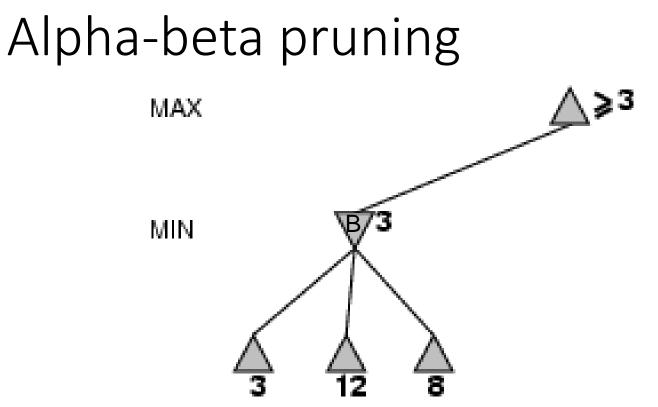
### Why is it called $\alpha - \beta$ ?

- α = the value of the best (i.e., highest-value) choice we have found so far at any choice point along the path for MAX.
- $\beta$  = the value of the best (i.e., lowest-value) choice we have found so far at any choice point along the path for MIN.

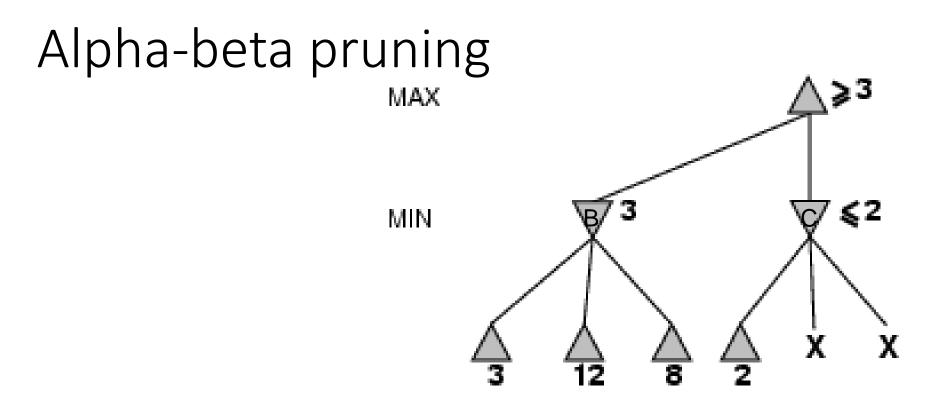
Pruning in 
$$\alpha - \beta$$

- Consider node *n* that the player (MAX) can move to
- If m is a better node higher up in the tree, then n will never be reached
- MIN applies the same ideas in their turn

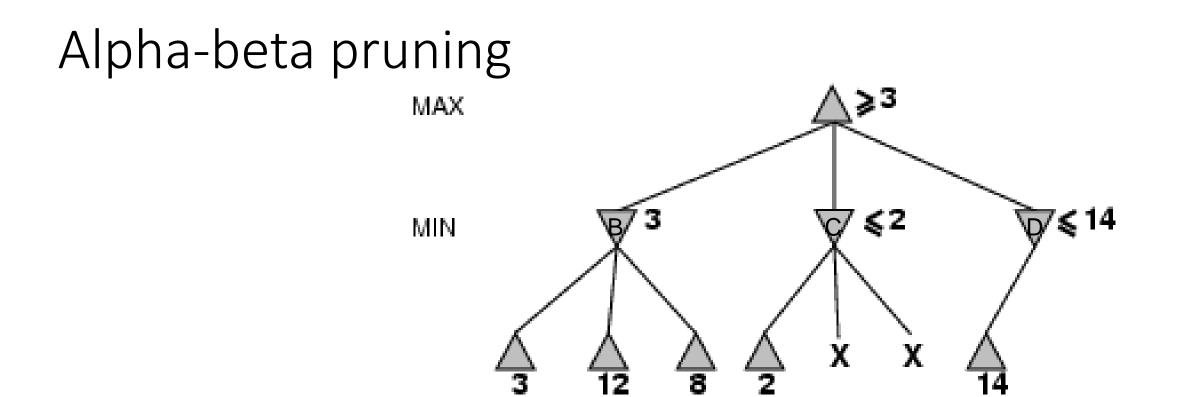




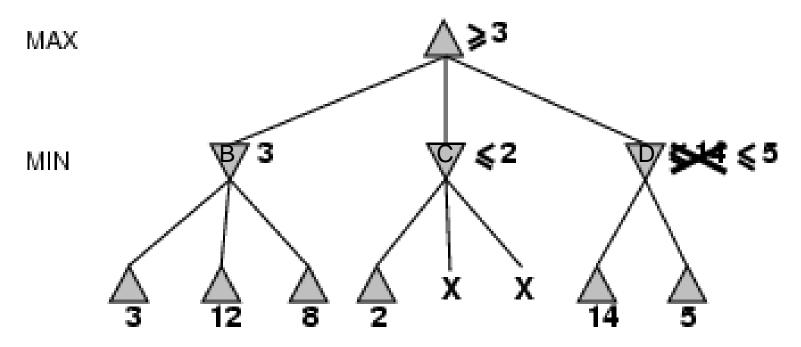
- The leaves below *B* have the values 3, 12 and 8.
- The value of *B* is exactly 3.
- It can be inferred that the value at the root is *at least* 3, because MAX has a choice worth 3.



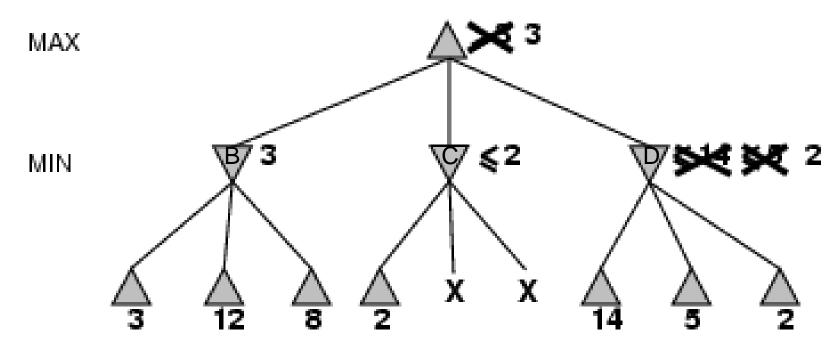
- C, which is a MIN node, has a value of at most 2.
- But *B* is worth 3, so MAX would never choose *C*.
- Therefore, there is no point in looking at the other successors of C.



- D, which is a MIN node, is worth at most 14.
- This is still higher than MAX's best alternative (i.e., 3), so D's other successors are explored.



• The second successor of *D* is worth 5, so the exploration continues.



- The third successor is worth 2, so now D is worth exactly 2.
- MAX's decision at the root is to move to *B*, giving a value of 3

- Alpha-beta pruning gets its name from two parameters.
  - They describe bounds on the values that appear anywhere along the path under consideration:
    - $\alpha$  = the value of the best (i.e., highest value) choice found so far along the path for MAX
    - $\beta$  = the value of the best (i.e., lowest value) choice found so far along the path for MIN

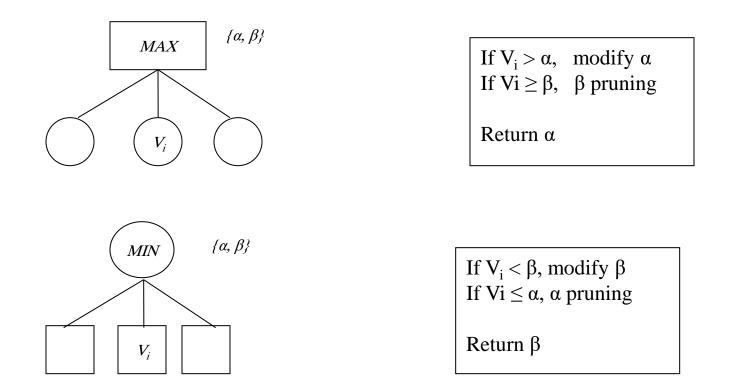
- Alpha-beta search updates the values of  $\alpha$  and  $\beta$  as it goes along.
- It prunes the remaining branches at a node (i.e., terminates the recursive call)
  - as soon as the value of the current node is known to be worse than the current  $\alpha$  or  $\beta$  value for MAX or MIN, respectively.

# The $\alpha - \beta$ algorithm

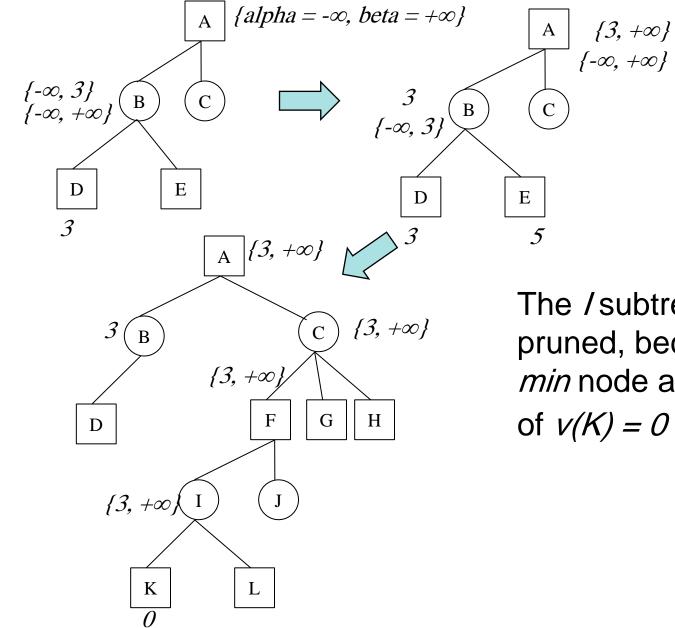
**function** ALPHA-BETA-SEARCH(*state*) **returns** an action  $v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)$ **return** the *action* in ACTIONS(*state*) with value v

function MAX-VALUE(state,  $\alpha, \beta$ ) returns a utility value **if** TERMINAL-TEST(*state*) **then return** UTILITY(*state*)  $v \leftarrow -\infty$ for each a in ACTIONS(state) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a), \alpha, \beta))$ if  $v \geq \beta$  then return v $\alpha \leftarrow MAX(\alpha, v)$ **return** v

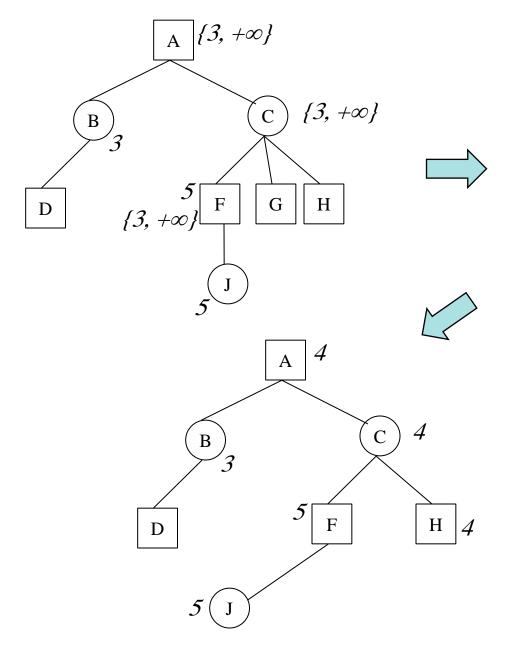
function MIN-VALUE(state,  $\alpha, \beta$ ) returns a utility value **if** TERMINAL-TEST(*state*) **then return** UTILITY(*state*)  $v \leftarrow +\infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))$ if  $v \leq \alpha$  then return v $\beta \leftarrow MIN(\beta, v)$ return v 46



 $\alpha$  and  $\beta$  bounds are transmitted from parent to child in the order of node visit. The effectiveness of pruning highly depends on the order in which successors are examined.



The / subtree can be pruned, because / is a *min* node and the value of v(K) = 0 is  $< \alpha = 3$ 



В /3 5 *{3, 5}* G F Η D Μ Ν 5 The *G* subtree can be pruned, because G is a max node and the value

*{3, +∞}* 

C

{3, 5}

А

of v(M) = 7 is  $> \beta = 5$ 

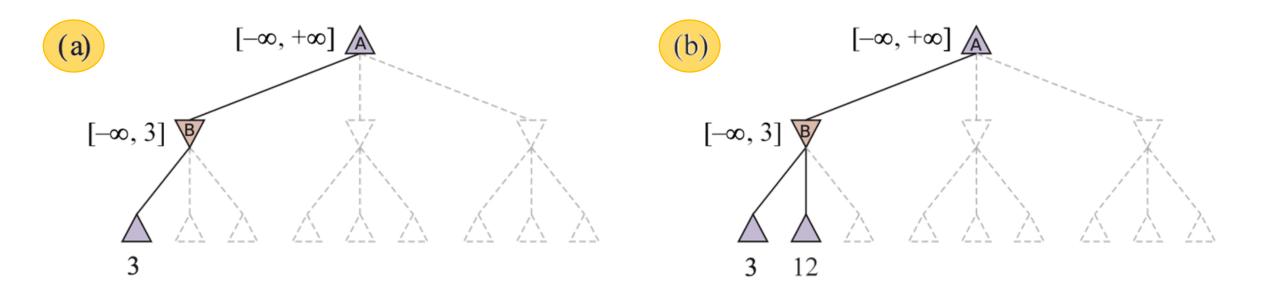
### Properties of $\alpha - \beta$

- Pruning does not affect the final result
- Good move ordering (i.e. which nodes to examine first) improves effectiveness of pruning
- With "perfect ordering", time complexity =  $O(b^{m/2})$  instead of  $O(b^m)$ 
  - doubles depth of search

# $\alpha - \beta$ pruning

#### Remember, Max is searching

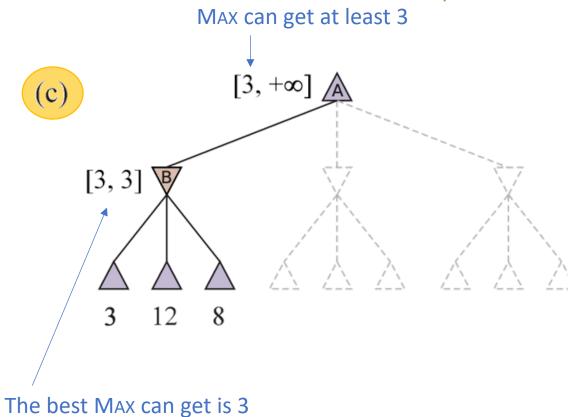
 $\alpha$  = the highest-value found so far at any choice point along the path for MAX  $\beta$  = the lowest-value found so far at any choice point along the path for MIN

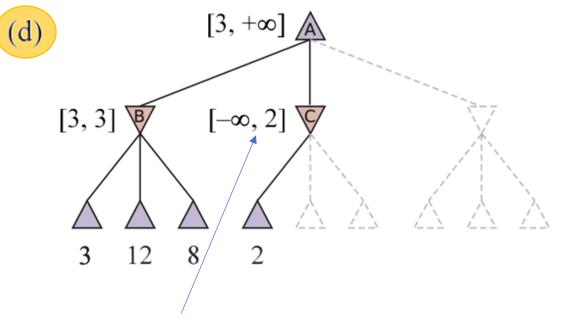


## $\alpha - \beta$ pruning

#### Remember, Max is searching

 $\alpha$  = the highest-value found so far at any choice point along the path for MAX  $\beta$  = the lowest-value found so far at any choice point along the path for MIN



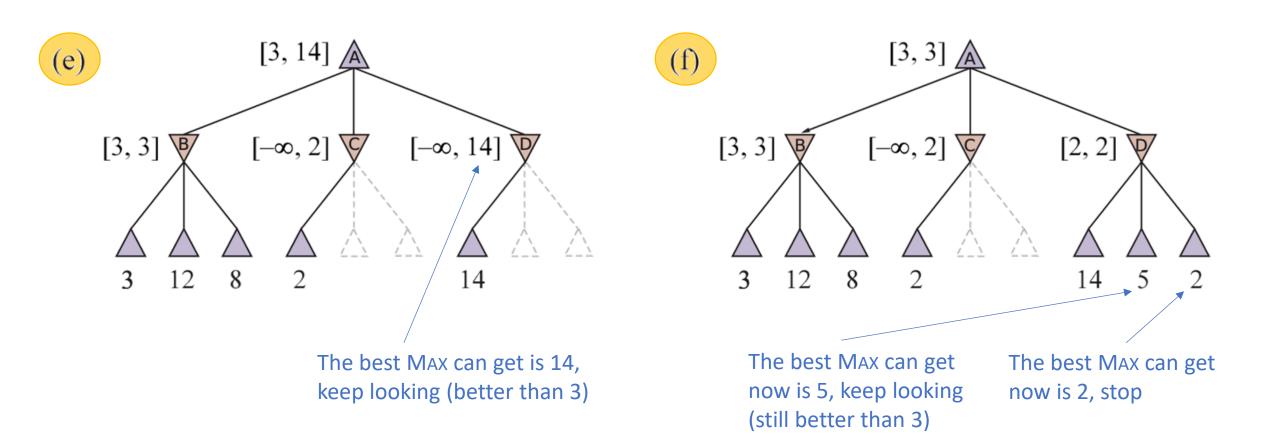


The best Max can get is 2, which is worse than 3 from node B, so Max doesn't bother looking in the rest of the sub-tree. Stop.

# $\alpha - \beta$ pruning

#### Remember, Max is searching

 $\alpha$  = the highest-value found so far at any choice point along the path for MAX  $\beta$  = the lowest-value found so far at any choice point along the path for MIN



 $v \leftarrow MAX-VALUE(state, -\infty, +\infty)$  $v \leftarrow MAX-VALUE(A, -\infty, +\infty)$ 

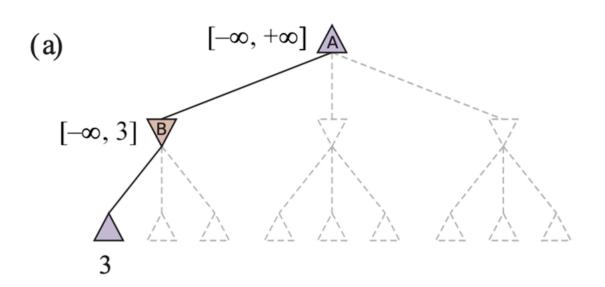
MAX-VALUE(A,  $-\infty, +\infty$ )

 $[-\infty, +\infty]$ 

**function** ALPHA-BETA-SEARCH(*state*) **returns** an action  $v \leftarrow MAX-VALUE(state, -\infty, +\infty)$ **return** the *action* in ACTIONS(*state*) with value v

function MAX-VALUE(state,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow -\infty$ for each a in ACTIONS(state) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(s,a), \alpha, \beta))$ if  $v \ge \beta$  then return v $\alpha \leftarrow MAX(\alpha, v)$ return v

function MAX-VALUE(A,  $-\infty, +\infty$ ) returns a utility value if TERMINAL-TEST(A) then return UTILITY(A)  $v \leftarrow -\infty$ for each *a* in ACTIONS(A) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(A, a), \alpha, \beta))$   $-\infty$ B,  $-\infty, +\infty$ C Second Loop D Third Loop



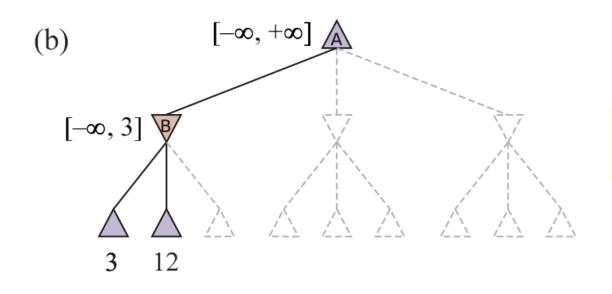
MIN-VALUE(B,  $-\infty, +\infty$ )

```
function MIN-VALUE(state, \alpha, \beta) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v \leftarrow +\infty
for each a in ACTIONS(state) do
v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))
if v \leq \alpha then return v
\beta \leftarrow MIN(\beta, v)
return v
```

function MIN-VALUE(B,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(B) then return UTILITY(B)  $v \leftarrow +\infty$ for each a in ACTIONS(B) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(B, a), \alpha, \beta))$   $+\infty$ B1,  $-\infty, +\infty$ B2 B3

function MAX-VALUE(*state*,  $\alpha$ ,  $\beta$ ) returns a *utility value* if TERMINAL-TEST(*state*) then return UTILITY(*state*)

> $v \leftarrow MIN(+\infty, 3)$   $v = 3, \alpha = -\infty, \beta = +\infty$ If  $v \le \alpha$  then return  $v \le 3 \le -\infty$ ? No  $\beta \leftarrow MIN(+\infty, 3) \beta = 3$



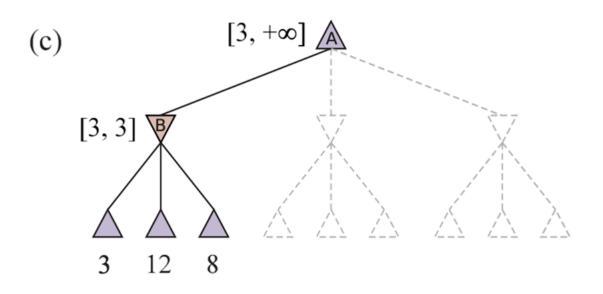
MIN-VALUE(B,  $-\infty, +\infty$ )

function MIN-VALUE(state,  $\alpha, \beta$ ) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow +\infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))$ if  $v \leq \alpha$  then return v $\beta \leftarrow MIN(\beta, v)$ return v

function MIN-VALUE(B,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(B) then return UTILITY(B)  $v \leftarrow +\infty$ for each a in ACTIONS(B) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(B, a), \alpha, \beta))$ 3 B1,  $-\infty, +\infty$ B2,  $-\infty$ , 3 B3,

function MAX-VALUE(*state*,  $\alpha$ ,  $\beta$ ) returns a *utility value* if TERMINAL-TEST(*state*) then return UTILITY(*state*)

> $v \leftarrow MIN(3, 12)$   $v = 3, \alpha = -\infty, \beta = 3$ If  $v \le \alpha$  then return v  $3 \le -\infty$ ? No  $\beta \leftarrow MIN(3, 3) \beta = 3$



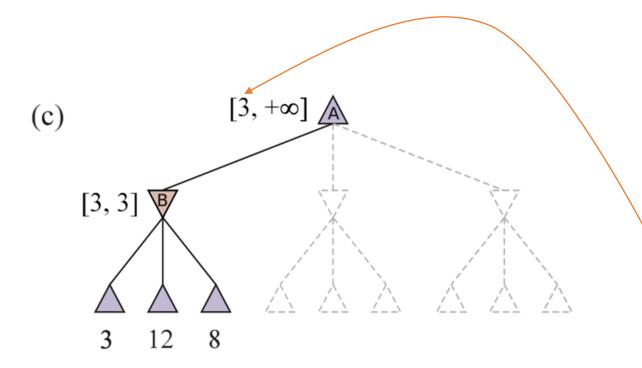
MIN-VALUE(B,  $-\infty, +\infty$ )

function MIN-VALUE(state,  $\alpha, \beta$ ) returns a utility value **if** TERMINAL-TEST(*state*) **then return** UTILITY(*state*)  $v \leftarrow +\infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))$ if  $v < \alpha$  then return v  $\beta \leftarrow MIN(\beta, v)$ **return** v **function** MIN-VALUE(B,  $\alpha$ ,  $\beta$ ) **returns** a utility value if TERMINAL-TEST(B) then return UTILITY(B)  $v \leftarrow +\infty$ for each *a* in ACTIONS(B) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(B, a), \alpha, \beta))$ B1.  $-\infty, +\infty$ B2,  $-\infty$ , 3

function MAX-VALUE(*state*,  $\alpha$ ,  $\beta$ ) returns a *utility value* if TERMINAL-TEST(*state*) then return UTILITY(*state*)

B3,  $-\infty$ , 3

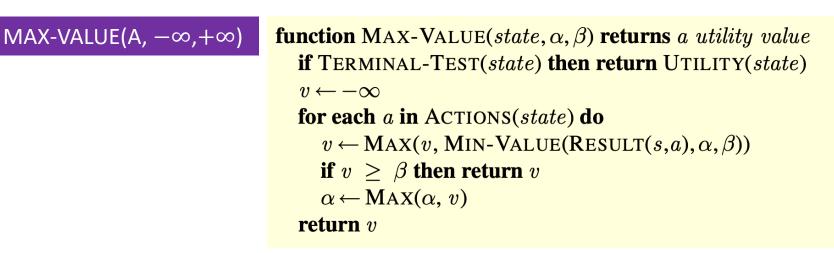
 $v \leftarrow MIN(3, 8) \quad v = 3, \alpha = -\infty, \beta = 3$ If  $v \le \alpha$  then return v  $3 \le -\infty$ ? No  $\beta \leftarrow MIN(3, 3) \beta = 3$ return  $v \quad v = 3$  Loop of state B finished, return to MAX-VALUE(A,  $-\infty, +\infty$ )



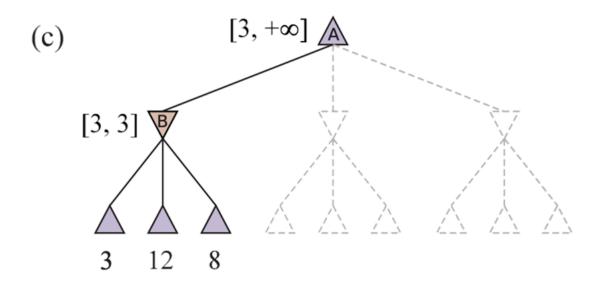
MAX-VALUE(A,  $-\infty, +\infty$ )

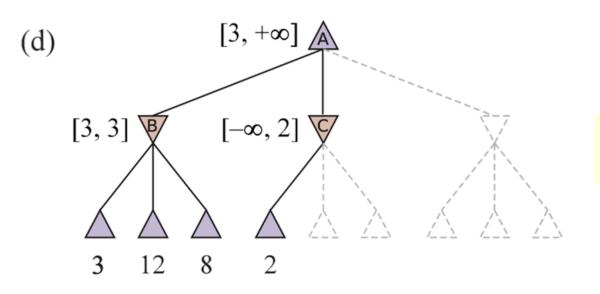
```
function MAX-VALUE(state, \alpha, \beta) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v \leftarrow -\infty
for each a in ACTIONS(state) do
v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a), \alpha, \beta))
if v \ge \beta then return v
\alpha \leftarrow MAX(\alpha, v)
return v
```

function MAX-VALUE(A,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(A) then return UTILITY(A)  $v \leftarrow -\infty$ for each  $\alpha$  in ACTIONS(A) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(A,a), \alpha, \beta))$   $-\infty$ B,  $-\infty, +\infty$ C D  $v \leftarrow MAX(-\infty, 3), v = 3$ If  $v \ge \beta$  then return v  $3 \ge +\infty$ ? No  $\alpha \leftarrow MAX(\alpha, v) MAX(-\infty, 3), \alpha = 3$ 



function MAX-VALUE(A,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(A) then return UTILITY(A)  $v \leftarrow -\infty$ for each a in ACTIONS(A) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(A,a), \alpha, \beta))$ 3 B,  $-\infty, +\infty$ C,  $3, +\infty$ D





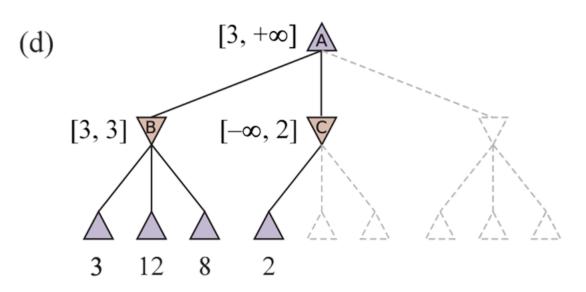
MIN-VALUE(C,  $3, +\infty$ )

function MIN-VALUE(state,  $\alpha, \beta$ ) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow +\infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))$ if  $v \leq \alpha$  then return v $\beta \leftarrow MIN(\beta, v)$ return v

function MIN-VALUE(C,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(C) then return UTILITY(C)  $v \leftarrow +\infty$ for each a in ACTIONS(C) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(C, a), \alpha, \beta))$   $+\infty$ C1, 3,+∞ C2 C3

function MAX-VALUE(*state*,  $\alpha$ ,  $\beta$ ) returns a *utility value* if TERMINAL-TEST(*state*) then return UTILITY(*state*)

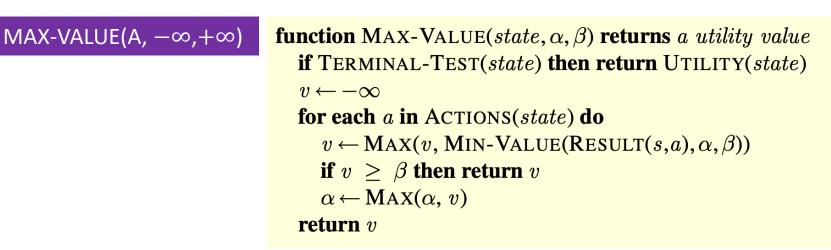
> $v \leftarrow MIN(+\infty, 2)$   $v = 2, \alpha = 3, \beta = +\infty$ If  $v \le \alpha$  then return v  $2 \le 3$ ? YES So: Return 2 to MAX-VALUE(A,  $-\infty, +\infty$ ) We don't check C2 and C3



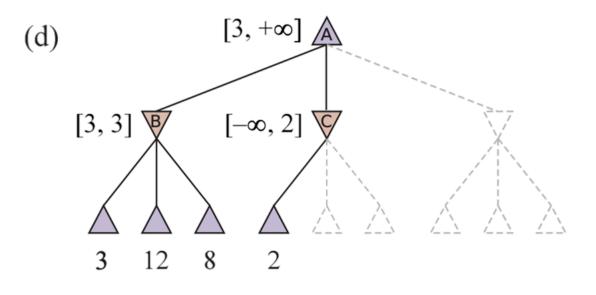
MAX-VALUE(A,  $-\infty, +\infty$ )

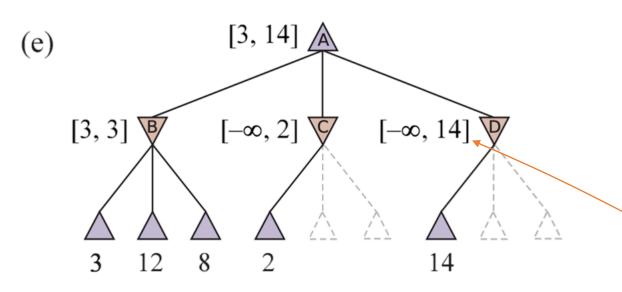
```
function MAX-VALUE(state, \alpha, \beta) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v \leftarrow -\infty
for each a in ACTIONS(state) do
v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a), \alpha, \beta))
if v \ge \beta then return v
\alpha \leftarrow MAX(\alpha, v)
return v
```

function MAX-VALUE(A,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(A) then return UTILITY(A)  $v \leftarrow -\infty$ for each  $\alpha$  in ACTIONS(A) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(A,a), \alpha, \beta))$ 3  $B, -\infty, +\infty$   $C, 3, +\infty$ D  $v \leftarrow MAX(3, 2), v = 3$ If  $v \ge \beta$  then return  $v \ 3 \ge +\infty$ ? No  $\alpha \leftarrow MAX(\alpha, v) MAX(3, 3), \alpha = 3$ 



function MAX-VALUE(A,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(A) then return UTILITY(A)  $v \leftarrow -\infty$ for each a in ACTIONS(A) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(A,a), \alpha, \beta))$ 3 B,  $-\infty, +\infty$ C,  $3, +\infty$ D,  $3, +\infty$ 





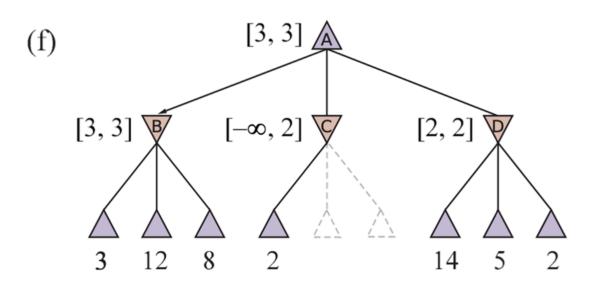
MIN-VALUE(D,  $3, +\infty$ )

```
function MIN-VALUE(state, \alpha, \beta) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v \leftarrow +\infty
for each a in ACTIONS(state) do
v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))
if v \leq \alpha then return v
\beta \leftarrow MIN(\beta, v)
return v
```

function MIN-VALUE(D,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(D) then return UTILITY(D)  $v \leftarrow +\infty$ for each a in ACTIONS(D) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(D, a), \alpha, \beta))$   $+\infty$ D1, 3,+∞ D2 D3

function MAX-VALUE(*state*,  $\alpha$ ,  $\beta$ ) returns a *utility value* if TERMINAL-TEST(*state*) then return UTILITY(*state*)

 $v \leftarrow MIN(+\infty, 14)$   $v = 14, \alpha = 3, \beta = +\infty$ If  $v \le \alpha$  then return v 14  $\le 3$ ? No  $\beta \leftarrow MIN(+\infty, 14) \beta = 14$ 



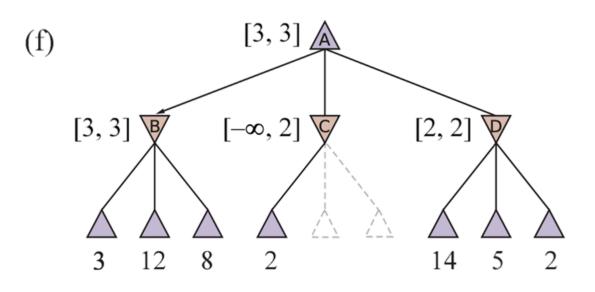
MIN-VALUE(D,  $3, +\infty$ )

function MIN-VALUE(state,  $\alpha, \beta$ ) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow +\infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))$ if  $v \leq \alpha$  then return v $\beta \leftarrow MIN(\beta, v)$ return v

function MIN-VALUE(D,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(D) then return UTILITY(D)  $v \leftarrow +\infty$ for each a in ACTIONS(D) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(D, a), \alpha, \beta))$ 14 D1, 3,+ $\infty$ D2, 3, 14 D3

function MAX-VALUE(*state*,  $\alpha$ ,  $\beta$ ) returns a *utility value* if TERMINAL-TEST(*state*) then return UTILITY(*state*)

> $v \leftarrow MIN(14, 5)$   $v = 5, \alpha = 3, \beta = 14$ If  $v \le \alpha$  then return v  $5 \le 3$ ? No  $\beta \leftarrow MIN(14, 5) \beta = 5$



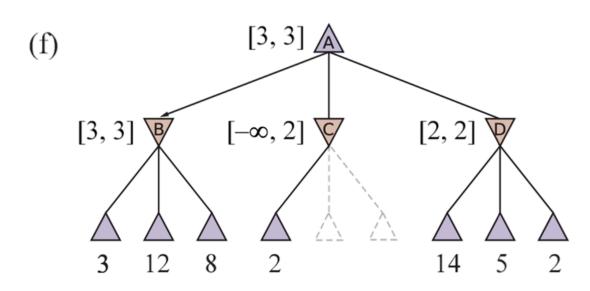
MIN-VALUE(D,  $3, +\infty$ )

function MIN-VALUE(state,  $\alpha, \beta$ ) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state)  $v \leftarrow +\infty$ for each a in ACTIONS(state) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))$ if  $v \leq \alpha$  then return v $\beta \leftarrow MIN(\beta, v)$ return v

function MIN-VALUE(D,  $\alpha$ ,  $\beta$ ) returns a utility value if TERMINAL-TEST(D) then return UTILITY(D)  $v \leftarrow +\infty$ for each a in ACTIONS(D) do  $v \leftarrow MIN(v, MAX-VALUE(RESULT(D, a), \alpha, \beta))$ 5 D1, 3,+ $\infty$ D2, 3, 14 D3, 3, 5

function MAX-VALUE(*state*,  $\alpha$ ,  $\beta$ ) returns a *utility value* if TERMINAL-TEST(*state*) then return UTILITY(*state*)

> $v \leftarrow MIN(5, 2)$   $v = 2, \alpha = 3, \beta = 5$ If  $v \le \alpha$  then return v  $2 \le 3$ ? YES So: Return 2 to MAX-VALUE(A,  $-\infty, +\infty$ ) We don't check any more, unfortunately, it is the last node



MAX-VALUE(A,  $-\infty, +\infty$ )

```
function MAX-VALUE(state, \alpha, \beta) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v \leftarrow -\infty
for each a in ACTIONS(state) do
v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a), \alpha, \beta))
if v \ge \beta then return v
\alpha \leftarrow MAX(\alpha, v)
return v
```

**function** MAX-VALUE(A,  $\alpha$ ,  $\beta$ ) **returns** a utility value if TERMINAL-TEST(A) then return UTILITY(A)  $v \leftarrow -\infty$ for each *a* in ACTIONS(A) do  $v \leftarrow MAX(v, MIN-VALUE(RESULT(A,a), \alpha, \beta))$ 3  $B, -\infty, +\infty$ C, 3, +∞ D. 3. +∞  $v \leftarrow MAX(3, 2), v = 3$ If  $v \geq \beta$  then return  $v \geq +\infty$ ? No  $\alpha \leftarrow MAX(\alpha, \nu) MAX(3, 3), \alpha = 3$ **Return** v = 3**return** the action in ACTIONS(A) with value v = 3

#### Resource limits

- The minimax algorithm generates the entire game search space
- Alpha–Beta algorithm allows us to prune large parts of the search space
  - Still must search all the way to terminal states: not practical
- Programs should cut off the search earlier and apply a heuristic evaluation function to states in the search:
- 1. Replace the Utility function by a heuristic evaluation function EVAL
- 2. Replace the Terminal Test by a Cutoff Test that decides when to apply EVAL

#### Improved algorithm with cutoff

H - MINIMAX(s, d) =

 $\begin{cases} EVAL(s) & if \ CUTOFF - TEST(s,d) \\ max_{a \in Actions(s)} \ H - MINIMAX(RESULT(s,a),d + 1) & if \ PLAYER(s) = MAX \\ min_{a \in Actions(s)} \ H - MINIMAX(RESULT(s,a),d + 1) & if \ PLAYER(s) = MIN \end{cases}$ 

#### Summary

- Use Minimax: not practical for large games.
- Apply alpha-beta cuts → exact solution, but the gain depends on move ordering and still not practical for large games.
- Memory and time limitations → search with cutoff and evaluation function.