Fundamentals of Organic Chemistry CHEM 109

For Students of Health Colleges Credit hrs.: (2+1) *King Saud University* College of Science, Chemistry Department

CHAPTER 5: Aldehydes and Ketones

The Carbonyl Group

c=o: The carbonyl group

- The carbon-oxygen double bond consists of a sigma bond and a pi bond.
- The carbon atom is sp²-hybridized.
- The three atoms attached to the carbonyl carbon lie in a plane with bond angles of 120°.
- The pi bond is formed by overlap of a p orbital on carbon with an oxygen p orbital.
- There are also two unshared electron pairs on the oxygen atom.
- The C=O bond distance is 1.24A, shorter than the C-O distance in alcohols and ethers (1.43A).

<text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><text>

Common Nan	nes	Nomenclature of Ketones
• Common names of ketones are formed by adding the word <i>ketone</i> to the names of the alkyl or aryl groups attached to the carbonyl carbon. Alkyl ketone.		
	$\begin{array}{c c} O & O \\ H_3C - \overset{\parallel}{C} - CH_3 & H_3C - \overset{\parallel}{C} - CH_2CH_3 & H_3C - \overset{\parallel}{C} - \overset{\parallel}{C} \\ Acetone \\ (Dimethyl ketone) & Methyl ethyl ketone & Methyl vinyl$	
	$H_{3}C - \stackrel{\circ}{C} - \stackrel{\circ}{\swarrow} \qquad \qquad$	tone
	(Acetophenone) (Benzophen	
		8

Nomenclature of **IUPAC System Ketones** o In the IUPAC system, the ending for ketones is -one. The chain is numbered so that the carbonyl carbon has the lowest possible number. 0 For cyclic ketones, numbering always starts from the C=O group. 0 • The prefix "oxo" is used when the ketone is not the principal functional group. $\begin{array}{ccccc} U & U & U \\ \Pi_{3} - C - CH_{3} & 1 & 2 \\ H_{3} - C - CH_{3} & CH_{3} - C - CH_{2}CH_{3} & 1 & 2 & 3 \\ Propanone & 2-butanone & 3-pentanone \\ (acctone) & (ethyl methyl ketone) & (diethyl ketone) \end{array}$ $\begin{array}{c} \mathsf{CH}_3-\mathsf{C}-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{C}-\mathsf{H}\\ \overset{II}{O} & \overset{II}{O}\\ O & \overset{II}{O}\\ \end{array}$) Ö 4-oxopentanal 2.CH₂ $^{4}_{CH_{2}} = \overset{3}{CH} - \overset{\parallel 2}{C} - \overset{1}{CH_{3}}$ (methyl vinyl ketone CH₃CH₂-C-CH₂CH₂COOH 0 -CH₃ 4-oxohexanoic acid dicyclopropyl ketor (methyl phenyl ketone) (diphenyl ketone) 9

Physical Properties of Aldehydes and Ketones

• Solubility

- Carbonyl compounds as aldehydes and ketones have a C=O bond, but no O-H bond, cannot form hydrogen bonds with themselves.
- The polarity of the carbonyl group also affects the solubility properties of aldehydes and ketones.
- Carbonyl compounds with low molecular weights are soluble in water as they can form hydrogen bonds with O-H or N-H compounds.

12

Reactions of Aldehydes and Ketones

A) Reduction of Carbonyl Compounds

- o Aldehydes and ketones are easily reduced to primary and secondary alcohols, respectively.
- The most common metal hydrides used to reduce carbonyl compounds are lithium aluminum hydride (LiAlH₄) and sodium borohydride (NaBH₄).

B) Oxidation of Carbonyl Compounds

- o Oxidation of aldehydes gives a carboxylic acid with the same number of carbon atoms.
- \circ Because the reaction occurs easily, many oxidizing agents, such as KMnO_4, CrO_3, Ag_2O and peracids will work.

Reactions of Aldehydes and Ketones

C) Nucleophilic Addition Reactions

- Nucleophiles attack the carbon atom of a carbon-oxygen double bond because that carbon has a partial positive charge.
- The overall reaction involves addition of a nucleophile and a proton across the pi bond of the carbonyl group (when carried out in alcohol or water).

16

15

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

1) Addition of Grignard Reagents: Formation of Alcohols

- o Grignard reagents act as carbon nucleophiles toward carbonyl compounds.
- o The reaction of a Grignard reagent with a carbonyl compound provides a useful route to alcohols.

o The type of carbonyl compound chosen determines the class of alcohol produced.

17

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

21

C) Nucleophilic Addition Reactions

Reactions of Aldehydes and Ketones

3) Addition of Alcohols: Formation of Hemiacetals and Acetals

- o The reverse of acetal formation, called acetal hydrolysis.
- Acetal can be hydrolyzed to its aldehyde or ketone and alcohol components by treatment with excess water in the presence of an acid catalyst.

