

Introduction to Work Measurement

Sections:

- Time Standards and How They Are Determined – part 1
- 2. Prerequisites for Valid Time part 2
- 3. Allowances in Time Standards part 2

Introduction to Work Measurement

2. Prerequisites for Valid Time

Prerequisites for Valid Time

- In order to establish T_{std} for task, following factors must be standardized:
 - 1. Task is performed by *average worker*
 - 2. Worker's pace represents *standard performance*
 - 3. Worker uses *standard method*
 - 4. Task is performed on *standard work unit* that is defined
 - a) before (input) &
 - b) after processing (output)
- These definitions must be fully documented for future reference

Figure 3 Model indicating the factors that must be standardized before a standard time can be set for a task.

- Average Worker:
 - person man/woman
 - representative of those who perform tasks similar to the task being measured
 - assumed to have,
 - learned task
 - practiced task and proficient at it
 - performed task consistently throughout shift

- Standard Performance:
 - pace of working:
 - can be maintained by average worker throughout entire work shift,
 - without harmful effects on worker's health or physical well-being
 - worker can achieve this pace day after day
 - normal pace of average worker for given task

Cont. Standard Performance:

- work shift:
 - usu. considered: 8-hour workday
 - worker: allowed periodic rest breaks, may experience other interruptions
- example of benchmarks for standard performance:
 - walking @ 3 mi/hr (4.82 km/hr) on level flat ground

- Worker performance:
 - varies among individual workers
 - variations occur due to,
 - age
 - sex
 - size/physical strength
 - physical conditioning
 - skill/aptitude for task
 - experience/training
 - motivation

- Cont. worker performance:
 - For large numbers of workers, studies show:
 - worker performance: normally distributed
 - ratio of highest performing : lowest performing worker = 2.3 : 1
 - Worker performance:
 - usu. indicated by <u>hourly</u> or daily production rate for a representative manual task

Figure 4 Distribution of performance (daily production output) for large numbers of workers.

- Cont. worker performance:
 - Companies:
 - want most workers to be able to achieve standard performance fairly easily
 - define standard to be performance < avg.
 - typical <u>multiplier</u> = 1.30

i.e. average worker should be able to work at pace = 130% of defined standard pace*

Figure 5 Distribution of performance and task time for large numbers of workers, indicating how standard time is typically defined as a time that can be readily achieved by most workers.

- Cont. worker performance:
 - Standard Performance (indust. practice defⁿ):
 - pace of working,
 - standard time for task = 130% of mean time that can be maintained,
 - throughout an entire work shift
 - by average worker
 - without harmful effects on worker's health or physical well-being

2.2 Standard Method

Standard Method:

- procedure that has been determined to be optimum method for processing a work unit
- safest, quickest, most productive, and least stressful procedure for worker
- constrained by
 - practical conditions,
 - economic limitations of work environment
- Should be documented in written statement
 - provide valuable description of task
 - used in resolving disputes regarding: standard method/standard time

Cont. Standard Method:

- should include following details about how a task is performed:
 - Procedure (actions & motions) used by worker
 - Tools (e.g. fixtures, gauges used)
 - Equipment (machinery and safety)
 - Workplace layout
 - Irregular work elements (tasks not performed every work cycle)
 - Working conditions (e.g. temperature, noise)
 - Setup (e.g. physical tools, setup time)

Introduction to Work Measurement

3. Allowances in Time Standards

Allowances in Time Standards

- Allowance factor:
 - purpose: compensate for lost time by providing small increment of "allowance time" in each cycle
 - ⇒ even with time losses, operator still able to complete fair day's work during hours of shift

Accounting for Lost Time in the Workplace

TABLE 2 Typical Causes of Interruptions in the Workplace			
Causes of Work-Related Interruptions	Reasons for Nonwork Related Interruptions		
Machine breakdowns or malfunctions	Personal needs (e.g., restroom interruption)		
Waiting for materials, parts, or other items necessary to proceed with work	Talking to coworkers about matters unrelated to work		
Receiving instructions from foreman	Lunch break		
Talking to coworkers about job-related matters	Smoke break		
Waiting at a tool crib for the attendant to	Beverage break		
deliver a tool	Personal telephone call		
Rest breaks to overcome fatigue for physiologically demanding work			
Cleaning up at the end of the shift			

- Common allowances:
 - 1. Scheduled Break Periods
 - 2. The PFD Allowance
- Other types of allowances (less common):
 - 3. Contingency Allowances
 - 4. Policy Allowances

- **1. Scheduled Break Periods:**
 - planned periods set aside during shift as break time from work
 - examples:
 - lunch breaks (noon 12:30 PM)
 - rest breaks (paid)
 - 1 mid-morning; 1 mid-afternoon
 - usu. last ~15 min. each
 - Here: total paid hrs (8 AM 4:30 PM) = 8*

2. The PFD Allowance:

- A_{pfd} : used in converting T_n into T_{std}
- Can be work related or non-work related
 - Personal time:
 - Fatigue allowance
 - Delays
 - P, F, D allowances combined into: A_{pfd}
- Personal time:
 - e.g.: restroom breaks, phone calls, water fountain visits, etc.
 - typical allowance = 5%

- 2. The PFD Allowance:
 - Fatigue/rest allowance:
 - must be taken
 - used to overcome <u>fatigue</u> due to workrelated stresses & conditions
 - e.g. work requiring physiologically significant metabolic energy
 - allowance:
 - fatigue in light medium work: 5%
 - fatigue in heavy work: $\geq 20\%$

TABLE 3 Factors Causing Fatigue in Workers		
Physical Factors	Mental and Cognitive Factors	Environmental and Work Factors
Standing	Concentration and attention	Poor lighting
Abnormal body position	Mental strain	Noise
Use of force	Monotony and tediousness	Fumes
Expenditure of muscular energy	Eyestrain	Heat Atmospheric conditions

- 2. The PFD Allowance:
 - Delays:
 - occur at random times during day
 - usually refer to
 - work-related events
 - delays: responsibility of management
 - examples:
 - machine breakdown
 - waiting for parts or tools
 - waiting for elevator
 - waiting for foreman's instructions
 - harder to find than P or F delays*

3. Contingency Allowances:

- usu. due to some problem with task or production equipment used to perform it
- should not be > 5%

TABLE 4 Examples of Problems for Which Contingency Allowances Might Be Provided

Problem Area	Problems and Examples
Materials or parts	Starting materials or parts are out of specification, and extra time is needed to correct the nonconformance (e.g., oversized casting that requires an extra machining pass or slower feed rate).
Process	The manufacturing process is not in statistical control (too much variability), and additional time is required to inspect every piece rather than inspect on a sampling basis.
Equipment	Equipment is malfunctioning or breaking down more frequently than what is provided by the unavoidable delay factor, and additional time is needed to compensate the worker to make adjustments, lubricate the machine more frequently, or other extra task(s) not included in the standard time.

4. Policy Allowances:

- cover special work situations associated with wage incentive system
- e.g.: machine allowance:
 - added to machine-paced portion of work cycle in operation of worker-machine system
 - provides opportunity for worker to maintain a high rate of earnings
- other types of policy allowances:
 - training allowances (teaching other workers)
 - learning allowances (new employees)

4. Policy Allowances:

$$T_{std} = T_{nw} (1 + A_{pfd}) + T_m (1 + A_m)$$

- T_{nw} : normal time of worker during the workercontrolled portion of the cycle, min
- A_{pfd}: PFD allowance
- *T_m*: machine cycle time, min
- A_m: machine allowance
 - If company policy does not recognize separate machine allowance ⇒
 - $A_m = 0$, or
 - set equal to value of A_{pfd}

4. Policy Allowances

Example 1 Use of Machine Allowance in a Wage Incentive Plan

A wage incentive plan pays workers a daily wage at a rate of \$15.00/hr multiplied by the number of standard hours accomplished during the shift. One worker-machine task in the plant includes worker-paced elements totaling a normal time of 1.00 min and machine-paced elements with a time of 3.00 min. The PFD allowance is 15%. Determine the standard time for the task given that (a) $A_m = 0$ and (b) $A_m = 30\%$. (c) What does a worker earn for the day under each policy if he or she produces 115 parts that day?

4. Policy Allowances

Solution: (a) $T_{std} = 1.00 (1 + 0.15) + 3.00 (1 + 0) = 1.15 + 3.00 = 4.15 min.$

(b) $T_{std} = 1.00 (1 + 0.15) + 3.00 (1 + 0.30) = 1.15 + 3.90 = 5.05 \text{ min.}$

(c) For the standard of 4.15 min, the number of standard hours is $H_{std} = 115(4.15)/60 = 7.95$ hr and the worker's earnings would be \$15.00 (7.95) = \$119.25.⁶

For $T_{std} = 5.05 \text{ min}$, $H_{std} = 115(5.05)/60 = 9.68 \text{ hr}$ and the worker's earnings would be \$15.00(9.68) = \$145.19.