Exp.6: Clipping Circuits

1- Objectives:

- To become familiar with the function and operation of clippers.

2-Circuit elements:

- Function generator.
- Oscilloscope.
- Silicon \& Germanium diode.
- Resistor $2.2 \mathrm{~K} \Omega$.
- DC. Power supply unit (1.5 V).

3-Procedure:

Part 1: Parallel Clippers

Fig 1

1-Connect the circuit as shown in figure 1. Note that the input is an $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ square wave at a frequency of 1000 Hz.

2- Calculate the voltage V_{o} when the applied square wave is +4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
3- Repeat (2) when the applied square wave is -4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
4- Sketch the expected waveform for V_{o}.

Calculated:

> Measured:

5-Compare with the predicted results.
6- Reverse the battery of fig 1, and calculate the level of V_{o} when $\mathrm{V}_{\mathrm{o}}=+4 \mathrm{~V}$.
(Calculated) $\mathrm{V}_{\mathrm{o}}=$

7-Repeat (6) when the applied square wave is -4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$ \qquad
8- Sketch the expected waveform for V_{0}.
9 - Compare with the predicted results.

Calculated:

Measured:

Part 2: Parallel Clippers (continued)
1 - Connect the circuit as shown in figure 2 . Note that the input is a $4 \mathrm{~V}_{\mathrm{p} \text {-p }}$ square wave at a frequency of 1000 Hz.

Fig 2

2- Calculate the voltage V_{o} when the applied square wave is +2 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
3- Repeat (2) when the applied square wave is -2 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$ \qquad
4- Sketch the expected waveform for V_{o}.
5-Compare with the predicted results.

Calculated:

Measured:

Part 3: Series Clippers

1-Connect the circuit as shown in figure 3. Note that the input is an $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ square wave at a frequency of 1000 Hz.

Fig 3

2- Calculate the voltage V_{o} when the applied square wave is +4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
3- Repeat (2) when the applied square wave is -4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$ \qquad
4- Sketch the expected waveform for V_{o}.
5-Compare with the predicted results.
6- Reverse the battery of fig 1, and calculate the level of V_{o} when $V_{o}=+4 \mathrm{~V}$.
(Calculated) $\mathrm{V}_{\mathrm{o}}=$
7- Repeat (6) when the applied square wave is -4 V .
(Calculated) $\mathrm{V}_{\mathrm{o}}=$

8- Sketch the expected waveform for V_{o}.
9 - Compare with the predicted results.

Calculated:

Measured:

