Exp.6: Clipping Circuits

1- Objectives:

• To become familiar with the function and operation of clippers.

2-Circuit elements:

- Function generator.
- Oscilloscope.
- Silicon & Germanium diode.
- Resistor 2.2 KΩ.
- DC. Power supply unit (1.5 V).

3-Procedure:

Part 1: Parallel Clippers

Fig 1

- 1- Connect the circuit as shown in figure 1. Note that the input is an 8 V_{p-p} square wave at a frequency of 1000 Hz.
- 2- Calculate the voltage V_o when the applied square wave is +4 V.

(Calculated)
$$V_o =$$

3- Repeat (2) when the applied square wave is -4 V.

(Calculated)
$$V_o =$$

4- Sketch the expected waveform for $V_{\rm o}$.

Calculated:

Measured:

- 5- Compare with the predicted results.
- 6-Reverse the battery of fig 1, and calculate the level of V_o when $V_o = +4$ V.

(Calculated)
$$V_0 =$$

7-Repeat (6) when the applied square wave is -4 V.

(Calculated)
$$V_o =$$

- 8-Sketch the expected waveform for $V_{\rm o}$.
- 9- Compare with the predicted results.

Calculated:

Measured:

Part 2: Parallel Clippers (continued)

1- Connect the circuit as shown in figure 2. Note that the input is a 4 V_{p-p} square wave at a frequency of 1000 Hz.

Fig 2

2- Calculate the voltage V_{o} when the applied square wave is +2 V.

(Calculated)
$$V_o =$$

3- Repeat (2) when the applied square wave is -2 V.

(Calculated)
$$V_o =$$

- 4- Sketch the expected waveform for $\ensuremath{V_{\mathrm{o}}}$.
- 5- Compare with the predicted results.

Calculated:

Measured:

Part 3: Series Clippers

1- Connect the circuit as shown in figure 3. Note that the input is an 8 V_{p-p} square wave at a frequency of 1000 Hz.

Fig 3

2-Calculate the voltage V_o when the applied square wave is +4~V.

(Calculated)
$$V_o =$$

3- Repeat (2) when the applied square wave is -4 V.

(Calculated)
$$V_0 =$$

- 4- Sketch the expected waveform for V_o .
- 5- Compare with the predicted results.
- 6-Reverse the battery of fig 1, and calculate the level of $V_{\rm o}$ when $V_{\rm o}$ = +4 V.

(Calculated)
$$V_o =$$

7-Repeat (6) when the applied square wave is -4 V.

(Calculated)
$$V_o =$$

- 8- Sketch the expected waveform for $\ensuremath{V_{\text{o}}}$.
- 9- Compare with the predicted results.

Calculated:

Measured:

