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Generalities on Product Spaces

Let (X1,A1, µ1) and (X2,A2, µ2) be two measure spaces. We intend
to construct the product measure on a suitable σ-algebra contained
in the power set of the Cartesian product X = X1 × X2.
By a rectangular set R in X we mean any set of the form R = A×B
where A ∈ A1 and B ∈ A2. We denote byR the set of all rectangles
in X . The product σ−algebra of A1 and A2 on X is the σ−algebra
generated by R and will be denoted by A1 ⊗ A2.
A1⊗A2 is the smallest σ−algebra such that the projections π1 : X1×
X2 −→ X1 and π2 : X1 × X2 −→ X2 are measurable. π1 and π2 are
defined by: π1(x , y) = x and π2(x , y) = y
In the same way if (Xj ,Aj), j = 1, . . . , n are n measurable spaces,

we define the σ−algebra ⊗n
j=1Aj on the space X =

n∏
j=1

Xj , and for

the remainder of this course, we provide the product space X with
this σ−algebra.
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Proposition

Let X ,Y be two separablea metric spaces. Then

BX×Y = BX ⊗ BY ,

where BX is the Borel σ−algebra on X .

aseparable means that there exists a countable dense subset
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Proof

The inclusion BX ⊗ BY ⊂ BX×Y holds whenever X ,Y to be sep-
arable since π1 and π2 are continuous and then measurable with
respect to the σ−algebra BX×Y .
Let (xn)n and (yn)n two dense sequence respectively in X and Y .
We consider the set of balls of center (xn)n and radius rational. This
family is countable. We denote this family (Uk)k . Then any open
subset of X is a finite or countable union of (Uk)k . We consider
in the same way we consider a sequence (Vk)k of open subsets in
Y . If O is an open subset of X × Y and all (x , y) ∈ O there
exists an open subset of X which contains x and an open subset
V of Y which contains y and U × V ⊂ O. Then any open subset
of X × Y is a finite or countable union of the open subsets in
{Un × Vm; n,m ∈ N}. Then any open subset of X × Y is in
BX ⊗ BY and then BX×Y ⊂ BX ⊗ BY .
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Definition

If E ⊂ X1 × X2; we define the x−section of E by

Ex = {y ∈ X2; (x , y) ∈ E}, y ∈ X2

and the y−section by

E y = {x ∈ X1; (x , y) ∈ E}, y ∈ X2.

Similarly, if f : X −→ R̄, then the x and y -sections of f are the
mappings fx : X2 −→ R̄ and f y : X1 −→ R̄ defined by
fx(y) = f (x , y) and f y (x) = f (x , y).
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Proposition

If E ∈ A1 ⊗ A2, then the sections Ex and E y respectively belong
to A1 and A2 for each x ∈ X1, and to A1 for each y ∈ X2. If f is
measurable with respect to the product algebra A1 ⊗ A2, then its
sections fx and f y are measurable with respect to the factors A2

and A1 respectively.
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Proof

Let B be the collection of all subsets E ⊂ X such that Ex ∈ A2 for
all x ∈ X1 and E y ∈ A1 for all y ∈ X2. Then (A×B)x = B if x ∈ A
and (A × B)x = ∅ if x ∈ Ac . Similarly for the section (A × B)y .
Hence B contains all rectangles. Moreover, B is a σ− algebra,

since

+∞⋃
j=1

Ej


x

=
+∞⋃
j=1

(Ej)x and (Ex)
c = (E c)x , and similarly for

y−sections. Therefore B = A1 ⊗ A2.
The measurability of fx and f y follows from the first statement and
the relationships

(fx)
−1(B) = (f −1(B))x ; (f

y )−1(B) = (f −1(B))y .
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Lemma

Let C be the family of elementary sets for the product measure
space

C = {E =
n⋃

j=1

Rj ; Rj = Aj × Bj ,Aj ∈ A1, Bj ∈ A2}, (1)

where Rj are disjoint rectangles and n is an arbitrary natural
number. Then
i) C is an algebra,
ii) σ(C ) = A1 ⊗ A2.
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Proof

i) C is closed under intersection and C is closed under complemen-
tarity.
X1 × X2 ∈ C is trivial.

Let E ,F ∈ C , write E =
n⋃

j=1

Aj × Bj and F =
m⋃
j=1

Cj × Dj , where

A1, . . . ,An, C1, . . . ,Cm in A1, B1, . . . ,Bn, D1, . . . ,Dm in A2 and
both unions are disjoint. Then

E ∩ F =
n⋃

j=1

Aj × Bj ∩
m⋃

k=1

Ck × Dk =
n⋃

j=1

m⋃
k=1

Aj × Bj ∩ Ck × Dk

=
n⋃

j=1

m⋃
k=1

(Aj ∩ Ck)× (Bj ∩ Dk)

The set E ∩ F is clearly a finite union of A1 × A2−sets. To see
that the union is disjoint, pick distinct (j , k), (j ′, k ′) ∈ {1, . . . , n}×
{1, . . . ,m}, say j ̸= j ′ without loss of generality. Then

[(Aj ∩ Ck)× (Bj ∩ Dk)] ∩
[
(Aj ′ ∩ Ck ′)× (Bj ′ ∩ Dk ′)

]
= (Aj ∩ Ck ∩ Aj ′ ∩ Ck ′)× (Bj ∩ Dk ∩ Bj ′ ∩ Dk ′)

⊂ (Aj ∩ Aj ′)× (Bj ∩ Bj ′)

= (Aj × Bj) ∩ (Aj ′ × Bj ′) = ∅,
since A1 ×B1, . . . ,An ×Bn are disjoint. It follows that E

⋂
F ∈ C

whenever E ,F ∈ C .

Let E ∈ C , E =
n⋃

j=1

Aj × Bj . We have

E c =
n⋂

j=1

(Aj × Bj)
c =

n⋂
j=1

(Ac
j × Bj)

⋃
(X1 × Bc

j ).

For each j ∈ {1, . . . , n}, (Ac
j × Bj)

⋃
(X1 × Bc

j ) is a finite disjoint

union of A1 ×A2-sets, and hence is in C . Since E c is a finite
intersection of C -sets, then E c ∈ C . This gives that C is an algebra
on X1 × X2.
ii) Clearly A1 ×A2 ∈ C , hence σ(A1 ×A2) ⊂ σ(C ), so that
A1 ⊗A2 ⊂ σ(C ). Next, observe that every σ−algebra containing
A1 ×A2 must contain C . In particular, A1 ⊗A2 is a σ−algebra
that contains A1 ×A2, hence C ⊂A1 ⊗A2. This gives σ(C ) ⊂
σ(A1 ⊗A2) =A1 ⊗A2, which completes the proof.
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Construction of the Product Measure

Theorem

Let (X1,A1, µ1) and (X2,A2, µ2) be two σ−finite measure spaces.
a) There exists a unique measure µ on (X1 × X2,A1 ⊗ A2) such
that

µ(A× B) = µ1(A)µ2(B). (2)

This measure is σ−finite and denoted µ1 ⊗ µ2.

(E ) =
n∑

j=1

µ1(Aj)µ2(Bj),

for each elementary set E ∈ C as defined by the equation (1).
b) For all E ∈ A1 ⊗ A2

µ1 ⊗ µ2(E ) =

∫
X1

µ2(Ex)dµ(x) =

∫
X2

µ2(E
y )dν(y). (3)
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Proof
Uniqueness

There exists an increasing sequence (An)n of X1 and an increasing
sequence (Bn)n of X2 such that X1 = ∪+∞

n=1An, X2 = ∪+∞
n=1Bn,

µ1(An) < +∞ and µ2(Bn) < +∞. Then X1 × X2 = ∪+∞
n=1An × Bn.

If µ and ν are two measure which fulfills the equation (3), then

µ(An × Bn) = ν(An × Bn) < +∞, ∀n ∈ N.

Since the class of measurable rectangles is closed under finite inter-
section and by Theorem (??) Chapter IV, µ = ν.
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Existence For all C ∈ A1 ⊗ A2, we set

µ(C ) =

∫
X1

µ2(Cx)dµ1(x). (4)

To prove the formula (5), we must prove firstly that x 7−→ µ2(Cx)
is measurable.
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Suppose that µ2 is finite and define

A = {C ∈ A1 ⊗ A2; x 7−→ µ2(Cx) is measurable }.

A contains the measurable rectangles C = A × B since µ2(Cx) =
χA(x)µ2(B). Moreover A is a monotone class: if C ⊂ C ′, µ2(C

′ \
C )x = µ2(C

′
x)−µ2(Cx) since µ2 is finite, and if (Cn)n is an increasing

sequence

µ2(∪+∞
k=1Cn)x = lim

n→+∞
µ2(Cn)x .

By Theorem (??) Chapter IV, A = A1 ⊗ A2.
In the general case where µ2 is σ−finite, we take as above the
sequence (Bn)n and define µ2,n(B) = µ2(B ∩ Bn). Then µ2(Cx) =
lim

n→+∞
µ2,n(Cx) which is measurable.
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To prove that µ is a measure on A1 ⊗ A2, let (Cn)n a sequence of
disjoint measurable subsets in A1 ⊗ A2, then ((Cn)x)n are disjoint
for all x ∈ X1 and

µ(∪+∞
n=1Cn) =

∫
X1

µ2(∪+∞
n=1(Cn)x)dµ1(x)

=

∫
X1

+∞∑
n=1

µ2((Cn)x)dµ1(x)

=
+∞∑
n=1

∫
X1

µ2((Cn)x)dµ1(x)

=
+∞∑
n=1

µ(Cn).

Moreover µ(A× B) = µ1(A)µ2(B).
In the same way, if we define

ν(C ) =

∫
X2

µ1(C
y )dµ2(y). (5)

ν is a measure on A1⊗A2 and fulfills ν(A×B) = µ1(A)µ2(B). We
deduce that µ = ν denoted µ1 ⊗ µ2.
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