The Fubini Theorem

Mongi BLEL

King Saud University

March 27, 2024

Generalities on Product Spaces Construction of the Product Measure

Table of contents

Generalities on Product Spaces

Let $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ be two measure spaces. We intend to construct the product measure on a suitable σ -algebra contained in the power set of the Cartesian product $X = X_1 \times X_2$. By a rectangular set R in X we mean any set of the form $R = A \times B$ where $A \in \mathscr{A}_1$ and $B \in \mathscr{A}_2$. We denote by \mathcal{R} the set of all rectangles in X. The product σ -algebra of \mathscr{A}_1 and \mathscr{A}_2 on X is the σ -algebra generated by \mathcal{R} and will be denoted by $\mathscr{A}_1 \otimes \mathscr{A}_2$. $\mathscr{A}_1 \otimes \mathscr{A}_2$ is the smallest σ -algebra such that the projections $\pi_1 : X_1 \times \mathcal{A}_2$ $X_2 \longrightarrow X_1$ and $\pi_2 \colon X_1 \times X_2 \longrightarrow X_2$ are measurable. π_1 and π_2 are defined by: $\pi_1(x, y) = x$ and $\pi_2(x, y) = y$ In the same way if (X_i, \mathscr{A}_i) , i = 1, ..., n are *n* measurable spaces,

we define the σ -algebra $\otimes_{j=1}^n \mathscr{A}_j$ on the space $X = \prod_{j=1}^n X_j$, and for

the remainder of this course, we provide the product space X with this σ -algebra.

Proposition

Let X, Y be two separable^a metric spaces. Then

 $\mathscr{B}_{X\times Y} = \mathscr{B}_X \otimes \mathscr{B}_Y,$

where \mathscr{B}_X is the Borel σ -algebra on X.

^aseparable means that there exists a countable dense subset

Proof

The inclusion $\mathscr{B}_X \otimes \mathscr{B}_Y \subset \mathscr{B}_{X \times Y}$ holds whenever X, Y to be separable since π_1 and π_2 are continuous and then measurable with respect to the σ -algebra $\mathscr{B}_{X \times Y}$.

Let $(x_n)_n$ and $(y_n)_n$ two dense sequence respectively in X and Y. We consider the set of balls of center $(x_n)_n$ and radius rational. This family is countable. We denote this family $(U_k)_k$. Then any open subset of X is a finite or countable union of $(U_k)_k$. We consider in the same way we consider a sequence $(V_k)_k$ of open subsets in Y. If \mathcal{O} is an open subset of $X \times Y$ and all $(x, y) \in \mathcal{O}$ there exists an open subset of X which contains x and an open subset V of Y which contains y and $U \times V \subset \mathcal{O}$. Then any open subset of $X \times Y$ is a finite or countable union of the open subsets in $\{U_n \times V_m; n, m \in \mathbb{N}\}$. Then any open subset of $X \times Y$ is in $\mathscr{B}_X \otimes \mathscr{B}_Y$ and then $\mathscr{B}_{X \times Y} \subset \mathscr{B}_X \otimes \mathscr{B}_Y$.

Definition

If $E \subset X_1 \times X_2$; we define the *x*-section of *E* by

$$E_x = \{y \in X_2; (x, y) \in E\}, y \in X_2$$

and the y-section by

$$E^{y} = \{x \in X_{1}; (x, y) \in E\}, y \in X_{2}.$$

Similarly, if $f: X \longrightarrow \overline{\mathbb{R}}$, then the x and y-sections of f are the mappings $f_x: X_2 \longrightarrow \overline{\mathbb{R}}$ and $f^y: X_1 \longrightarrow \overline{\mathbb{R}}$ defined by $f_x(y) = f(x, y)$ and $f^y(x) = f(x, y)$.

Proposition

If $E \in \mathscr{A}_1 \otimes \mathscr{A}_2$, then the sections E_x and E^y respectively belong to \mathscr{A}_1 and \mathscr{A}_2 for each $x \in X_1$, and to \mathscr{A}_1 for each $y \in X_2$. If f is measurable with respect to the product algebra $\mathscr{A}_1 \otimes \mathscr{A}_2$, then its sections f_x and f^y are measurable with respect to the factors \mathscr{A}_2 and \mathscr{A}_1 respectively.

Proof

Let \mathscr{B} be the collection of all subsets $E \subset X$ such that $E_x \in \mathscr{A}_2$ for all $x \in X_1$ and $E^y \in \mathscr{A}_1$ for all $y \in X_2$. Then $(A \times B)_x = B$ if $x \in A$ and $(A \times B)_x = \emptyset$ if $x \in A^c$. Similarly for the section $(A \times B)^y$. Hence \mathscr{B} contains all rectangles. Moreover, \mathscr{B} is a σ - algebra, since $\begin{pmatrix} +\infty \\ \bigcup_{j=1}^{+\infty} E_j \end{pmatrix}_x = \bigcup_{j=1}^{+\infty} (E_j)_x$ and $(E_x)^c = (E^c)_x$, and similarly for y-sections. Therefore $\mathscr{B} = \mathscr{A}_1 \otimes \mathscr{A}_2$.

The measurability of f_x and f^y follows from the first statement and the relationships

$$(f_x)^{-1}(B) = (f^{-1}(B))_x; (f^y)^{-1}(B) = (f^{-1}(B))^y.$$

Lemma

Let ${\mathscr C}$ be the family of elementary sets for the product measure space

$$\mathscr{C} = \{ E = \bigcup_{j=1}^{n} R_j; \ R_j = A_j \times B_j, A_j \in \mathscr{A}_1, \ B_j \in \mathscr{A}_2 \}, \quad (1)$$

where R_j are disjoint rectangles and n is an arbitrary natural number. Then i) \mathscr{C} is an algebra, ii) $\sigma(\mathscr{C}) = \mathscr{A}_1 \otimes \mathscr{A}_2$.

Proof

i) ${\mathscr C}$ is closed under intersection and ${\mathscr C}$ is closed under complementarity.

$$X_1 imes X_2 \in \mathscr{C}$$
 is trivial.

Let $E, F \in \mathscr{C}$, write $E = \bigcup_{j=1}^{n} A_j \times B_j$ and $F = \bigcup_{j=1}^{m} C_j \times D_j$, where $A_1, \ldots, A_n, C_1, \ldots, C_m$ in $\mathscr{A}_1, B_1, \ldots, B_n, D_1, \ldots, D_m$ in \mathscr{A}_2 and both unions are disjoint. Then

$$E \cap F = \bigcup_{j=1}^{n} A_j \times B_j \cap \bigcup_{k=1}^{m} C_k \times D_k = \bigcup_{j=1}^{n} \bigcup_{k=1}^{m} A_j \times B_j \cap C_k \times D_k$$
$$= \bigcup_{j=1}^{n} \bigcup_{k=1}^{m} (A_j \cap C_k) \times (B_j \cap D_k)$$

The set $E \cap F$ is clearly a finite union of $\mathscr{A}_1 \times \mathscr{A}_2$ -sets. To see that the union is disjoint, pick distinct $(j, k), (j', k') \in \{1, \dots, n\} \times$ MONGIBLEL The Fubini Theorem

Construction of the Product Measure

Theorem

Let $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ be two σ -finite measure spaces. a) There exists a unique measure μ on $(X_1 \times X_2, \mathscr{A}_1 \otimes \mathscr{A}_2)$ such that

$$\mu(A \times B) = \mu_1(A)\mu_2(B).$$
(2)

This measure is σ -finite and denoted $\mu_1 \otimes \mu_2$.

$$(E) = \sum_{j=1}^{n} \mu_1(A_j) \mu_2(B_j),$$

for each elementary set $E \in \mathscr{C}$ as defined by the equation (1). b) For all $E \in \mathscr{A}_1 \otimes \mathscr{A}_2$

$$\mu_1 \otimes \mu_2(E) = \int \mu_2(E_x) d\mu(x) = \int \mu_2(E^y) d\nu(y).$$
(3)
Mongi BLEL The Fubini Theorem

There exists an increasing sequence $(A_n)_n$ of X_1 and an increasing sequence $(B_n)_n$ of X_2 such that $X_1 = \bigcup_{n=1}^{+\infty} A_n$, $X_2 = \bigcup_{n=1}^{+\infty} B_n$, $\mu_1(A_n) < +\infty$ and $\mu_2(B_n) < +\infty$. Then $X_1 \times X_2 = \bigcup_{n=1}^{+\infty} A_n \times B_n$. If μ and ν are two measure which fulfills the equation (3), then

$$\mu(A_n \times B_n) = \nu(A_n \times B_n) < +\infty, \quad \forall n \in \mathbb{N}.$$

Since the class of measurable rectangles is closed under finite intersection and by Theorem (??) Chapter IV, $\mu = \nu$. **Existence** For all $C \in \mathscr{A}_1 \otimes \mathscr{A}_2$, we set

$$\mu(C) = \int_{X_1} \mu_2(C_x) d\mu_1(x).$$
 (4)

To prove the formula (5), we must prove firstly that $x \mapsto \mu_2(C_x)$ is measurable.

Suppose that μ_2 is finite and define

$$\mathscr{A} = \{ \mathcal{C} \in \mathscr{A}_1 \otimes \mathscr{A}_2; x \longmapsto \mu_2(\mathcal{C}_x) \text{ is measurable } \}.$$

 \mathscr{A} contains the measurable rectangles $C = A \times B$ since $\mu_2(C_x) = \chi_A(x)\mu_2(B)$. Moreover \mathscr{A} is a monotone class: if $C \subset C'$, $\mu_2(C' \setminus C)_x = \mu_2(C'_x) - \mu_2(C_x)$ since μ_2 is finite, and if $(C_n)_n$ is an increasing sequence

$$\mu_2(\cup_{k=1}^{+\infty}C_n)_x = \lim_{n \to +\infty} \mu_2(C_n)_x.$$

By Theorem (??) Chapter IV, $\mathscr{A} = \mathscr{A}_1 \otimes \mathscr{A}_2$. In the general case where μ_2 is σ -finite, we take as above the sequence $(B_n)_n$ and define $\mu_{2,n}(B) = \mu_2(B \cap B_n)$. Then $\mu_2(C_x) = \lim_{n \to +\infty} \mu_{2,n}(C_x)$ which is measurable. To prove that μ is a measure on $\mathscr{A}_1 \otimes \mathscr{A}_2$, let $(C_n)_n$ a sequence of disjoint measurable subsets in $\mathscr{A}_1 \otimes \mathscr{A}_2$, then $((C_n)_x)_n$ are disjoint for all $x \in X_1$ and

$$\mu(\cup_{n=1}^{+\infty}C_n) = \int_{X_1} \mu_2(\cup_{n=1}^{+\infty}(C_n)_x)d\mu_1(x)$$

= $\int_{X_1} \sum_{n=1}^{+\infty} \mu_2((C_n)_x)d\mu_1(x)$
= $\sum_{n=1}^{+\infty} \int_{X_1} \mu_2((C_n)_x)d\mu_1(x)$
= $\sum_{n=1}^{+\infty} \mu(C_n).$
 $(A \times B) = \mu_1(A)\mu_2(B).$

Moreover $\mu(A \times B) = \mu_1(A)\mu_2($ In the same way, if we define