The Fubini Theorem

Mongi BLEL

King Saud University
March 27, 2024

Table of contents

(1) Generalities on Product Spaces
(2) Construction of the Product Measure

Generalities on Product Spaces

Let $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{A}_{2}, \mu_{2}\right)$ be two measure spaces. We intend to construct the product measure on a suitable σ-algebra contained in the power set of the Cartesian product $X=X_{1} \times X_{2}$.
By a rectangular set R in X we mean any set of the form $R=A \times B$ where $A \in \mathscr{A}_{1}$ and $B \in \mathscr{A}_{2}$. We denote by \mathcal{R} the set of all rectangles in X. The product σ-algebra of \mathscr{A}_{1} and \mathscr{A}_{2} on X is the σ-algebra generated by \mathcal{R} and will be denoted by $\mathscr{A}_{1} \otimes \mathscr{A}_{2}$.
$\mathscr{A}_{1} \otimes \mathscr{A}_{2}$ is the smallest σ-algebra such that the projections $\pi_{1}: X_{1} \times$ $X_{2} \longrightarrow X_{1}$ and $\pi_{2}: X_{1} \times X_{2} \longrightarrow X_{2}$ are measurable. π_{1} and π_{2} are defined by: $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$
In the same way if $\left(X_{j}, \mathscr{A}_{j}\right), j=1, \ldots, n$ are n measurable spaces, we define the σ-algebra $\otimes_{j=1}^{n} \mathscr{A}_{j}$ on the space $X=\prod_{j=1}^{n} X_{j}$, and for the remainder of this course, we provide the product space X with this σ-algebra.

Proposition

Let X, Y be two separable ${ }^{a}$ metric spaces. Then

$$
\mathscr{B}_{X \times Y}=\mathscr{B}_{X} \otimes \mathscr{B}_{Y},
$$

where \mathscr{B}_{X} is the Borel σ-algebra on X.

[^0]
Proof

The inclusion $\mathscr{B}_{X} \otimes \mathscr{B}_{Y} \subset \mathscr{B}_{X \times Y}$ holds whenever X, Y to be separable since π_{1} and π_{2} are continuous and then measurable with respect to the σ-algebra $\mathscr{B}_{X \times Y}$.
Let $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ two dense sequence respectively in X and Y. We consider the set of balls of center $\left(x_{n}\right)_{n}$ and radius rational. This family is countable. We denote this family $\left(U_{k}\right)_{k}$. Then any open subset of X is a finite or countable union of $\left(U_{k}\right)_{k}$. We consider in the same way we consider a sequence $\left(V_{k}\right)_{k}$ of open subsets in Y. If \mathcal{O} is an open subset of $X \times Y$ and all $(x, y) \in \mathcal{O}$ there exists an open subset of X which contains x and an open subset V of Y which contains y and $U \times V \subset \mathcal{O}$. Then any open subset of $X \times Y$ is a finite or countable union of the open subsets in $\left\{U_{n} \times V_{m} ; n, m \in \mathbb{N}\right\}$. Then any open subset of $X \times Y$ is in $\mathscr{B}_{X} \otimes \mathscr{B}_{Y}$ and then $\mathscr{B}_{X \times Y} \subset \mathscr{B}_{X} \otimes \mathscr{B}_{Y}$.

Definition

If $E \subset X_{1} \times X_{2}$; we define the x-section of E by

$$
E_{x}=\left\{y \in X_{2} ;(x, y) \in E\right\}, y \in X_{2}
$$

and the y-section by

$$
E^{y}=\left\{x \in X_{1} ; \quad(x, y) \in E\right\}, y \in X_{2}
$$

Similarly, if $f: X \longrightarrow \overline{\mathbb{R}}$, then the x and y-sections of f are the mappings $f_{x}: X_{2} \longrightarrow \overline{\mathbb{R}}$ and $f^{y}: X_{1} \longrightarrow \overline{\mathbb{R}}$ defined by $f_{x}(y)=f(x, y)$ and $f^{y}(x)=f(x, y)$.

Proposition

If $E \in \mathscr{A}_{1} \otimes \mathscr{A}_{2}$, then the sections E_{X} and E^{y} respectively belong to \mathscr{A}_{1} and \mathscr{A}_{2} for each $x \in X_{1}$, and to \mathscr{A}_{1} for each $y \in X_{2}$. If f is measurable with respect to the product algebra $\mathscr{A}_{1} \otimes \mathscr{A}_{2}$, then its sections f_{x} and f^{y} are measurable with respect to the factors \mathscr{A}_{2} and \mathscr{A}_{1} respectively.

Proof

Let \mathscr{B} be the collection of all subsets $E \subset X$ such that $E_{X} \in \mathscr{A}_{2}$ for all $x \in X_{1}$ and $E^{y} \in \mathscr{A}_{1}$ for all $y \in X_{2}$. Then $(A \times B)_{x}=B$ if $x \in A$ and $(A \times B)_{x}=\emptyset$ if $x \in A^{c}$. Similarly for the section $(A \times B)^{y}$. Hence \mathscr{B} contains all rectangles. Moreover, \mathscr{B} is a $\sigma-$ algebra, since $\left(\bigcup_{j=1}^{+\infty} E_{j}\right)_{x}=\bigcup_{j=1}^{+\infty}\left(E_{j}\right)_{x}$ and $\left(E_{x}\right)^{c}=\left(E^{c}\right)_{x}$, and similarly for y-sections. Therefore $\mathscr{B}=\mathscr{A}_{1} \otimes \mathscr{A}_{2}$.
The measurability of f_{x} and f^{y} follows from the first statement and the relationships

$$
\left(f_{x}\right)^{-1}(B)=\left(f^{-1}(B)\right)_{x} ;\left(f^{y}\right)^{-1}(B)=\left(f^{-1}(B)\right)^{y} .
$$

Lemma

Let \mathscr{C} be the family of elementary sets for the product measure space

$$
\begin{equation*}
\mathscr{C}=\left\{E=\bigcup_{j=1}^{n} R_{j} ; \quad R_{j}=A_{j} \times B_{j}, A_{j} \in \mathscr{A}_{1}, \quad B_{j} \in \mathscr{A}_{2}\right\} \tag{1}
\end{equation*}
$$

where R_{j} are disjoint rectangles and n is an arbitrary natural number. Then
i) \mathscr{C} is an algebra,
ii) $\sigma(\mathscr{C})=\mathscr{A}_{1} \otimes \mathscr{A}_{2}$.

Proof

i) \mathscr{C} is closed under intersection and \mathscr{C} is closed under complementarity.
$X_{1} \times X_{2} \in \mathscr{C}$ is trivial.
Let $E, F \in \mathscr{C}$, write $E=\bigcup_{j=1}^{n} A_{j} \times B_{j}$ and $F=\bigcup_{j=1}^{m} C_{j} \times D_{j}$, where
$A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{m}$ in $\mathscr{A}_{1}, B_{1}, \ldots, B_{n}, D_{1}, \ldots, D_{m}$ in \mathscr{A}_{2} and both unions are disjoint. Then

$$
\begin{aligned}
E \cap F & =\bigcup_{j=1}^{n} A_{j} \times B_{j} \cap \bigcup_{k=1}^{m} C_{k} \times D_{k}=\bigcup_{j=1}^{n} \bigcup_{k=1}^{m} A_{j} \times B_{j} \cap C_{k} \times D_{k} \\
& =\bigcup_{j=1}^{n} \bigcup_{k=1}^{m}\left(A_{j} \cap C_{k}\right) \times\left(B_{j} \cap D_{k}\right)
\end{aligned}
$$

The set $E \cap F$ is clearly a finite union of $\mathscr{A}_{1} \times \mathscr{A}_{2}$-sets. To see that the union is disjoint, pick distinct $(j, k),\left(j^{\prime}, k^{\prime}\right) \in\{1, \ldots, n\} \times$

Construction of the Product Measure

Theorem

Let $\left(X_{1}, \mathscr{A}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathscr{A}_{2}, \mu_{2}\right)$ be two σ-finite measure spaces. a) There exists a unique measure μ on $\left(X_{1} \times X_{2}, \mathscr{A}_{1} \otimes \mathscr{A}_{2}\right)$ such that

$$
\begin{equation*}
\mu(A \times B)=\mu_{1}(A) \mu_{2}(B) \tag{2}
\end{equation*}
$$

This measure is σ-finite and denoted $\mu_{1} \otimes \mu_{2}$.

$$
(E)=\sum_{j=1}^{n} \mu_{1}\left(A_{j}\right) \mu_{2}\left(B_{j}\right)
$$

for each elementary set $E \in \mathscr{C}$ as defined by the equation (1).
b) For all $E \in \mathscr{A}_{1} \otimes \mathscr{A}_{2}$

$$
\begin{equation*}
\mu_{1} \otimes \mu_{2}(E)=\int \mu_{2}\left(E_{x}\right) d \mu(x)=\int \mu_{2}\left(E^{y}\right) d \nu(y) . \tag{3}
\end{equation*}
$$

Proof

Uniqueness

There exists an increasing sequence $\left(A_{n}\right)_{n}$ of X_{1} and an increasing sequence $\left(B_{n}\right)_{n}$ of X_{2} such that $X_{1}=\cup_{n=1}^{+\infty} A_{n}, X_{2}=\cup_{n=1}^{+\infty} B_{n}$, $\mu_{1}\left(A_{n}\right)<+\infty$ and $\mu_{2}\left(B_{n}\right)<+\infty$. Then $X_{1} \times X_{2}=\cup_{n=1}^{+\infty} A_{n} \times B_{n}$. If μ and ν are two measure which fulfills the equation (3), then

$$
\mu\left(A_{n} \times B_{n}\right)=\nu\left(A_{n} \times B_{n}\right)<+\infty, \quad \forall n \in \mathbb{N}
$$

Since the class of measurable rectangles is closed under finite intersection and by Theorem (??) Chapter IV, $\mu=\nu$.

Existence For all $C \in \mathscr{A}_{1} \otimes \mathscr{A}_{2}$, we set

$$
\begin{equation*}
\mu(C)=\int_{X_{1}} \mu_{2}\left(C_{x}\right) d \mu_{1}(x) \tag{4}
\end{equation*}
$$

To prove the formula (5), we must prove firstly that $x \longmapsto \mu_{2}\left(C_{x}\right)$ is measurable.

Suppose that μ_{2} is finite and define

$$
\mathscr{A}=\left\{C \in \mathscr{A}_{1} \otimes \mathscr{A}_{2} ; x \longmapsto \mu_{2}\left(C_{x}\right) \text { is measurable }\right\} .
$$

\mathscr{A} contains the measurable rectangles $C=A \times B$ since $\mu_{2}\left(C_{x}\right)=$ $\chi_{A}(x) \mu_{2}(B)$. Moreover \mathscr{A} is a monotone class: if $C \subset C^{\prime}, \mu_{2}\left(C^{\prime} \backslash\right.$ $C)_{x}=\mu_{2}\left(C_{x}^{\prime}\right)-\mu_{2}\left(C_{x}\right)$ since μ_{2} is finite, and if $\left(C_{n}\right)_{n}$ is an increasing sequence

$$
\mu_{2}\left(\cup_{k=1}^{+\infty} C_{n}\right)_{x}=\lim _{n \rightarrow+\infty} \mu_{2}\left(C_{n}\right)_{x}
$$

By Theorem (??) Chapter IV, $\mathscr{A}=\mathscr{A}_{1} \otimes \mathscr{A}_{2}$.
In the general case where μ_{2} is σ-finite, we take as above the sequence $\left(B_{n}\right)_{n}$ and define $\mu_{2, n}(B)=\mu_{2}\left(B \cap B_{n}\right)$. Then $\mu_{2}\left(C_{x}\right)=$ $\lim _{n \rightarrow+\infty} \mu_{2, n}\left(C_{x}\right)$ which is measurable.

To prove that μ is a measure on $\mathscr{A}_{1} \otimes \mathscr{A}_{2}$, let $\left(C_{n}\right)_{n}$ a sequence of disjoint measurable subsets in $\mathscr{A}_{1} \otimes \mathscr{A}_{2}$, then $\left(\left(C_{n}\right)_{x}\right)_{n}$ are disjoint for all $x \in X_{1}$ and

$$
\begin{aligned}
\mu\left(\cup_{n=1}^{+\infty} C_{n}\right) & =\int_{X_{1}} \mu_{2}\left(\cup_{n=1}^{+\infty}\left(C_{n}\right)_{x}\right) d \mu_{1}(x) \\
& =\int_{X_{1}} \sum_{n=1}^{+\infty} \mu_{2}\left(\left(C_{n}\right)_{x}\right) d \mu_{1}(x) \\
& =\sum_{n=1}^{+\infty} \int_{X_{1}} \mu_{2}\left(\left(C_{n}\right)_{x}\right) d \mu_{1}(x) \\
& =\sum_{n=1}^{+\infty} \mu\left(C_{n}\right) .
\end{aligned}
$$

Moreover $\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)$.
In the same way, if we define

[^0]: ${ }^{\text {a }}$ separable means that there exists a countable dense subset

