4 Vector Spaces

- 4.1 Real Vector Spaces
- 4.2 Subspaces

4.1 Real Vector Spaces

Let *V* be a set on which two operations (addition and scalar multiplication) are defined. **If the following ten axioms are satisfied** for every elements **u**, **v**, and **w** in *V* and every scalars (real numbers) *c* and *d*, then *V* is called a vector space, and the **elements** in *V* are called **vectors**

Addition:

- (1) **u+v** is in *V*
- (2) u+v=v+u
- (3) u+(v+w) = (u+v)+w
- (4) V has a zero vector $\mathbf{0}$ such that for every \mathbf{u} in V, $\mathbf{u}+\mathbf{0}=\mathbf{u}$
- (5) For every \mathbf{u} in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$

Scalar multiplication:

- (6) $c\mathbf{u}$ is in V
- (7) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- (8) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- (9) $c(d\mathbf{u}) = (cd)\mathbf{u}$
- (10) $1(\mathbf{u}) = \mathbf{u}$

A vector space consists of four entities

a set of vectors, a set of real-number scalars, and two operations

V: nonempty set of vectors

c: any scalar

 $+(\mathbf{u},\mathbf{v})=\mathbf{u}+\mathbf{v}$: vector addition

 $\cdot (c, \mathbf{u}) = c\mathbf{u}$: scalar multiplication

 $(V, +, \cdot)$ is called a vector space

The set V together with the definitions of vector addition and scalar multiplication satisfying the above ten axioms is called a **vector space**

$M_{m \times n}$ is a Vector Space

Proof Recall that the usual matrix addition and scalar multiplication have properties for any $A, B, C \in M_{m \times n}$ and any $s, t \in \mathbb{R}$:

- 1. $A + B \in M_{m \times n}$, closed under addition.
- 2. A + B = B + A, addition is **commutative**
- 3. (A + B) + C = A + (B + C), addition is **associative**
- 4. There exists a zero matrix O_{mn} , such that $A + O_{mn} = A$, additive **identity**.
- 5. There exists a matrix $-A \in M_{m \times n}$ such that $A + (-A) = O_{mn}$, additive **inverse**.
- 6. $sA \in M_{m \times n}$, **closed** under scalar multiplication.
- 7. s(tA) = (st)A, scalar multiplication is **associative**.
- 8. (s + t)A = sA + tA matrix distribution.
- 9. s(A + B) = sA + sB, scalar distribution.
- 10. 1A = A, scalar multiplicative identity.

An ordered *n*-tuple: a sequence of *n* real numbers (x_1, x_2, \dots, x_n)

 R^n -space: the set of all ordered n-tuples

- n = 1 R^1 -space = set of all real numbers $(R^1$ -space can be represented geometrically by the x-axis)
- n=2 R^2 -space = set of all ordered pair of real numbers (x_1, x_2) $(R^2$ -space can be represented geometrically by the xy-plane)
- n=3 R^3 -space = set of all ordered triple of real numbers (x_1, x_2, x_3) $(R^3$ -space can be represented geometrically by the *xyz*-space)

For
$$\mathbf{u} = (u_1, u_2, \dots, u_n), \quad \mathbf{v} = (v_1, v_2, \dots, v_n)$$
 (two vectors in \mathbb{R}^n)

Equality:
$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$

Vector addition (the sum of **u** and **v**):
$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

Scalar multiplication (the scalar multiple of **u** by c): $c\mathbf{u} = (cu_1, cu_2, \dots, cu_n)$

Note: This addition and scalar multiplication are called the **standard operations** for \mathbb{R}^n .

Zero vector:
$$\mathbf{0} = (0, 0, ..., 0)$$

additive inverse:
$$-u = (-u_1, -u_2, \dots, -u_n)$$

Notes:

A vector $\mathbf{u} = (u_1, u_2, \dots, u_n)$ in \mathbb{R}^n can be viewed as:

Use comma to separate components

a $1 \times n$ row matrix (row vector): $\mathbf{u} = [u_1 \ u_2 \ \cdots \ u_n]$ or

Use blank space to separate entries $u_1 = [u_1 \ u_2 \ \cdots \ u_n]$ $u_2 = [u_1 \ u_2 \ \cdots \ u_n]$

* Therefore, the operations of matrix addition and scalar multiplication generate the same results as the corresponding vector operations

Vector addition

Scalar multiplication

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) \qquad c\mathbf{u} = c(u_1, u_2, \dots, u_n)$$
$$= (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n) \qquad = (cu_1, cu_2, \dots, cu_n)$$

Regarded as $1 \times n$ row matrix

$$\mathbf{u} + \mathbf{v} = [u_1 \ u_2 \ \cdots \ u_n] + [v_1 \ v_2 \ \cdots \ v_n]$$

$$= [u_1 + v_1 \ u_2 + v_2 \ \cdots \ u_n + v_n]$$

$$= [cu_1 \ cu_2 \ \cdots \ cu_n]$$

Regarded as $n \times 1$ column matrix

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

$$c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ cu_n \end{bmatrix}$$

R^n is a Vector Space

Proof By regarding R^n as row (or column) matrices i.e. $R^n = M_{1 \times n}$ (or $R^n = M_{n \times 1}$), the fact that R^n is vector space becomes a special case for that of matrices.

Example

The Zero Vector Space

Let V consist of a single object, which we denote by 0, that is $V = \{0\}$. Define

0 + 0 = 0, and c0 = 0 for any $c \in R$.

It is easy to check all 10 axioms are satisfies. V is called the zero vector space.

- The set of all infinite sequences $u=(u_1,u_2,u_3,\cdots)$ is denoted by R^{∞} .
- $u = (u_1, u_2, u_3, \dots), v = (v_1, v_2, v_3, \dots)$ are said to be equal if $u_i = v_i, \forall i \ge 1$.
- For $u, v \in \mathbb{R}^{\infty}$ and $c \in \mathbb{R}$, addition and scalar multiplication are defined by:

$$u + v = (u_1, u_2, u_3, \dots) + (v_1, v_2, v_3, \dots) = (u_1 + v_1, u_{12} + v_2, u_3 + v_3, \dots)$$

 $cu = (cu_1, cu_2, cu_3, \dots)$

• This makes R^{∞} into a vector space, where

$$0 = (0,0,0,\cdots)$$
 and $-u = (-u_1,-u_2,-u_3,\cdots)$

- Let $D \subseteq R$. The set of all real valued function $f: D \to R$ is denoted by F(D).
- $f, g \in F(D)$ are said to be equal if $f(x) = g(x), \forall x \in D$.
- For $f, g \in F(D)$ and $c \in R$, addition and scalar multiplication are defined by:

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = cf(x)$$

• This together with the properties of addition on R makes F(D) into a vector space, where 0 and -f are the functions:

$$0(x) = 0$$
 and $(-f)(x) = -f(x)$

A Set That Is NOT a Vector Space

If $V = \mathbb{Z}$ is the set of integers, with addition and scalar multiplication. Then V is not a vector space since

 $1 \in V$, and $\frac{1}{2}$ is a real-number scalar $(\frac{1}{2})(1) = \frac{1}{2} \notin V$ (it is not closed under scalar multiplication)

scalar noninteger integer

Example

A Set That Is NOT a Vector Space

If $V = R^2$, with addition and scalar multiplication:

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$$
 $c(u_1, u_2) = (cu_1, 0)$ (nonstandard definition)

The first nine axioms of the definition of a vector space are satisfied (check it), but NOT tenth axiom. Since for example, $1(1,1) = (1,0) \neq (1,1)$.

Theorem Properties of additive identity and additive inverse

Let v be any element of a vector space V, and let c be any scalar. Then

- (1) $0\mathbf{v} = \mathbf{0}$
- (2) $c\mathbf{0} = \mathbf{0}$
- (3) If $c\mathbf{v} = \mathbf{0}$, either c = 0 or $\mathbf{v} = \mathbf{0}$
- (4) $(-1)\mathbf{v} = -\mathbf{v}$ (the additive inverse of \mathbf{v} equals $((-1)\mathbf{v})$

Proof. (1) $0v = (0+0)v \stackrel{(8)}{=} 0v + 0v \stackrel{\text{add}(-0v)}{\Rightarrow} 0v + (-0v) = (0v+0v) + (-0v) \stackrel{(5,3)}{\Rightarrow} 0 = 0v$

(2)
$$c\mathbf{0} = c(\mathbf{0} + \mathbf{0}) = c\mathbf{0} + c\mathbf{0}$$

$$\Rightarrow c\mathbf{0} + (-c\mathbf{0}) = (c\mathbf{0} + c\mathbf{0}) + (-c\mathbf{0}) \qquad \text{(add } (-c\mathbf{0}) \text{ to both sides)}$$

$$\overset{(3)}{\Rightarrow} c\mathbf{0} + (-c\mathbf{0}) = c\mathbf{0} + [c\mathbf{0} + (-c\mathbf{0})]$$

$$\overset{(5)}{\Rightarrow} \mathbf{0} = c\mathbf{0} + \mathbf{0} \qquad \overset{(4)}{\Rightarrow} \mathbf{0} = c\mathbf{0}$$

(3) Prove by contradiction: Suppose that $c\mathbf{v} = \mathbf{0}$, but $c \neq 0$ and $\mathbf{v} \neq \mathbf{0}$

$$\mathbf{v} = 1\mathbf{v} = \left(\frac{1}{c}c\right)\mathbf{v} = \frac{1}{c}(c\mathbf{v}) = \frac{1}{c}(\mathbf{0}) = \mathbf{0} \quad \text{(By the second property, } c\mathbf{0} = \mathbf{0}\text{)}$$

$$\Rightarrow \rightarrow \leftarrow \quad \Rightarrow \text{if } c\mathbf{v} = \mathbf{0}, \text{ either } c = 0 \text{ or } \mathbf{v} = \mathbf{0}$$

(4)
$$0\mathbf{v} = (1+(-1))\mathbf{v} = 1\mathbf{v} + (-1)\mathbf{v}$$

 $\Rightarrow \mathbf{0} = \mathbf{v} + (-1)\mathbf{v}$ (By the first property, $0\mathbf{v} = \mathbf{0}$)
$$(5)$$
 $\Rightarrow (-1)\mathbf{v} = -\mathbf{v}$ (By comparing with Axiom (5), (-1) \mathbf{v} is the additive inverse of \mathbf{v})

4.2 Subspaces

Definition

Subspace

A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

NOTE. By just being a subset of V, W must already satisfy all 10 axioms except possibly (1),(4), (5), and (6) the others are inherited from V. But (5) is satisfied if (6) is satisfied, since -u = (-1)u. This leads to the following theorem:

Theorem

Test For a Subspace

A subset W of a vector space V is a subspace if and only if the following conditions are satisfied:

- 1. $0 \in W$ (The zero vector of V).
- 2. If $u, v \in W$, then $u + v \in W$.
- 3. If c is a scalar and $u \in W$, then $cu \in W$.

The Trivial Subspaces

If V is a nonzero vector space then V has at least two subspaces, namely , V itself and the zero subspace $\{0\}$.

Example

The Subspace of Polynomials P_{∞}

Recall that a polynomial is a function that can be written as

$$f = a_0 + a_1 x + \dots + a_k x^k$$
 where a_0, a_1, \dots, a_k are constants.

Clearly,

- the sum of two polynomials is a polynomial, (closed under addition)
- a constant times a polynomial is a polynomial, (closed under scalar multiplication)
- \succ So, the set of all polynomials is closed under addition and scalar multiplication and hence is a subspace of $F(-\infty,\infty)$. We will denote this space by P_{∞} .

Recall that

- The degree of the polynomial is the highest power of its variable with nonzero coefficient. E.g. $3-4x^2-x^4$ has degree 4.
- the sum of two polynomials cannot have a higher degree than both polynomials.
- Scalar multiplication cannot increase the degree.
- \triangleright So, the set of all polynomials of degree n or less is closed under addition and scalar multiplication and hence is a subspace of $F(-\infty,\infty)$. We will denote this space by P_n .

Let W be the set of all 2×2 symmetric matrices. Show that W is a subspace of the vector space $M_{2\times 2}$, with the standard operations of matrix addition and scalar multiplication.

Solution.

(1)
$$0^T = 0 \Rightarrow 0 \in W$$

(2) $A_1 \in W, A_2 \in W \Rightarrow (A_1 + A_2)^T = A_1^T + A_2^T = A_1 + A_2 \quad (A_1 + A_2 \in W)$
(3) $c \in R, A \in W \Rightarrow (cA)^T = cA^T = cA$ $(cA \in W)$
The definition of a symmetric matrix A is that $A^T = A$

Note: The same argument shows that in general the set of symmetric $n \times n$ matrices is a subspace of $M_{n \times n}$.

Let W be the set of all 2×2 singular matrices. Show that W is NOT a subspace of the vector space $M_{2\times 2}$, with the standard matrix operations.

Solution.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in W, \ B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in W$$

$$\therefore A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \notin W \text{ (W is not closed under vector addition)}$$

 $\therefore W$ is not a subspace of $M_{2\times 2}$

Note: A similar argument shows that in general the set of singular $n \times n$ matrices is NOT a subspace of $M_{n \times n}$.

The First Quadrant is NOT a Subspace of R^2

Show that the set $W = \{(x_1, x_2): x_1, x_2 \ge 0\}$ is NOT a subspace of R^2 with the standard.

Solution.

Let
$$\mathbf{u} = (1, 1) \in W$$

$$\because (-1)\mathbf{u} = (-1)(1, 1) = (-1, -1) \notin W$$
(W is not closed under scalar multiplication)

 $\therefore W$ is not a subspace of R^2

Which of the following two subsets is a subspace of \mathbb{R}^2 ?

- (a) The set of points on the line given by x + 2y = 0.
- (b) The set of points on the line given by x + 2y = 1.

Solution. (a)
$$W = \{(x, y) \mid x + 2y = 0\} = \{(-2t, t) \mid t \in R\}$$

The zero vector (0,0) is on this line for take t = 0.

Let
$$\mathbf{v}_1 = (-2t_1, t_1) \in W$$
 and $\mathbf{v}_2 = (-2t_2, t_2) \in W$

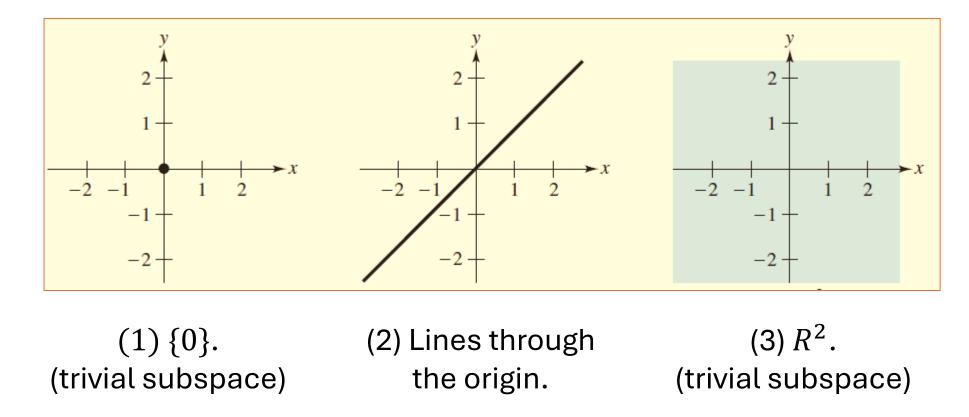
$$\because \mathbf{v}_1 + \mathbf{v}_2 = \left(-2(t_1 + t_2), t_1 + t_2\right) \in W \text{ (closed under vector addition)}$$

$$c\mathbf{v}_1 = (-2(ct_1), ct_1) \in W$$
 (closed under scalar multiplication) $\therefore W$ is a subspace of R^2

(b) This line clearly doesn't contain the zero vector (0,0), hence NOT a subspace.

Note: We'll see later that solutions of homogeneous linear systems are always subspaces while solutions of nonhomogeneous linear systems are clearly never

Subspaces of R^2



Note: We'll see later that solutions of homogeneous linear systems are always subspaces while solutions of nonhomogeneous linear systems are clearly never subspaces, why?

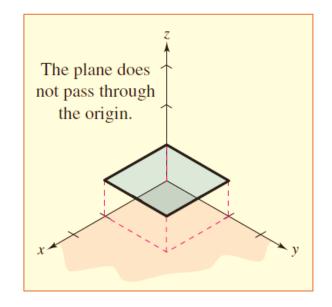
Identifying Subspaces of R^3

Which of the following two subsets is a subspace of \mathbb{R}^3 ?

- (a) $W = \{(x_1, x_2, 1): x_1, x_2 \in R\}.$
- (b) W = { $(x_1, x_1 + x_3, x_3): x_1, x_3 \in R$ }.

Solution.

(a)



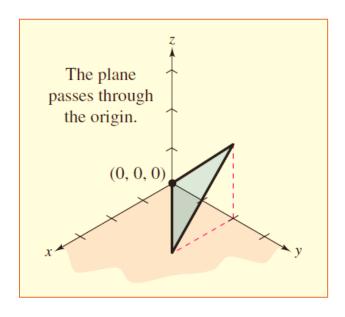
Consider $\mathbf{v} = (0,0,1) \in W$

$$(-1)$$
v = $(0,0,-1) \notin W$

 $\therefore W$ is not a subspace of R^3

(Note: the zero vector is not in W)

(b)



Note that the zero vector (0,0,0) is on this set.

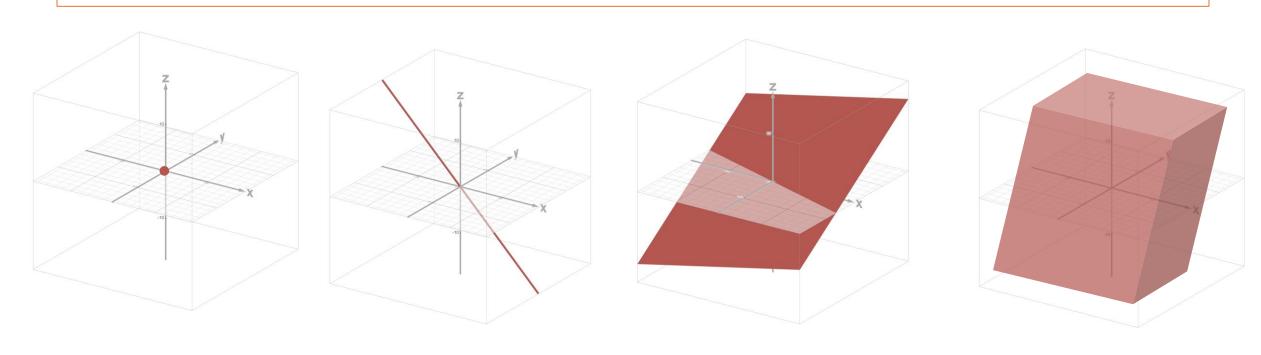
Consider
$$\mathbf{v} = (v_1, v_1 + v_3, v_3) \in W$$
 and $\mathbf{u} = (u_1, u_1 + u_3, u_3) \in W$

$$: \mathbf{v} + \mathbf{u} = (v_1 + u_1, (v_1 + u_1) + (v_3 + u_3), v_3 + u_3) ∈ W$$

$$c\mathbf{v} = (cv_1, (cv_1) + (cv_3), cv_3) ∈ W$$

 $\therefore W$ is closed under vector addition and scalar multiplication, so W is a subspace of R^3

Subspaces of R^3



(1) {0}. (trivial subspace)

- (2) Lines through the origin.
- (3) Planes through the origin.
- (4) R^3 . (trivial subspace)

Creating Subspaces

Theorem

The Intersection of Subspaces is a Subspace

If V and W are both subspaces of a vector space U, then the intersection of V and W (denoted by $V \cap W$) is also a subspace of U.

- **Proof.** (1) $0 \in V \cap W$, since 0 is in V and W because they are subspaces.
 - (2) For \mathbf{v}_1 and \mathbf{v}_2 in $V \cap W$, since \mathbf{v}_1 and \mathbf{v}_2 are in V (and W), $\mathbf{v}_1 + \mathbf{v}_2$ is in V (and W). Therefore, $\mathbf{v}_1 + \mathbf{v}_2$ is in $V \cap W$.
 - (3) For \mathbf{v}_1 in $V \cap W$, since \mathbf{v}_1 is in V (and W), $c\mathbf{v}_1$ is in V (and W). Therefore, $c\mathbf{v}_1$ is in $V \cap W$.

Notes:

- The theorem is easily generalized for any finite intersection of subspaces.
- The union of subspaces may NOT be a subspace in general.

Definition

Linear Combination and Span

Let *V* be a vector space and $S = \{v_1, v_2, \dots, v_k\} \subseteq V$.

- A vector of the form $c_1v_1+c_2v_2+\cdots+c_kv_k$, where $c_1,c_2,\ldots,c_k\in R$ is called a linear combination of the v_is .
- The set all such linear combinations is called the **span of** S and is written as:

$$span(S) = \{c_1v_1 + c_2v_2 + \dots + c_kv_k : c_1, c_2, \dots, c_k \in R\}.$$

Theorem

span(S) is a Subspace

If V be a vector space and $S = \{v_1, v_2, \dots, v_k\} \subseteq V$, then

- a) span(S) is a subspace of V.
- b) span(S) is the smallest subspace of V containing S, i.e., every other subspace of V containing S must contain span(S).

Proof. a) First $0 = 0v_1 + 0v_2 + \cdots + 0v_k$, so $0 \in span(S)$. Consider any two vectors u and v in span(S), that is,

$$u = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$
 and $v = d_1 v_1 + d_2 v_2 + \dots + d_k v_k$

Then

- $u + v = (c_1 + d_1)v_1 + (c_2 + d_2)v_2 + \dots + (c_k + d_k)v_k \in span(S)$, and
- $cu = (cc_1)v_1 + (cc_2)v_2 + \dots + (cc_k)v_k \in span(S)$

So, we can conclude that span(S) is a subspace of V.

b) Let *U* be another subspace of *V* containing *S*. We want to show span(S) $\subset U$.

Consider any
$$u \in span(S)$$
, i.e., $u = \sum_{i=1}^{k} c_i v_i$, where $v_i \in S$

$$U \text{ contains } S \Rightarrow v_i \in U \overset{U \text{ is a subspace}}{\Rightarrow} u = \sum_{i=1}^k c_i v_i \in U \qquad \text{(because U is closed under vector addition and scalar multiplication)}$$

Since for any vector $\mathbf{u} \in \mathrm{span}(S)$, \mathbf{u} also belongs to U, then $\mathrm{span}(S) \subset U$.

Finding a linear combination

Let $\mathbf{v}_1=(1,2,3)$ $\mathbf{v}_2=(0,1,2)$ $\mathbf{v}_3=(-1,0,1)$. Show that (a) $\mathbf{w}=(1,1,1)$ is a linear combination of $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ (b) $\mathbf{w}=(1,-2,2)$ is not a linear combination of $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$

Solution (a) $w = c_1 v_1 + c_2 v_2 + c_3 v_3$

$$\Rightarrow (1,1,1) = c_1(1,2,3) + c_2(0,1,2) + c_3(-1,0,1) \Rightarrow \begin{array}{cccc} c_1 & -c_3 & = 1 \\ 2c_1 + c_2 & = 1 \\ 2c_1 + c_2 + c_3 & = 1 \end{array} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 1 \end{bmatrix} \xrightarrow{G.-J. E.} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 \Rightarrow This system has infinitely many solutions. \Rightarrow w can be expressed as c_1 v₁ + c_2 v₂ + c_3 v₃.

(b)
$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 2 & 1 & 0 & | & -2 \\ 3 & 2 & 1 & | & 2 \end{bmatrix} \xrightarrow{G.-J. E.} \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & | & -4 \\ 0 & 0 & 0 & | & 7 \end{bmatrix}$$

- \Rightarrow This system has no solution since the third row means $0 \cdot c_1 + 0 \cdot c_2 + 0 \cdot c_3 = 7$
- \Rightarrow **w** can not be expressed as c_1 **v**₁ + c_2 **v**₂ + c_3 **v**₃

Definition

A Spanning Set For a Vector Space

If V is a vector space and $S \subseteq V$ a subset such that span(S) = V, then S is called a **spanning** set or a **generating** set for V.

Note: Since we know span(V) = V, V is a spanning set for itself. We are interested in small sets that span V.

Example

A Standard Spanning Set For R^3

The set $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ spans R^3 because any vector $\mathbf{u} = (u_1, u_2, u_3)$ in R^3 can be written as $\mathbf{u} = u_1(1,0,0) + u_2(0,1,0) + u_3(0,0,1)$

Example

A Standard Spanning Set For P_2

The set $S = \{1, x, x^2\}$ spans P_2 because any polynomial $p(x) = a + bx + cx^2$ in P_2 can be written as $p(x) = a(1) + b(x) + c(x^2)$.

A Non-Standard Spanning Set For R^3

Show that the set $S = \{(1,2,3), (0,1,2), (-2,0,1)\}$ spans R^3 .

Solution We must show any vector $\mathbf{u}=(u_1,u_2,u_3)$ in R^3 can be expressed as a linear combination of $\mathbf{v}_1=(1,2,3)$, $\mathbf{v}_2=(0,1,2)$, and $\mathbf{v}_3=(-2,0,1)$

If
$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$
 \Rightarrow $c_1 - 2c_3 = u_1$
 $2c_1 + c_2 = u_2$
 $3c_1 + 2c_2 + c_3 = u_3$

The above problem thus reduces to determine whether this system is consistent for all values of u_1 , u_2 , and u_3 .

- X From a Thm., if A is an invertible matrix, then the system of linear equations Ax = b has a unique solution $x = A^{-1}b$ given any b.
- \Re From a Thm., a square matrix A is invertible (nonsingular) if and only if $\det(A) = 0$

 $\therefore A\mathbf{x} = \mathbf{u}$ has exactly one solution for every $\mathbf{u} \Rightarrow \operatorname{span}(S) = R^3$

A Spanning Set For $M_{2\times 2}$

Since
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
, we have

$$M_{2\times 2} = span\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Example

A Spanning Set For the subspace W of $M_{2\times 2}$ of Symmetric Matrices

Since
$$\begin{bmatrix} a & b \\ b & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
, we have

$$W = span \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Note: Writing a subset of a vector space as a span of a set shows it is a subspace.

Theorem Solution Sets of Homogeneous linear Systems are Subspaces of \mathbb{R}^n

The solution set of a homogeneous linear system Ax = 0 of m equations in n unknowns is a subspace of \mathbb{R}^n .

Proof Let W be the solution set of the system. Then $0 \in W$ because A0 = 0. Now let $x_1, x_2 \in W$ and $c \in R$. Then $Ax_1 = 0$, $Ax_2 = 0$ and we have

$$A(x_1 + x_2) = Ax_1 + Ax_2 = 0 + 0 = 0.$$

Also,

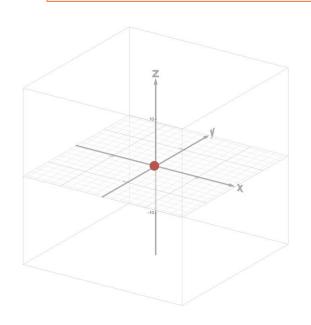
$$A(cx_1) = cAx_1 = c0 = 0.$$

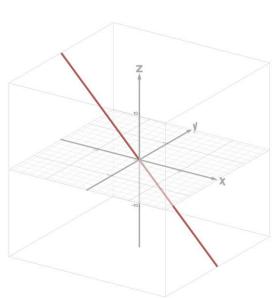
Example Solution Spaces of Homogeneous Systems

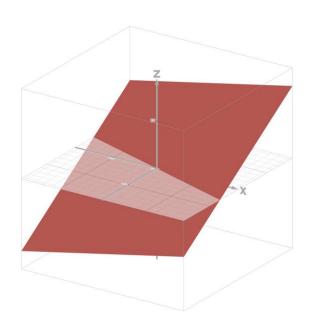
 $W = \{(x_1, x_2, x_3) \in R^3 : x_1 + 2x_2 + 3x_3 = 0, 4x_1 + 5x_2 + 6x_3 = 0\}$ is a subspace of R^3 because it is the solution set of a homogeneous linear

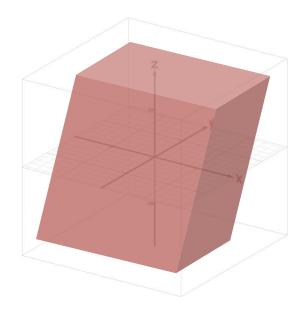
system
$$Ax = 0$$
, where $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

Solution Spaces of Homogeneous Systems









$$(1)\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

$$(2) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

$$(3)\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

(trivial subspace)

Lines through the origin.

Planes through the origin.

 R^3 (trivial subspace)