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4.1 Real Vector Spaces
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Let V be a set on which two operations (addition and scalar multiplication) are 
defined. If the following ten axioms are satisfied for every elements u, v, and w 
in V and every scalars (real numbers) c and d, then V is called a vector space, and 
the elements in V are called vectors

Addition:
(1)  u+v is in V
(2)  u+v = v+u
(3)  u+(v+w) = (u+v)+w

(4)  V has a zero vector 0 such that for every u in V, u+0 = u

(5) For every u in V, there is a vector in V denoted by –u 
      such that u+(–u) = 0     

Scalar multiplication:
(6)        is in V   uc

(7)                                  vuvu ccc +=+ )(

(8)     uuu dcdc +=+ )(

(9)  
  
 

uu )()( cddc =

(10)        uu =)(1

Definition   Vector Space
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Notes   A vector space consists of four entities

V: nonempty set of vectors
 c: any scalar

( , ) :

( , ) :c c

+ = +

 =

u v u v

u u

vector addition

scalar multiplication

( ), ,V +  is called a vector space

a set of vectors, a set of real-number scalars, and two operations

The set V together with the definitions of vector addition and scalar 
multiplication satisfying the above ten axioms is called a vector space
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Example  𝑀𝑚×𝑛 is a Vector Space
Proof  Recall that the usual matrix addition and scalar multiplication have 
properties for any 𝐴, 𝐵, 𝐶 ∈ 𝑀𝑚×𝑛 and any 𝑠, 𝑡 ∈ ℝ:

1. 𝐴 + 𝐵 ∈ 𝑀𝑚×𝑛, closed under addition.
2. 𝐴 + 𝐵 = 𝐵 + 𝐴, addition is commutative
3. 𝐴 + 𝐵 + 𝐶 = 𝐴 + 𝐵 + 𝐶 , addition is associative
4. There exists a zero matrix 𝑂𝑚𝑛, such that 𝐴 + 𝑂𝑚𝑛 = 𝐴, additive identity.
5. There exists a matrix −𝐴 ∈ 𝑀𝑚×𝑛 such that 𝐴 + −𝐴 = 𝑂𝑚𝑛,additive inverse.

6. s𝐴 ∈ 𝑀𝑚×𝑛, closed under scalar multiplication.
7. 𝑠(𝑡𝐴) = (𝑠𝑡)𝐴 , scalar multiplication is associative.
8. (𝑠 + 𝑡)𝐴 = 𝑠𝐴 + 𝑡𝐴 matrix distribution.
9. 𝑠(𝐴 + 𝐵) = 𝑠𝐴 + 𝑠𝐵, scalar distribution.

10. 1𝐴 = 𝐴, scalar multiplicative identity.
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Example   The Space 𝑅𝑛

a sequence of n real numbers 1 2( , , , )nx x xAn ordered n-tuple:

the set of all ordered n-tuples𝑅n-space :

R1-space = set of all real numbersn = 1

n = 2 R2-space = set of all ordered pair of real numbers ),( 21 xx

n = 3 R3-space = set of all ordered triple of real numbers ),,( 321 xxx

(R1-space can be represented geometrically by the x-axis)

(R2-space can be represented geometrically by the xy-plane)

(R3-space can be represented geometrically by the xyz-space)
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( ) ( )1 2 1 2, , , ,   , , ,n nu u u v v v= =u v (two vectors in Rn)

Equality:                if and only if                                                vu =

Vector addition (the sum of u and v): ( )nn vuvuvu +++=+  , , , 2211 vu

Scalar multiplication (the scalar multiple of u by c): ( )ncucucuc ,,, 21 =u

Note: This addition and scalar multiplication are called the standard  operations 
for Rn. 

1 1 2 2,  ,  ,  n nu v u v u v= = =

For

Zero vector: )0 ..., ,0 ,0(=0

additive inverse: −𝑢 = (−𝑢1, −𝑢2, ⋯ , −𝑢𝑛)
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Notes:  

A vector                               in        can be viewed as:),,,( 21 nuuu =u nR

1 2[   ]nu  u u=u 



















=

nu

u

u


2

1

u

※ Therefore, the operations of matrix addition and scalar multiplication 

generate the same results as the corresponding vector operations

or

       a n×1 column matrix (column vector):

a 1×n row matrix (row vector):

Use comma to separate components

Use blank space to separate entries
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2211

2121

nn

nn

vuvuvu

vvvuuu

+++=

+=+


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





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+
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
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
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
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 cucucu
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



=

=u

1 2

1 2

[ ]
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c c u  u   u

cu cu cu

=

=

u 



Regarded as 1×n row matrix

Regarded as n×1 column matrix
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Proof By regarding 𝑅𝑛 as row (or column) matrices i.e. 𝑅𝑛 = 𝑀1×𝑛 (or 𝑅𝑛 = 𝑀𝑛×1), 
the fact that 𝑅𝑛 is vector space becomes a special case for that of matrices. 

Example   𝑅𝑛 is a Vector Space

Example   The Zero Vector Space
Let 𝑉 consist of a single object, which we denote by 0, that is 𝑉 = {0}. Define

0 + 0 = 0, and 𝑐0 = 0 for any 𝑐 ∈ 𝑅.

It is easy to check all 10 axioms are satisfies. 𝑉 is called the zero vector space. 
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• The set of all infinite sequences 𝑢 = (𝑢1, 𝑢2, 𝑢3, ⋯ ) is denoted by 𝑅∞.

•  𝑢 = (𝑢1, 𝑢2, 𝑢3, ⋯ ), 𝑣 = (𝑣1, 𝑣2, 𝑣3, ⋯ ) are said to be equal if 𝑢𝑖 = 𝑣𝑖 , ∀𝑖 ≥ 1.

• For 𝑢, 𝑣 ∈ 𝑅∞ and 𝑐 ∈ 𝑅, addition and scalar multiplication are defined by:

𝑢 + 𝑣 = 𝑢1, 𝑢2, 𝑢3, ⋯ + 𝑣1, 𝑣2, 𝑣3, ⋯ = (𝑢1 + 𝑣1, 𝑢12 + 𝑣2, 𝑢3 + 𝑣3, ⋯ )

𝑐𝑢 = 𝑐𝑢1, 𝑐𝑢2, 𝑐𝑢3, ⋯

• This makes 𝑅∞ into a vector space, where

0 = (0,0,0, ⋯ ) and −𝑢 = (−𝑢1, −𝑢2, −𝑢3, ⋯ )

Example  The Vector Space of infinite sequences 𝑅∞ 
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• Let 𝐷 ⊆ 𝑅. The set of all real valued function 𝑓: 𝐷 → 𝑅 is denoted by 𝐹(𝐷).

•  𝑓, 𝑔 ∈ 𝐹(𝐷) are said to be equal if 𝑓 𝑥 = 𝑔 𝑥 , ∀𝑥 ∈ 𝐷.

• For 𝑓, 𝑔 ∈ 𝐹(𝐷) and 𝑐 ∈ 𝑅, addition and scalar multiplication are defined by:

𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔(𝑥)

𝑐𝑓 𝑥 = 𝑐𝑓(𝑥)

• This together with the properties of addition on 𝑅 makes 𝐹(𝐷) into a vector 
space, where 0 and −𝑓 are the functions:

0(𝑥) = 0 and −𝑓 𝑥 = −𝑓(𝑥)

Example  The Vector Space of real Valued functions 𝐹(𝐷)
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Example  A Set That Is NOT a Vector Space

1
2

1 ,  and  is a real-number scalarV

V=
2
1

2
1 )1)(( (it is not closed under scalar multiplication)

 
scalar

If 𝑉 = ℤ is the set of integers, with addition and scalar multiplication. Then 𝑉 is not 
a vector space since

integer
noninteger

Example  A Set That Is NOT a Vector Space

If 𝑉 = 𝑅2, with addition and scalar multiplication: 

),(),(),( 22112121 vuvuvvuu ++=+ )0,(),( 121 cuuuc = (nonstandard definition)

The first nine axioms of the definition of a vector space are satisfied (check it), but 
NOT tenth axiom. Since for example, 1 1,1 = (1,0) ≠ (1,1).
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Let 𝑣 be any element of a vector space 𝑉, and let 𝑐 be any scalar. Then

Theorem Properties of additive identity and additive inverse

(1)  0

(2)  

(3)  If ,   either 0  or  

(4)  ( 1)

c

c c

=

=

= = =

− = −

v 0

0 0

v 0 v 0

v v (the additive inverse of v equals ((–1)v)

1  0v = 0 + 0 v =
8

0v + 0v ⇒
add −0𝑣

0v + −0v = 0v + 0v + −0v ⇒
5,3

0 = 0vProof. 

(4) (7)

(3)

(5) (4)

(2)      ( )

     ( ) ( ( )

     ( ) [ ( )]

        

c c c c

c c c c c

c c c c c

c c

= + = +

 + − = + −

 + − = + −

 + 

0 0 0 0 0

0 0 0 0) + 0

0 0 0 0 + 0

0 = 0 0  0 = 0

(add (–c0) to both sides)
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( ) ( )
(10) (9)

(3) Prove by contradiction: Suppose that , but 0 and 

1 1 1
           1

      if = , either 0 or 

c c

c c
c c c

c c

=  

 
= = = = = 

 

→  = =

v 0 v 0

v v v v 0 0

  v 0 v 0

(8)

(5)

 

(4)    0 (1 ( 1)) 1 ( 1)

     ( 1)

     ( 1)

= + − = + −

 = + −

 − = −

v v v v

0 v v

v v (By comparing with Axiom (5), (–1)v is the additive inverse of v)

(By the first property, 0v = 0)

(By the second property, c0 = 0)
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4.2 Subspaces
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Definition    Subspace

A subset 𝑊 of a vector space V is called a subspace of 𝑉 if 𝑊 is itself a vector 
space under the addition and scalar multiplication defined on 𝑉.

Theorem   Test For a Subspace

NOTE. By just being a subset of 𝑉, 𝑊 must already satisfy all 10 axioms except 
possibly (1) ,(4), (5), and (6) the others are inherited from 𝑉. But (5) is satisfied if (6) 
is satisfied, since −𝑢 = −1 𝑢. This leads to the following theorem:

A subset 𝑊 of a vector space V is a subspace if and only if the following conditions 
are satisfied:

1.  0 ∈ 𝑊 (The zero vector of 𝑉).
2. If 𝑢, 𝑣 ∈ 𝑊, then 𝑢 + 𝑣 ∈ 𝑊.
3. If 𝑐 is a scalar and 𝑢 ∈ 𝑊, then 𝑐𝑢 ∈ 𝑊.
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Example  The Trivial Subspaces 

If 𝑉 is a nonzero vector space then 𝑉 has at least  two subspaces, namely , 𝑉 itself 
and the zero subspace {0}.

Example  The Subspace of Polynomials 𝑃∞ 

• Recall that a polynomial is a function that can be written as

  𝑓 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑘𝑥𝑘  where 𝑎0, 𝑎1, ⋯ , 𝑎𝑘  are  constants.
Clearly, 

• the sum of two polynomials is a polynomial, (closed under addition) 
• a constant times a polynomial is a polynomial, (closed under scalar 

multiplication) 

➢ So, the set of all polynomials is closed under addition and scalar multiplication 
and hence is a subspace of 𝐹(−∞, ∞). We will denote this space by 𝑃∞.
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Example  The Subspace of Polynomials of degree ≤ 𝑛

Recall that 

• The degree of the polynomial is the highest power of its variable with nonzero 
coefficient. E.g. 3 − 4𝑥2 − 𝑥4 has degree 4.

• the sum of two polynomials cannot have a higher degree than both polynomials.  
• Scalar multiplication cannot increase the degree.

➢ So, the set of all polynomials of degree 𝑛 or less is closed under addition and 
scalar multiplication and hence is a subspace of 𝐹(−∞, ∞). We will denote this 
space by 𝑃𝑛.
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Example  The Symmetric Matrices is a  Subspace of 𝑀2×2

Let 𝑊 be the set of all 2 × 2 symmetric matrices. Show that W is a subspace of the 
vector space 𝑀2×2, with the standard operations of matrix addition and scalar 
multiplication.

 )( 21212121 AAAAAAWAW,A TTT +=+=+

,  ( )  T Tc R A W cA cA cA   = =

1 2( )A A W+ 

( )cA W

The definition of a symmetric matrix A is that AT = A

Solution.

(1) 0 0  0T W

(2)

(3)

Note: The same argument shows that in general the set of symmetric 𝑛 × 𝑛 
matrices is a subspace of 𝑀𝑛×𝑛. 
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Example  The Singular Matrices is NOT a  Subspace of 𝑀2×2

Let 𝑊 be the set of all 2 × 2 singular matrices. Show that W is NOT a subspace of 
the vector space 𝑀2×2, with the standard matrix operations.

Solution.

Note: A similar argument shows that in general the set of singular 𝑛 × 𝑛 matrices is 
NOT a subspace of 𝑀𝑛×𝑛. 

1 0

0 1
A B I W

 
+ = =  

 


2 2 is not a subspace of W M 

1 0 0 0
,  

0 0 0 1
A W B W

   
=  =    
   

(W is not closed under vector addition)
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Example  The First Quadrant is NOT a  Subspace of 𝑅2

Show that the set 𝑊 = { 𝑥1, 𝑥2 : 𝑥1, 𝑥2 ≥ 0} is NOT a subspace of 𝑅2 with the 
standard.

Solution.

Let (1,  1) W= u

2 is not a subspace of  W R

( ) ( )( ) ( ) W−−=−=− 1 ,11 ,111 u
(W is not closed under scalar multiplication)
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Example  Identifying Subspaces of 𝑅2

Which of the following two subsets is a subspace of 𝑅2?
 (a) The set of points on the line given by 𝑥 + 2𝑦 = 0.
   (b) The set of points on the line given by 𝑥 + 2𝑦 = 1.

Solution.

Note: We’ll see later that solutions of homogeneous linear systems are always 
subspaces while solutions of nonhomogeneous linear systems are clearly never 
subspaces, why? 

   RtttyxyxW −==+= ),2(02),(   (a)

( ) ( )1 1 1 2 2 2Let 2 , and 2 ,t t W  t t W= −  = − v v

( )( )1 2 1 2 1 22 ,t t t t W+ = − + + v v

( )( )1 1 12 ,c ct ct W= − v 2 is a subspace of W R

(closed under vector addition)

(closed under scalar multiplication)

The zero vector (0,0) is on this line for take t = 0.

(b) This line clearly doesn’t contain the zero vector (0,0), hence NOT a subspace. 
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    Subspaces of 𝑅2

Note: We’ll see later that solutions of homogeneous linear systems are always 
subspaces while solutions of nonhomogeneous linear systems are clearly never 
subspaces, why? 

(1) {0}. 
(trivial subspace)

(2) Lines through 
the origin.

(3) 𝑅2.
(trivial subspace)
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Example  Identifying Subspaces of 𝑅3

Which of the following two subsets is a subspace of 𝑅3?
 (a)  W = { 𝑥1, 𝑥2, 1 : 𝑥1, 𝑥2 ∈ 𝑅}.
   (b)  W = { 𝑥1, 𝑥1 + 𝑥3, 𝑥3 : 𝑥1, 𝑥3 ∈ 𝑅}.

Solution.

(a)

( 1) (0,0, 1) W− = − v
3 is not a subspace of  W R

Consider (0,0,1) W= v

(Note: the zero vector is not in W)
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1 1 3 3 1 1 3 3Consider ( , , )  and ( , , )v v v v W u u u u W= +  = + v u

( ) ( )( )1 1 1 1 3 3 3 3, ,v u v u v u v u W+ = + + + + + v u

( ) ( )( )1 1 3 3, ,c cv cv cv cv W= + v

3

 is closed under vector addition and scalar multiplication,

   so  is a subspace of 

W

W R



(b)

Note that the zero vector (0,0,0) is on this set.

MATH 244 - 14471 - Fahd Alshammari 26



    Subspaces of 𝑅3

(1) {0}. 
(trivial subspace)

(3) Planes through 
the origin.

(4) 𝑅3.
(trivial subspace)

(2) Lines through 
the origin.
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Creating Subspaces

Theorem  The Intersection of Subspaces is a Subspace



If   and  are both subspaces of a vector  space  , then the intersection of  and  

(denoted by ) is also a subspace of .

V W U V W

V W U

 +

+ 

1 2 1 2 1 2

1 2

(2) For  and  in , since  and  are in  (and ),  is in  (and ).

Therefore,  is in .

V W V W V W

V W

v v v v v v

v v

Proof. (1) 0 ∈ 𝑉⋂𝑊, since 0 is in 𝑉 and 𝑊 because they are subspaces.





1 1 1

1

(3) For  in , since  is in  (and ),  is in  (and ).

Therefore,  is in .

V W V W c V W

c V W

v v v

v

Notes: 
• The theorem is easily generalized for any finite intersection of subspaces.
• The union of subspaces may NOT be a subspace in general.  
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Definition   Linear Combination and Span

Let 𝑉 be a vector space and 𝑆 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑘} ⊆ 𝑉. 

• A vector of the form 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘, where 𝑐1, 𝑐2, … , 𝑐𝑘 ∈ 𝑅 is called a 
linear combination of the 𝑣𝑖𝑠.

• The set all such linear combinations is called the span of 𝑺 and is written as:

span S = {𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘: 𝑐1, 𝑐2, … , 𝑐𝑘 ∈ 𝑅}.

Theorem   𝑠𝑝𝑎𝑛(𝑆) is a Subspace

If 𝑉 be a vector space and 𝑆 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑘} ⊆ 𝑉, then

a)  s𝑝𝑎𝑛(𝑆) is a subspace of 𝑉.
b)  𝑠𝑝𝑎𝑛(𝑆) is the smallest subspace of 𝑉 containing 𝑆, , i.e., every other 

subspace of 𝑉 containing 𝑆 must contain 𝑠𝑝𝑎𝑛(𝑆).
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a) First 0 = 0𝑣1 + 0𝑣2 + ⋯ + 0𝑣𝑘 , 𝑠𝑜 0 ∈ 𝑠𝑝𝑎𝑛 𝑆 . Consider any two 
vectors 𝑢 and 𝑣 in span(𝑆), that is,

𝑢 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘  and 𝑣 = 𝑑1𝑣1 + 𝑑2𝑣2 + ⋯ + 𝑑𝑘𝑣𝑘

Then
•  𝑢 + 𝑣 = (𝑐1 + 𝑑1)𝑣1 + (𝑐2 + 𝑑2)𝑣2 + ⋯ + (𝑐𝑘 + 𝑑𝑘)𝑣𝑘 ∈ span(𝑆),  and
•  𝑐𝑢 = (𝑐𝑐1)𝑣1 + (𝑐𝑐2)𝑣2 + ⋯ + (𝑐𝑐𝑘)𝑣𝑘 ∈ span(𝑆) 

So, we can conclude that span(𝑆) is a subspace of 𝑉.

Proof.

b) Let 𝑈 be another subspace of 𝑉 containing 𝑆. We want to show span(𝑆) ⊂ 𝑈.

Consider any 𝑢 ∈ span(𝑆), i.e., 𝑢 = ෍

𝑖=1

𝑘

𝑐𝑖𝑣𝑖 ,  where 𝑣𝑖 ∈ 𝑆

𝑈 contains 𝑆 ⇒ 𝑣𝑖 ∈ 𝑈 ⇒
𝑈 is a subspace

𝑢 = ෍

𝑖=1

𝑘

𝑐𝑖𝑣𝑖 ∈ 𝑈

Since for any vector 𝐮 ∈ span(𝑆), 𝐮 also belongs to 𝑈, then span(𝑆) ⊂ 𝑈. 

(because U is closed under vector 
addition and scalar multiplication)
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Let 𝐯1 = (1,2,3) 𝐯2 = (0,1,2) 𝐯3 = (−1,0,1). Show that
  (a) 𝐰 = (1,1,1) is a linear combination of 𝐯1, 𝐯2, 𝐯3 
  (b) 𝐰 = (1, − 2,2) is not a linear combination of 𝐯1, 𝐯2, 𝐯3

Solution (a) 𝐰 = 𝑐1𝐯1 + 𝑐2𝐯2 + 𝑐3𝐯3

⇒ 1,1,1 = 𝑐1 1,2,3 + 𝑐2 0,1,2 + 𝑐3 −1,0,1

= (𝑐1 − 𝑐3, 2𝑐1 + 𝑐2, 3𝑐1 + 2𝑐2 + 𝑐3)
⇒  

𝑐1 − 𝑐3 = 1
2𝑐1 +  𝑐2 = 1

3𝑐1 + 2𝑐2 + 𝑐3 = 1
 

Example  Finding a linear combination

⇒
1 0 −1 1
2 1 0 1
3 2 1 1

1 0 −1 1
0 1 2 −1
0 0 0 0

G.−J. E.

(b) 𝐰 = 𝑐1𝐯1 + 𝑐2𝐯2 + 𝑐3𝐯3

⇒
1 0 −1 1
2 1 0 −2
3 2 1 2

1 0 −1 1
0 1 2 −4
0 0 0 7

⇒ This system has no solution since the third row means 0 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 0 ⋅ 𝑐3 = 7

⇒ 𝐰 can not be expressed as 𝑐1𝐯1 + 𝑐2𝐯2 + 𝑐3𝐯3

G.−J. E.

⇒ This system has infinitely many solutions. ⇒ 𝐰 can be expressed as 𝑐1𝐯1 + 𝑐2𝐯2 + 𝑐3𝐯3.
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Definition   A Spanning Set For a Vector Space

If 𝑉is a vector space and 𝑆 ⊆ 𝑉a subset such that 𝑠𝑝𝑎𝑛 𝑆 = 𝑉, then 𝑆is called a 
spanning set or a generating set for 𝑉.

The set 𝑆 = {(1,0,0), (0,1,0), (0,0,1)} spans 𝑅3 because any vector 𝐮 = (𝑢1, 𝑢2, 𝑢3)
in 𝑅3 can be written as 𝐮 = 𝑢1(1,0,0) + 𝑢2(0,1,0) + 𝑢3(0,0,1)

Note: Since we know 𝑠𝑝𝑎𝑛 𝑉 = 𝑉, 𝑉 is a spanning set for itself. We are interested 
in small sets that span 𝑉.

Example  A Standard Spanning Set For 𝑅3

The set 𝑆 = {1, 𝑥, 𝑥2} spans 𝑃2 because any polynomial 𝑝(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

in 𝑃2 can be written as 𝑝(𝑥) = 𝑎(1) + 𝑏(𝑥) + 𝑐(𝑥2).

Example  A Standard Spanning Set For 𝑃2
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Example  A Non-Standard Spanning Set For 𝑅3

Show that the set 𝑆 = (1,2,3), (0,1,2), (−2,0,1)  spans 𝑅3.

We must show any vector 𝐮 = (𝑢1, 𝑢2, 𝑢3) in 𝑅3 can be expressed as a 
linear combination of 𝐯1 = (1,2,3), 𝐯2 = (0,1,2), and 𝐯3 = (−2,0,1)

If 𝐮 = 𝑐1𝐯1 + 𝑐2𝐯2 + 𝑐3𝐯3 
𝑐1 − 2𝑐3 = 𝑢1

⇒  2𝑐1 +  𝑐2 = 𝑢2

 3𝑐1 +  2𝑐2 +  𝑐3 = 𝑢3

The above problem thus reduces to determine whether this system is consistent 
for all values of 𝑢1, 𝑢2, and 𝑢3.

Solution

0

123

012

201



−

=A

∴ 𝐴𝐱 = 𝐮 has exactly one solution for every 𝐮 ⇒ span(𝑆) = 𝑅3

※ From a Thm., if 𝐴 is an invertible matrix, then the 

system of linear equations 𝐴𝑥 = 𝑏 has a unique 

solution 𝑥 = 𝐴−1𝑏 given any 𝑏.

※ From a Thm., a square matrix A is invertible 

(nonsingular) if and only if det(𝐴)   0
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Example   A Spanning Set For 𝑀2×2

Since 𝑎 𝑏
𝑐 𝑑

= 𝑎
1 0
0 0

+ 𝑏
0 1
0 0

+ 𝑐
0 0
1 0

+ 𝑑
0 0
0 1

, we have

𝑀2×2 = 𝑠𝑝𝑎𝑛
1 0
0 0

,
0 1
0 0

,
0 0
1 0

,
0 0
0 1

Example A Spanning Set For the subspace 𝑊 of 𝑀2×2 of Symmetric Matrices

Since 𝑎 𝑏
𝑏 𝑑

= 𝑎
1 0
0 0

+ 𝑏
0 1
1 0

+ 𝑑
0 0
0 1

, we have

𝑊 = 𝑠𝑝𝑎𝑛
1 0
0 0

,
0 1
1 0

,
0 0
0 1

Note: Writing a subset of a vector space as a span of a set shows it is a subspace.
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Theorem   Solution Sets of Homogeneous linear Systems are Subspaces of 𝑅𝑛

The solution set of a homogeneous linear system 𝐴𝑥 = 0 of 𝑚 equations in 𝑛 
unknowns is a subspace of 𝑅𝑛.

Proof Let 𝑊 be the solution set of the system. Then 0 ∈ 𝑊 because 𝐴0 = 0. Now 
let 𝑥1, 𝑥2 ∈ 𝑊 and 𝑐 ∈ 𝑅. Then 𝐴𝑥1 = 0, 𝐴𝑥2 = 0 and we have

 𝐴(𝑥1 + 𝑥2) = 𝐴𝑥1 + 𝐴𝑥2 = 0 + 0 = 0.

Also,
 𝐴(𝑐𝑥1) = 𝑐𝐴𝑥1 = 𝑐0 = 0.

Example Solution Spaces of Homogeneous Systems

𝑊 = { 𝑥1, 𝑥2, 𝑥3 ∈ 𝑅3: 𝑥1 + 2𝑥2 + 3𝑥3 = 0, 4𝑥1 + 5𝑥2 + 6𝑥3 = 0} is a 
subspace of 𝑅3 because it is the solution set of a homogeneous linear 

system 𝐴𝑥 = 0, where 𝐴 =
1 2 3
4 5 6

.
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Example   Solution Spaces of Homogeneous Systems

(1) 
1 0 0
0 1 0
0 0 1

𝑥
𝑦
𝑧

= 0 

(trivial subspace)

(3) 
1 1 1
0 0 0
0 0 0

𝑥
𝑦
𝑧

= 0 

Planes through the 
origin.

(4) 
0 0 0
0 0 0
0 0 0

𝑥
𝑦
𝑧

= 0 

 𝑅3

(trivial subspace)

(2) 
1 0 1
0 1 0
0 0 0

𝑥
𝑦
𝑧

= 0

Lines through the 
origin.
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