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4.1 Real Vector Spaces



Definition Vector Space

Let V be a set on which two operations (addition and scalar multiplication) are
defined. If the following ten axioms are satisfied for every elements u, v, and w
in V and every scalars (real numbers) c and d, then Vis called a vector space, and
the elements in V are called vectors

Addition: Scalar multiplication:
1) u+visinV (6) cu isinV

u+v=v+u (7) c(u+v)=cu+cv
(8) (c+d)u=cu+du
(9) c(du)=(cd)u

such thatu+(-u)=0 (10) I(u)=u
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Notes A vector space consists of four entities

a set of vectors, a set of real-number scalars, and two operations

V: nonempty set of vectors
c: any scalar

+(u, v) =u+ v: vector addition

(c,u) =cu: scalar multiplication
(V, +, ) is called a vector space

The set V together with the definitions of vector addition and scalar
multiplication satisfying the above ten axioms is called a vector space
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Example M.« IS a Vector Space

Proof Recall that the usual matrix addition and scalar multiplication have
properties forany A,B,C € M,,,«, and any s, t € R:

1.4+ B € M,,,«,, closed under addition.

2.A+ B = B + A, addition is commutative

3.(A+B)+C =A+ (B + C),addition is associative

4. There exists a zero matrix O,,,,, such that A + 0,,,,, = A, additive identity.

5. There exists a matrix —4 € M,,,.,, suchthat A + (—A) = 0,,,,,,additive inverse.

6.sA € M,,,«.,, closed under scalar multiplication.
7.s(tA) = (st)A, scalar multiplication is associative.
8. (s +t)A = sA + tA matrix distribution.

9.s5(A + B) = sA + sB, scalar distribution.

10. 14 = A, scalar multiplicative identity.
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Example The Space R™

An ordered n-tuple: asequence of nreal numbers (x;,x,, -+, x,)

R"-space: the setof all ordered n-tuples

n=1 R1-space=set of all real numbers
(R1-space can be represented geometrically by the x-axis)

n=2 Rz—space = set of all ordered pair of real numbers (X, X;)

(Rz-space can be represented geometrically by the xy-plane)

n=3 R3—space = set of all ordered triple of real numbers (X1,%5,X3)

(R3-space can be represented geometrically by the xyz-space)
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For u=(u,u,,--,u,), v=(v,v,,---,v,)  (twovectorsinR")

Equality: u=v ifandonlyif v, =v, u,=v,, ==, u, =v,
Vector addition (the sum of u and v): u+v:(u1+v1,u2+v2,---,un+vn)

Scalar multiplication (the scalar multiple of u by c): cu = (cul,cuz, . -,cun)

Note: This addition and scalar multiplication are called the standard operations
for R".

Zero vector: 0=(0,0,...,0)

additive inverse: —u = (—uq, —Uy, >+, —Uy)
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Notes:

A vector u = (u,,u,,...,u, ) In R" can be viewed as:

N

Use comma to separate components

a 1xn row matrix (row vector): w=[u, u, --- u,]

Use blank space to separate entries -

or u,

a nx1 column matrix (column vector): u=

> Therefore, the operations of matrix addition and scalar multiplication
generate the same results as the corresponding vector operations

MATH 244 - 14471 - Fahd Alshammari



Vector addition Scalar multiplication

u-ryv :(ul,uz,---,un)+(v1,v2, "'9vn) cu ZC(MI, Uys -y un)

:(u1+vl,u2_|—v2,...,un+vn) :(Culjcuzj..., Cun)

Regarded as 1Xn row matrix

u+v=[u u, - ul+t[vv, - v,] cu=clu u, u,l

=lu,+v, u, +v, -~ u, +v,] =|cu, cu, -+ cu, |

Regarded as nx 1 column matrix

U, Vi U +v U, cu,
u \ % u,+v
2 2 2 TV u cu
Uu+v= . + . — . cu=c¢ 2 = 2
_Mn . _Vn . _Mn +V, | _un | _cun |
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Example R™is a Vector Space

Proof By regarding R™ as row (or column) matricesi.e. R™ = M;y,, (or R™ = M,, 1),
the fact that R" is vector space becomes a special case for that of matrices.

Example The Zero Vector Space
Let V consist of a single object, which we denote by 0, thatis V = {0}. Define

0+0=0,andc0 =0foranyc € R.

It is easy to check all 10 axioms are satisfies. VV is called the zero vector space.
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Example The Vector Space of infinite sequences R®

The set of all infinite sequences u = (uq, Uy, U3, ++ ) is denoted by R™.
u = (Uq, Uy, Uz, ), v = (v1,0,, V3, ) are said to be equal ifu; = v;, Vi = 1.
Foru,v € R* and ¢ € R, addition and scalar multiplication are defined by:
u+v= (U Uy Uz, ) + (0, 02,03, ) = (Ug + V1, U + Uy, Uz + V3, 00)
cu = (cuq, cu,, Cg, )
This makes R into a vector space, where

0 — (0,0,0;) and —u = (—ul, —U,Z, _'LLS, )
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Example The Vector Space of real Valued functions F(D)

Let D € R. The set of all real valued function f: D — R is denoted by F (D).
f,g € F(D) are said to be equalif f(x) = g(x),Vx € D.
For f,g € F(D) and c € R, addition and scalar multiplication are defined by:
(f+9)x) =fx) +gXx)
(cf)(x) = cf (x)

This together with the properties of addition on R makes F (D) into a vector
space, where 0 and —f are the functions:

0(x) = 0and (=f)(x) = —f(x)
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Example A Set That Is NOT a Vector Space

If V = Z is the set of integers, with addition and scalar multiplication. Then V is not

a vector space since
leV, and 7 is a real-number scalar

(%)(1) = % ¢ V' (itis not closed under scalar multiplication)

TT 1

scalar, noninteger
integer

Example A Set That Is NOT a Vector Space

If V = R?, with addition and scalar multiplication:

(u,,u,)+v,v,) =, +v,,u, +v,) c(u,,u,)=(cu,,0) (nonstandard definition)

The first nine axioms of the definition of a vector space are satisfied (check it), but
NOT tenth axiom. Since for example, 1(1,1) = (1,0) # (1,1).
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Theorem Properties of additive identity and additive inverse
Let v be any element of a vector space V, and let ¢ be any scalar. Then
(1) Ov=0
(2) c0=0
(3) Ifcv=0, eitherc=0 or v=0
(4) (=1)v=—v (the additive inverse of v equals ((-1)v)

(8) add(-0v) (5,3)
Proof. (DOov=0+0)v=0v+0v = 0v+(—0v)=(0v+0v)+(—0v) = 0=0v

(4) (7)
2) c0=c(0+0)=c0+c0
= c0+(—c0)=(c0+c0)+(—c0) (add (-c0) to both sides)

(_—3; c0+(—c0)=c0+[c0+(—c0)]

(5) (4)
=0=c0+0 =0=c0
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(3) Prove by contradiction: Suppose that cv =0, but c =0 and v#0
(10) 1 1 1
v=1lv=|—clv= —(CV) — —(0) = () (By the second property, c0 = 0)
c c c

= >« =>1fcv=0, eitherc=00rv=20

4) Ov=(1+ (—1))V(i) lv+(-1)v

=0=v+ (— I)V (By the first property, Ov =0)

(5)
— (— l)V = —V (By comparing with Axiom (5), (—1)v is the additive inverse of v)
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4.2 Subspaces



Definition Subspace

A subset W of a vector space V is called a subspace of V if W is itself a vector
space under the addition and scalar multiplication defined on V.

NOTE. By just being a subset of I/, W must already satisfy all 10 axioms except
possibly (1),(4), (5), and (6) the others are inherited from V. But (5) is satisfied if (6)
is satisfied, since —u = (—1)u. This leads to the following theorem:

Theorem Test For a Subspace

A subset W of a vector space V is a subspace if and only if the following conditions
are satisfied:

1. 0 € W (The zero vector of I/).
2. Ifuv eW,thenu+v € W.
3. Ifcisascalarandu € W,thencu e W.
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Example The Trivial Subspaces

If V is a nonzero vector space then I/ has at least two subspaces, namely, V itself
and the zero subspace {0}.

Example The Subspace of Polynomials P,

* Recall that a polynomial is a function that can be written as

f=ay+ax+ -+ akxk where ay, a4, +,a;, are constants.
Clearly,

* the sum of two polynomials is a polynomial, (closed under addition)
* aconstanttimes a polynomialis a polynomial, (closed under scalar
multiplication)

» So, the set of all polynomials is closed under addition and scalar multiplication
and hence is a subspace of F(—oo, ). We will denote this space by P,,.
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Example The Subspace of Polynomials of degree < n

Recall that

* The degree of the polynomial is the highest power of its variable with nonzero
coefficient. E.g. 3 — 4x? — x* has degree 4.

* the sum of two polynomials cannot have a higher degree than both polynomials.
* Scalar multiplication cannot increase the degree.

» So, the set of all polynomials of degree n or less is closed under addition and

scalar multiplication and hence is a subspace of F(—oo, ). We will denote this
space by P,.
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Example The Symmetric Matrices is a Subspace of M,

Let W be the set of all 2 X 2 symmetric matrices. Show that W is a subspace of the
vector space M,.,, with the standard operations of matrix addition and scalar
multiplication.

Solution.
(1) 0" =0= 0eW
(2) A4 eW, 4, eW = (A+A4,) =4 +4, sA4+4, (4 +A4 W)
(3) ceR,AeW:(cA)T:cATzTCA (cAeW)

The definition of a symmetric matrix A is that A7 = 4

Note: The same argument shows that in general the set of symmetric n Xn
matrices is a subspace of M, .
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Example The Singular Matrices is NOT a Subspace of M,

Let W be the set of all 2 X 2 singular matrices. Show that W is NOT a subspace of
the vector space M,,, with the standard matrix operations.

1 O 0 O
A= eW, B= /4
0 O 0 1

4+ B = |:1 O} = [ ¢ W/ (W isnot closed under vector addition)
0 1

Solution.

. W 1s not a subspace of M, ,

Note: A similar argument shows that in general the set of singularn X n matrices is
NOT a subspace of M, «4,.
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Example The First Quadrant is NOT a Subspace of R?

Show that the set W = {(x,x,):x1,x, = 0} is NOT a subspace of R? with the
standard.

Solution.
Letu=({1, heW

c(=Du=(=1)1,1)=(-1,-1)ew

(W 1s not closed under scalar multiplication)

. W is not a subspace of R’
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Example Identifying Subspaces of R?

Which of the following two subsets is a subspace of R??
(a) The set of points on the line given by x + 2y = 0.
(b) The set of points on the line given by x + 2y = 1.
Solution. (a) W= {(x, ) | x+2y= 0}= {(—2t,t) | t e R}
The zero vector (0,0) 1s on this line for take ¢ = 0.
Letv, =(-2¢,t,)eWand v, =(-2t,,t,) e W

UV VY, = (—2 (tl + 12 ) , {1 + 12 ) e W (closed under vector addition)

CV, = (—Z(Ctl ) , Cl‘l) €W  (closed under scalar multiplication) .. W 1S a subspace of R’

(b) This line clearly doesn’t contain the zero vector (0,0), hence NOT a subspace.

Note: We’ll see later that solutions of homogeneous linear systems are always
subspaces while solutions of nonhomogeneous linear systems are clearly never
su bspaces, Why’? MATH 244 - 14471 - Fahd Alshammari 23



Subspaces of R?

—i-_ —Il ! i Iz - 2 -1 12 2 -1 12
-1 ~1 -1+
—2+ -2+ -2+
(1) {0}. (2) Lines through (3) R?.
the origin. (trivial subspace)

(trivial subspace)
Note: We’ll see later that solutions of homogeneous linear systems are always
subspaces while solutions of nonhomogeneous linear systems are clearly never

subspaces, why?
24
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Example

Identifying Subspaces of R3

Which of the following two subsets is a subspace of R3?
(a) W= {(xl) X2, 1) X1, X2 € R}'
(b) W = {(x1, %1 + x3,%3): %1, X3 € R}.

Solution.

(a)

The plane does
not pass through
the origin.

Consider v=(0,0,1) e W
' (=1D)v=(0,0,-1)g W

. W is not a subspace of R’

(Note: the zero vector is not in W)
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(b)

The plane
passes through
the origin.

(0,0,0)

Note that the zero vector (0,0,0) 1s on this set.
Consider v =(v,,v, +v,,v;) e W and u = (u,u, +u,,u,) e W
CvV+u =(v1 +l/l1,(V1 +M1)+(V3 +M3),V3 +u3) el
cv = (cvl,(cv1)+(cv3),cv3) eW
. W 1s closed under vector addition and scalar multiplication,

so W is a subspace of R’
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Subspaces of R3

(1) {0}. (2) Lines through (3) Planes through (4) R3.
(trivial subspace) the origin. the origin. (trivial subspace)
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Creating Subspaces

Theorem The Intersection of Subspaces is a Subspace

If V and W are both subspaces of a vector space U, then the intersection of V and W
(denoted by V n W) is also a subspace of U.

Proof. (1) 0 € VNI, since OisinV and W because they are subspaces.
(2) Forv,and v, in VW, since v, and v, arein V (and W), v, +v, isin V (and W).
Therefore, v, +v, isin VnW.
(3) Forv,in VW, since v, isin V (and W), cv, isin V (and W).
Therefore, cv, isin VnW.

Notes:
- Thetheorem is easily generalized for any finite intersection of subspaces.
- The union of subspaces may NOT be a subspace in general.
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Definition Linear Combination and Span

Let V be avectorspaceand S = {vy,v,,:-, v} S V.

* A vector of the form c;v; + c,v, + -+ + ¢V, Where ¢4, Cy, ..., C, E R is called a
linear combination of the v;s.

e The setall such linear combinations is called the span of $ and is written as:

span(S) = {c;v; + cyv, + -+ + C Vi Cq, Cy, ..., C; € R}

Theorem span(S) is a Subspace

If V be avector spaceand S = {vq,v,, -, v} € V, then

a) span(S)is asubspace of V.
b) span(S) is the smallest subspace of V containing S, , i.e., every other

subspace of VV containing S must contain span(S).
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Proof. a) First 0 = 0v; + Ov, + -+ + Ovyg, so 0 € span(S). Consider any two
vectors u and v in span(S§), that is,
U=cCVv+Cv,+ -+ cpvyand v = dyvy +drv, + -+ dvg

Then

* u+v=(_+dy)vy+(c; +dy)v, + -+ (¢ + dy)V, € span(S), and
* cu = (ccy)vy + (ccy)vy + -+ (ccy) vy € span(S)

So, we can conclude that span(S) is a subspace of V.
b) Let U be another subspace of V containing S. We want to show span(S) c U.
K
Consider any u € span(S), i.e., u = z c;v;, wherev; € S

i=1
k

U is a subspace .
U contains S = V; € U = U = E C;V; € U (because U is closed under vector
= addition and scalar multiplication)
l:

Since for any vector u € span(§), u also belongs to U, then span(§) c U.
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Example Finding a linear combination

Letv, = (1,2,3) v, =(0,1,2) v; = (—1,0,1). Show that
(a) w = (1,1,1) is alinear combination of v, v,, v3
(b) w = (1, — 2,2) is nota linear combination of v, v,, v3

Solution (@ w=rcv; + vy + 33

. Cl - C3 — 1 _1
> (LD =123 + 601D + (<100 L 0 4 o 1L 2 1
= (1 — €3,2¢1 +¢3,3¢1 + 2¢; + ¢3) 3c;+2¢c,+c; =1

= This system has infinitely many solutions. = w can be expressed as ¢;v; + ¢,V, + c3V3.

1
—4
7

(b) W= (C1V; + Cr Vo + C3V3

1
=12

3

! G.—].E 1
2 0

= This system has no solution since the third rowmeans 0:¢;+0-¢c; +0-¢c3 =7

= W can not be expressed as c;V; + c,V, + C3V3
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Definition A Spanning Set For a Vector Space

If Vis a vector space and S € Va subset such that span(S) =V, then Sis called a
spanning set or a generating set for I/.

Note: Since we know span(V) =V, V is a spanning set for itself. We are interested
in small sets that span V.

Example A Standard Spanning Set For R3

The set S = {(1,0,0), (0,1,0), (0,0,1)} spans R because any vector u = (uq, Uy, U3)
in R3 can be written as u = u4(1,0,0) + u,(0,1,0) + u3(0,0,1)

Example A Standard Spanning Set For P,

The set S = {1, x, x?} spans P, because any polynomial p(x) = a + bx + cx*
in P, can be written as p(x) = a(1) + b(x) + c(x?).
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Example

A Non-Standard Spanning Set For R3

Show that the set S = {(1,2,3),(0,1,2), (—2,0,1)} spans R3.

Solution We must show any vector u = (uq, Uy, u3) in R3 can be expressed as a
linear combination of v; = (1,2,3), v, = (0,1,2), and v; = (—2,0,1)

Ifu — C1V1 + C2V2 + C3V3

_2C3 =u1

2c1 + ¢y = U,
3ci + 2¢5 + 3 = uUj

The above problem thus reduces to determine whether this system is consistent

for all values of u;, u,, and us.

M-

~ AX = u has exactly one solution for eve

MATH 244 - 14471

¢ From a Thm., if 4 is an invertible matrix, then the
system of linear equations Ax = b has a unique
solution x = A~1b given any b.

¢ From a Thm., a square matrix A is vertible

(nonsingular) if and only if det(4) 0

u = span(S) = R*
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Example A Spanning Set For M,

. a bl _ |1 O 0 1] 0 O 0 O
R ST o o e e

" =San{[1 o] 0 1[o o”o 0}
2x2 =3P g of’lo ol’l1 ofl’lo 1

Example A Spanning Set For the subspace W of M,., of Symmetric Matrices
. a bl _ [1 0 0 1 0 0
Slnce[b d]_a[O O]+b 1 0 +d[0 1],Wehave

v=sanlly L2210 0

Note: Writing a subset of a vector space as a span of a set shows itis a subspace.
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Theorem Solution Sets of Homogeneous linear Systems are Subspaces of R™

The solution set of a homogeneous linear system Ax = 0 of m equations in n
unknowns is a subspace of R™.

Proof Let W be the solution set of the system. Then 0 € W because A0 = 0. Now
letx{,x, € W and c € R. Then Ax; = 0, Ax, = 0 and we have

A(x;{ +x5) = Ax; + Ax, =0+ 0 =0.

Also,
A(cxq) = cAx; = c0 = 0.

Example Solution Spaces of Homogeneous Systems

W = {(x{,x5,x3) € R3:xy + 2x, + 3x3 = 0, 4x; + 5x, + 6x3 = 0} is a
subspace of R3 because it is the solution set of a homogeneous linear
1 2 3

4 5 6]
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Example Solution Spaces of Homogeneous Systems

1 0 0 1 0 1 1 1 17[x 0 0 O]fx
0 1 0 =0 0O 1 0 =0 (3)]0 0 Of|y|=20 4)[0 0 Of|lyl=20
0 0 1 0O 0 O 0 0 O0llLz 0 0 O0lLz
(trivial subspace) Lines through the Planes through the R3
origin. origin. (trivial subspace)
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