PHYSICS 501 FALL 2019

$4^{\text {th }}$ HOMEWORK
Dr. V. Lempesis
Hand in: Sunday $10^{\text {th }}$ of November at 23:59

1. Find the Fourier series for the function:

$$
f(x)=\left\{\begin{array}{cc}
-1 & -\pi<x<-\pi / 2 \\
0 & -\pi / 2<x<\pi / 2 \\
1 & \pi / 2<x<\pi
\end{array}\right.
$$

(Hint: Be careful with the discontinuity problems. Also in your solution make a plot of the function, it will help you a lot).
2. In right circular cylindrical coordinates a particular vector function is given by $\mathbf{V}(\rho, \varphi)=\hat{\rho}_{0} V_{\rho}(\rho, \varphi)+\hat{\varphi}_{0} V_{\varphi}(\rho, \varphi)$. Show that $\vec{\nabla} \times \mathbf{V}$ has only az-component.
3. A calculation of the magneto-hydrodynamics pinch effect involves the evaluation of $(\mathbf{B} \cdot \vec{\nabla}) \mathbf{B}$. If the magnetic induction \mathbf{B} is taken to be $\mathbf{B}=-\hat{\varphi}_{0} B_{\varphi}(\rho)$, show that $(\mathbf{B} \cdot \vec{\nabla}) \mathbf{B}=-\hat{\rho}_{0} B_{\varphi}^{2} / \rho$.
4. Working in spherical coordinates prove that:

$$
\vec{\nabla} \cdot \hat{\mathbf{r}} f(r)=\frac{2 f(r)}{r}+\frac{d f}{d r}
$$

