PHYSICS 201

$4^{\text {th }}$ HOMEWORK
Dr. V. Lempesis

Hand in: Tuesday $10{ }^{\text {th }}$ of December 2013

Student Name :

\qquad

Student ID:

1. Let $\mathbf{u}=(4,3,2), \mathbf{v}=(1,4,2), \mathbf{w}=(1,3,2)$. a) Find that $\mathbf{u} \cdot(\mathbf{u}+\mathbf{v})$ and b) Show that $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
2. Let $\mathbf{u}=(4,3,2), \mathbf{v}=(1,4,2)$ find $\operatorname{Pr} o j_{\mathbf{v}} \mathbf{u}$ and $\mathbf{u}-\operatorname{Pr} o j_{\mathbf{v}} \mathbf{u}$.
3. Let $V=R^{3}=\{(a, b, c) \mid a, b, c \in R\}$. Check if the following subset of R^{3} is a vector subspace: $\mathrm{W}_{2}=\{(a, b, 1) \mid a, b \in R\}$.
4. Consider the vector space

$$
M_{2 x 3}=\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in R\right\} .
$$

Show that the vectors

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), e_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), e_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& e_{4}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), e_{5}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), e_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

are a base of the space.

