King Saud University

College of Engineering

IE - 341: "Human Factors"

Fall – 2014 (1st Sem. 1435–6H)

Human Capabilities Part – I. Hearing (Chapter 6*) Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

- Hearing
 - Nature and Measurement of Sounds
 - Frequency of Sound Waves
 - Intensity of Sound
 - Complex Sounds
 - Masking
- Auditory Displays
 - Detection of Signals
 - Relative Discrimination of Auditory Signals
 - Absolute Identification of Auditory Signals
 - Sound Localization
- Noise

Hearing

- Direct vs. Indirect hearing:
 - Direct hearing: e.g. baby's natural cry
 - Indirect hearing: e.g. doorbell \Rightarrow someone at door
 - Indirect stimulus can be more effective than direct
 - e.g. fire alarm (100% detectable) vs. heat/smoke (75%)
- Nature and Measurement of Sounds
 - Sound is created by vibrations from a source and is transmitted through a medium (such as atmosphere) to the ear
 - Two primary attributes of sound:
 - Frequency
 - Intensity (or amplitude)

- Frequency of Sound Waves :
 - When sound is generated,
 - vibration ⇒ air molecules to move back and forth
 - this alternation $\Rightarrow \uparrow$ and \downarrow in air pressure
 - Vibration forms sinusoidal (sine) waves
 - height of wave above and below the midline represents the amount of above-normal and below-normal air pressure respectively
 - The waveform above the midline is the image of the waveform below the midline in a sine wave.
 - The waveform repeats itself again and again in a sine wave
 - frequency of sound:
 - "number of cycles per second"
 - expressed in: hertz (Hz) ; 1 Hz \equiv 1 cycle / 1 second

- Cont. Frequency of Sound Waves :
 - Sinusoidal wave created by a simple soundgenerating source

- Cont. Frequency of Sound Waves :
 - The human ear is sensitive to frequencies
 - 20 to 20,000 Hz
 - highest sensitivity: between 1,000 to 3,000 Hz
 - Ear is not equally sensitive to all frequencies
 - People differ in their relative sensitivities to various frequencies
- Intensity of Sound (amplitude/loudness):
 - defined in terms of power per unit area
 - The Bel (B) [after Alexander Graham Bell] is the basic unit for measuring sound (log scale)
 - The most convenient measure is:
 - decibel (dB)
 - 1 dB=0.1B

6

- Cont. Intensity of Sound
 - Figure 6-2:
 Decibel levels for various sounds.
 - Note ↑ 10 dB ⇒
 ↑ 100-fold
 sound pressure
 - Signal-to-Noise Ratio (SNR): difference bet. meaningful signal, & background noise
 - e.g. 90 dB signal,
 70 dB noise ⇒
 SNR = +20 dB

Decibels	Environmental noises	Specific noise sources	Decibels
140			140
130		50 hp siren (100 ft)	130
		Jet takeoff (200 ft)	0.000
120		Rock concert with amplifier (6 ft)	120
110	Casting shakeout area	Riveting machine [*] Cutoff saw [*]	110
100	Electric furnace area	Pneumatic peen hammer*	100
90	Boiler room Printing press plant	Textile weaving plant* Subway train (20ft	
80	Tabulating room Inside sports car (50 mph)	Pneumatic drill (50 ft) 80
70		Freight train (100 ft Vacuum cleaner (10 ft Speech (1 ft) /0
60	Near freeway (auto traffic) Large store Accounting office		60
50	Private business office Light traffic (100 ft) Average residence	Large transformer (200 ft) 50
40	Minimum levels, residential areas in Chicago at night		40
30	Studio (speech)	Soft whisper (5 ft) 30
20	Studio for sound pictures		20
10		Normal breathin	g 10
 0	* Operator s position		0

- Complex Sounds:
 - Very few sounds are pure
 - Most complex sounds are non-harmonic
 - Figure 6-3: waveform of a complex sound formed by 3 individual sine waves

- Masking (defined):
 - Condition when one component of the sound environment reduces the sensitivity of the ear to another component
 - It is amount that the "threshold of audibility" of a sound (the masked sound) is raised by the presence of another (masking) sound
 - **Q**: Can you a give an example of "masked" and "masking" sounds from our everyday lives?
 - **Q**: difference between masked and complex sounds?

Auditory Displays

- Chapter 3: auditory vs. visual modality (e.g. auditory preferred: message is short, simple)
- 4 types of human functions/tasks involved in the reception of auditory signals:
- 1. **Detection** (i.e. whether a signal is present)
- 2. Relative discrimination (differentiating bet. ≥ 2 signals presented together)
- 3. Absolute identification (only 1 signal is present)
- 4. **Localization** (knowing the direction that the signal is coming from)

Detection of signals

- Signals can occur in "peaceful" surroundings or noisy surroundings
- The signal plus noise (SN) should be distinct from the noise (N) itself
- Otherwise, signal cannot always be detected in the presence of noise
 - i.e. signal (masked sound) + noise (masking sound) ⇒
 threshold of detectability is elevated
 - \Rightarrow signal must be > threshold to detect signal
- Using filters ⇒ noise removed ⇒ ↑ detectability, SNR
 ⇒ more audible sound

- Relative Discrimination of Auditory Signals
 - Relative discrimination of signals on basis of
 - intensity
 - frequency
 - A common measure of discriminability: just-noticeable difference (JND):
 - JND: "the smallest difference or change along a stimulus dimension (frequency, intensity) that can just be detected 50% of the time by people."
 - The smaller the JND, the easier it is for people to detect differences on the dimension being changed.
 - Small JND \Rightarrow subjects could detect small changes
 - Large JND \Rightarrow large change necessary before noticing change

Absolute Identification

- This is used when it is necessary to make an absolute identification of an individual stimulus (by itself)
- e.g. identify
 - someone's pitch/frequency
 - specific animal/bird
 - certain car siren/honk tone
 - Sound durations
- Number of levels along a continuum (range or scale) that can identified usually is quiet small
- It is better to use more dimensions with fewer steps or levels of each dimension, than to use fewer dimensions and more levels of each

Localization

- Stereophony: "the ability to localize (guess/predict) the direction from which the sound is emanating (coming from)"
- Primary factors/cues used to determine direction
 - intensity of sound
 - phase (lag) of sound
 - e.g. if sound reaches directly one side of head first, sound reaches the nearer ear approx. 0.8 ms before other ear ⇒ localizing sounds below 1500 Hz
 - For frequencies > 3000 Hz, intensity is used to localize sound (e.g. try to gradually increase volume in one speaker and decrease volume in opposite speaker)

Sounds between 1500-3000 Hz: hard to localize

- Special purpose auditory displays:
 - Warning and alarm signals
 - Each signal having preferred frequency, intensity
 - Each causing certain "attention-getting" and "noisepenetration" ability
 - Aids for the blind
 - Mobility aids (go-no-go safety signals at certain distance)
 - Environmental sensors (information about surrounding, e.g. surface characteristics, directional information, distance)

Noise

Noise ≡

- "Unwanted sound"
- Information theory: "auditory stimulus of stimuli bearing no informational relationship to the presence or completion of the immediate task"

Effects of noise

- Hearing loss (e.g. occupational hearing loss)
- Temporary loss, permanent loss
- Physiological effects
- Psychological effects

References

- Human Capabilities Hearing
 - Human Factors in Engineering and Design. Mark
 S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.
 - Slides by: Dr. Khaled Al-Saleh; online at: http://faculty.ksu.edu.sa/alsaleh/default.aspx

