

• Solubility All organic	halides are	insoluble in wate	r and soluble i	n common organic	c solvents (benzene, ether,
 Boiling poil Within a 	<mark>ints</mark> series of ha	lides, the boiling	points increas	e with increasing r	nolecular weights.
	Therefor	e, the boiling poir	nts in <mark>crease</mark> in	the order F < Cl <	Br < I.
		CH ₃ F	CH ₃ CI	CH ₃ Br	CH ₃ I
	Mol Wt = bp =	34 -78ºC	50.5 -24 ℃	95 4 °C	142 42°C
 Within a l 	homologou	CH ₃ Cl (bp = -24°C)	ng points also CH ₃ CH ₂ Cl (bp = 12°C)	CH ₃ CH ₂ CH ₂ CH ₂ CI (bp = 47°C)	with molecular weights.
 Within a most brain 	series of is nched isom	omers, the straiger the lowest boil	ght-chain com ing point.	pound has the hi	ghest boiling point, and th
		CH3CH2	₂ CH ₂ CH ₂ Br H ₃ C	CH ₃ -C-CH ₂ Br CH ₃	

	and the second secon	· /\/		
React	ions of Common	Nucleophiles	with Alkyl Halides	
Nu		-	R—Nu	
Formula	Name	Formula	Name	Comments
Sulfur nucleophiles				
10. нз:-	hydrosulfide	R—SH	thiol	
11. RS:-	mercaptide	R—SR	thioether (sulfide)	
12. R ₂ S:	thioether	$R - \dot{S}R_2$	trialkylsulfonium ion	
Halogen nucleophile	s			
13. : ::	iodide	R—İ:	alkyl iodide	The usual solvent is acetone. Sodium iodide is soluble in acetone, but sodium bromide and sodium chloride are not.
Carbon nucleophiles				
14. ⁻ :C≡N:	cyanide	R—C≡N:	alkyl cyanide (nitrile)	Sometimes the isonitrile,

Nucleophilic substitution (S_N) reactions

The S_N^1 and S_N^2 Mechanisms Compared

- Class of Alkyl halide;
 - Primary halides almost always react by the S_N2 mechanism
 - Tertiary halides react by the $S_N 1$ mechanism.
 - Only with secondary halides are we likely to encounter both possibilities.

o Solvent polarity.

- Polar protic solvents (Water and alcohols) (proton-donating).
 - > The rate of $S_N 1$ processes is enhanced by polar solvents. The first step of the $S_N 1$ mechanism involves the formation of ions and polar solvents can solvate ions.
 - > S_N^2 reactions, are usually retarded by polar protic solvents. solvation of nucleophiles ties up their unshared electron pairs.
- Polar but aprotic solvents (acetone, dimethyl sulfoxide, (CH₃)₂S=0, DMF)
 - > These solvents accelerate S_N^2 reactions because, by solvating the cation (say, K⁺ in K⁺⁻CN), they leave the anion more "naked" or unsolvated, thus improving its nucleophilicity.

and S _N ² Mechanisms Compared									
Comparison of S _N 2 and S _N 1 Substitutions									
Variables	S _N 2	S _N 1							
Halide structure									
Primary or CH ₃	Common	Rarely*							
Secondary	Sometimes	Sometimes							
Tertiary	Rarely	Common							
Stereochemistry	Inversion	Racemization							
Solvent	Rate is retarded by polar protic solvents and increased by polar aprotic solvents	Because the intermedi- ates are ions, the rate is increased by polar solvents							
Nucleophile	Rate depends on nucleophile con- centration; mechanism is favored when the nucleophile is an anion	Rate is independent of nucleophile concen- tration; mechanism is more likely with neutral nucleophiles							

Elimination (E) reactions

E1 Mechanism

- \circ Like the S_N2 mechanism, the **E1 mechanism** is a two-step process.
- $_{\rm O}$ The first step as the S $_{\rm N}1$ mechanism, the slow and rate-determining ionization of the substrate to give a carbocation

- o The second step; Two reactions are then possible for the carbocation.
 - It may combine with a nucleophile (the S_N1 process).
 - or it may lose a proton from a carbon atom adjacent to the positive carbon, to give an alkene (the F¹ process)

2 ohamed El-News

