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Introduction

This book is a summary of working on advanced integrations for around four years. It collects many
examples that I gathered during that period. The approaches taken to solve the integrals aren’t neces-
sarily the only and best methods but they are offered for the sake of explaining the topic. Most of the
content of this book I already wrote on mathhelpboards.com during the past three years but I thought
that publishing it using a pdf would be easier to read and distribute. The motivation behind this book is
to allow those who are interested in solving complicated integrals to be able to use the different methods
to solve them efficiently. When I started learning about these techniques I would suffer to get enough
information about all the required approaches so I tried to collect every thing in just one book. You are
free to distribute this book and use any of the methods to solve the integrals or use the same techniques.
The methods used are not necessarily new or ground-breaking but as I said they introduce the concept
as easy as possible.

To follow this book you have to be know the basic integration techniques like integration by parts, by
substitution and by partial fractions. I don’t assume that the readers know any other stuff from any
other topics or advanced courses from mathematics. Usually the details that require deep knowledge of
analysis or advanced topics are left or just touched upon lightly to give the reader some hints but not
going into details.

After reading this book you should be able to solve many advanced integrals that you might face
in engineering courses. I hope you enjoy reading this book and if you have any suggestions, com-
ments or correction I will be happy to recieve them through my email mailto:alyafey22@gmail.com
or this email mailto:alyafey_22@hotmail.com. Also I am avilable as a staff member at http://www.

mathhelpboards. com if you have some questions that I could reply to you directly using Latex.
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1 Differentiation under the integral sign

This is one of the most commonly used techniques to solve a numerous number of questions.

Assume that we have the following function of two variables

fab f(x,y)dx

Then we can differentiate with respect to y provided that f is continuous and has a partial continuous

derivative on a chosen interval

b
Fiy)= [ fy)de
Now using this in many problems is not that clear you have to think a lot to get the required answer

because many integrals are usually in one variable so you need to introduce the second variable and

assume it is a function of two variables.

1.1 Example

Assume we want to solve the following integral

1 22 _
/ x4 -1 o
o log(x)

That seems very difficult to solve but using this technique we can solve it easily. The crux move is to

decide where to put the second variable! So the problem with the integral is that we have a logarithm
in the denominator which makes the problem so difficult to tackle! Remember that we can get a natural
logarithm if we differentiate exponential functions i.e F((a) = 2* = F’(a) =log(a) - 2*

Applying this to our problem

Loge—1
F(a) = /o o (2) dx

Now we take the partial derivative with respect to a

Lo [fx%-1 1 1
Fay=[ < d = @y =
(a) /0 da (log(x)) v fo T

Integrate with respect to a

F(a)=log(a+1)+C

10



To find the value of the constant puta =0

F(0)=1log(1)+C = C=0

This implies that

Lgt—1
——dzx=1 1
fo log(z) x=log(a+1)

By this powerful method we were not only able to solve the integral we also found a general formula for

some a where the function is differentiable in the second variable.

To solve our original integral put a = 2

g2 -1
/ dx =log(2+1) =1log(3)
o log(x)

1.2 Example
Find the following integral

7
[ ’ dzr
0 tanx

So where do we put the variable a here? that doesn’t seem to be straight forward , how do we proceed ?

Let us try the following

_ (% arctan(atan(x))
Fla)= ./0 tan(z) da

Now differentiate with respect to a

3 1

F@= [ e

It can be proved that

3 1 ™
fo 1+ (atan(z))? do = 2(1+a)

Now Integrate both sides

F(a) = glog(l +a)+C

Substitute a =0 to find C' =0

11



[0 % arctan(atan(z))

T
= T log(1
tan(z) dx 5 og(1l+a)

Put a = 1 in order to get our original integral

™

T ™
= —log(2
/(; tan(x) de 2 0g(2)

1.3 Example

/“"’ sin(z) d
0 x

This problem can be solved by many ways , but here we will try to solve it by differentiation. So as I
showed in the previous examples it is generally not easy to find the function to differentiate. Actually
this step might require trial and error techniques until we get the desired result, so don’t just give up if
an approach doesn’t work!

Let us try this one

F(a):/(;oo%dx

If we differentiated with respect to a we would get the following

F'(a) = fooo cos(ax) dx

But unfortunately this integral doesn’t converge, so this is not the correct one. Actually, the previous
theorem will not work here because the integral is improper.

So let us try the following

X

F(a):fo‘” sin(xx)e_a i

Take the derivative
F'(a)=- [ sin(z)e " dx
0
Use integration by parts twice

-1
a?+1

F'(a)=- /(;oo sin(z)e™** dx =

Integrate both sides

12



F(a) = —arctan(a) + C

To find the value of the constant take the limit as a grows large

C = lim F(a) + arctan(a) = g

So we get our F'(a) as the following

F(a) = —arctan(a) + g

For a = 0 we have

f°° sin(z) _ m
0 r 2

13



2 Laplace Transform

2.1 Basic Introduction

Laplace transform is a powerful integral transform. It can be used in many applications. For example, it
can be used to solve Differential Equations and its rules can be used to solve integration problems.

The basic definition of Laplace transform

F(s)=£((0) = [~ e f @t

This integral will converge when

Re(s) >a, |f(t)] < Me™

Let us see the Laplace transform for some functions

2.1.1 Example

Find the Laplace transform of the following functions

1 f(t) =1

oo 1
F(s):f e Stdt = -
0

s
2. For f(t) =t" wheren >0

We can prove using integration by parts

o0 |
_ —styn _ n:
F(s)= /0 e 't dt = e

3. For the geometric function f(t) = cos(at), Use integration by parts

S

F(s) = fooo e %t cos(at) dt =

52 +a?

14



2.2 Example

Find the following integral

f e~ 23 dt
0

We can directly use the formula in the previous example

oo |
—-styn _ n.
/0 e 't dt = vy

Here we have s=2and n =3

o .. 313
—2t,3 _ _
/0 el = o5y )

2.3 Convolution

Define the following integral

(Fr)®)= [ F(s)ate-s)ds

Then we have the following

L(f*g)(#)) = L{f(1))L(g(1))

2.4 Inverse Laplace transform

So, basically you are given F'(s) and we want to get f(¢) this is denoted by

L(f(t)) =F(s) = LT(F(s))=f(t)

24.1 Example

Find the inverse Laplace transform of

1. F(s)=%

We use the results applied previously

2! 1 1
L(t?) = 5 = 55(152) o=

15



Now take the inverse to both sides

2. F(s)==

s2+4

we can use the Laplace of cosine to deduce

cos(2t) = L£7* ( i )

s2+4
Exercises

Find the Laplace transform

Find the inverse Laplace

2.5 Interesting results
2.5.1 Example

Prove the following

B(z,y) = foltr‘l (1-t)¥ ' dt = m

B is the Beta function and T' is the Gamma function. We will take enough time and examples to explain both

functions in the next sections.

proof
We need convolution rule we described earlier

Let us choose some functions f and ¢

f@)=t",g(t) =t

Hence we get

(t* = t¥) = /:sm(t— s)¥ds

So by the convolution rule we have the following

16



L7 % 1Y) = L(t")L(Y)

We can now use the Laplace of the power

x!-y!
STHY+2

GETOE

Notice that we need to find the inverse of Laplace £7!

-1 z 4yy\y - -l m!'y!):x+y+1 x!-y!
L)) =L (sm+y+2 t (x+y+1)!

So we have the following

x!-y!

tﬂc ty :tgc+y+1
(7= #) (x+y+1)!

By definition we have

o _EU__ [,
(z+y+1)! Jo

Now put t =1 we get

x!-y!

1
g - -Tl_ Yy
(z+y+1)! fo s*(1-s)"ds

By using that n! = I'(n + 1) we deduce that

C(z+1)T(y+1)

1
x 1_ Yy —
/(; s(1-s)"ds (z+y+2)

which can be written as

! -1 y-1 _ F(.I‘)F(y)
/0 sTTH(1-s) ds_il—‘(x+y)

2.5.2 Example

Prove the following

fj@dt: fow LOF(1)) ds

proof

we know from the definition

17



fom LOF(8))ds = fom (foooe‘“f(t)dt) ds

Now by the Fubini theorem we can rearrange the double integral

fom f(t)(fome‘“ ds) dt

The integral inside the parenthesis

b 1
f e Stds ==
0 t

Now substitute this value in the integral

2.5.3 Example

Find the following integral

/°° sin(t) it
0 t

This is not the first time we see this integral and not the last . We have seen that we can find it using
differentiation under the integral sign.

Let us use the previous example

A ” Smt(t) at= " L(sin(t)) ds

We can prove that

1
s2+1

L(sin(t)) =

Substitute in our integral

= ds -1 -1 7T
=tan "(S)|s=eo —tan " (s)|s=0 = =
s =t ), ()0 = 5

18



3 Gamma Function

The gamma function is used to solve many interesting integrals, here we try to define some basic prop-

erties, prove some of them and take some examples.

3.1 Definition

M(z+1)= f ettt dt
0

For the first glance that just looks like the Laplace Transform, actually they are closely related.

So let us for simplicity assume that x = n where n > 0 (is an integer )

P(n+1)= [ et dt
0

We can use the Laplace transform

oo n!
[ et = ——|e1 =n!
0 8n+1

So we see that there is a relation between the gamma function and the factorial. We will assume for the

time being that the gamma function is defined as the following

n!=T(n+1)

This definition is somehow limited but it will be soon replaced by a stronger one.

3.2 Example

Find the following integrals

f ettt dt
0

By definition this can be replaced by

f e ttdt=T(4+1)=41=24
0

19



3.3 Example

Solving the following integrals

1.
f e tdt
0
We need a substitution before we go ahead, so let us start by putting « = ¢ so the integral becomes
1 bt 1 1 1 1
f[ efr2-x 2dt==-T(1+0)==
2Jo 2 2
2.

1
f log(t) t? dt
0

we use the substitution ¢ = e~ 2

1 9 1 o 4.
f log(t) ¢ dt:—ff e 2 ~xdx
0 4 Jo

Using another substitution ¢ = 3£

-1 o — —
Y A C)
9 Jo 9 9

It is an important thing to get used to the symbol I'. I am sure that you are saying that this seems
elementary, but my main aim here is to let you practice the new symbol and get used to solving some

problems using it.
3.4 Exercises
Prove that

r(5) T(2) 1

T(7) 30

Find the following integral

/oo e 50t 120 gt
0

20



3.5 Extension

For simplicity we assumed that the gamma function only works for positive integers. This definition
was so helpful as we assumed the relation between gamma and factorial. Actually, this restricts the
gamma function, we want to exploit the real strength of this function. Hence, we must extend the gamma
function to work for all real numbers except for some values. Actually we will see soon that we can

extend it to work for all complex numbers except where the function has poles.

3.5.1 Theorem

Using the integral representation we can extend the gamma function to x > —1.

proof

We need only consider the case when -1 < z < 0.

Near infinity we have the following

U et dt
0

Near zero when z = —z we have the following

< f e~tdt < 0o
€

~t

€ €

1

f e—dt~f Zdt < 0o
0o t* 0o t?

3.5.2 Reduction formula
P(z+1)=al(x)

This can be proved through integration by parts for > 0. Actually this representation allows us to
extend the gamma function for all real numbers for non-negative integers. In terms of complex analysis

this function is analytic except at non-positive integers where it has poles.

3.6 Other Representations

3.6.1 Euler Representation

proof
Note that

F(z+n+1):F(z+1)ﬁ(k+z)
k=1

21



Which indicates that

n +Z:I‘(z+n+1)
== 7200

Also note that

Hk:n!

k=1

Hence we have

z n k 2 |
n “T(2) lim —
noeo z p i k+2z noco I'(z4+n+1)

Hence we must show that

n® x n!

lim 1

noeo I'(z+n+1) B

Note that by Stirling formula

D(z+n+1) ~V2r(n+z)"=1/2e(n+2)

and

n! ~\2mn 2o

Hence we have by

n? x ( 2ﬂ_nn+1/2e—n) n

lim = lim i

n—>00 | /271'(77, + Z)n+z+1/26—(n+z) B n— oo (n + Z)ne—z

Note that
lim (1 + i) =e”

n—00 n

To prove the other product formula note that

n z n z
(1_,_1) — szln(1+k) :(n+1)anz
k=1 k [Tj-1 k*

Hence we deduce

22



3.6.2 Example

Prove that
F(:EJ'_Z)F(y_Z) k=0 -'17+k/’ y+k‘
proof
Start by
Z n k
I'(z) = lim —
We have
rere) o CE Tl ) (5 e 2y)
F(JH—Z)F(y—z) e (7;:: HZ:I k+§+z)( y’/: Hk 1 k+lzj z)

By simplifications we have

I'(x)T(y) - lim (x+2)(y-2) ﬁ (k+z+2)(k+y-2)
T(x+2)T(y-2) n-oo Ty i} (k+z)(k+y)

This simplifies to

oo 0w Bl =) (55

3.6.3 Weierstrass Representation

BN (TR

n=1

where ~ is the Euler constant

proof

Take logarithm to the Euler representation

log 2T'(2) = hm z Z (log (1 + k) —log(k)) — Z log(l + k)

=1

Note the alternating sum

ki (log (1 + k) —log(k)) = log(n + 1)

Hence we have

23



log 2I'(2) = lim zlog(n+1) - log (1 + %)

Now we can use the harmonic numbers

L |
H,= > —
Add and subtract zH,, 1
log 2I'(2) = lim zlog(n+1) - zH, +i lo (1+Z)_1+Z + =
g R P2 A S B

The last term goes to zero and by definition we have the Euler constant

v = lim H, -log(n)

Hence the first term is the Euler constant

oo -1
log 2I'(z) = -2y + Zlog(1+i) + 2
k=1 k k

By taking the exponent of both sides

oo -1
2D(z) =% ] (1 + E) e
k=1 k
3.7 Laurent expansion

1 1

D(2) = - =7+ 5 (0% +((2)z+ O()

proof

Note that f(z) =I'(z + 1) has a Maclurain expansion near 0

I(z+1)= i Lk)(l)zk

k=0 k"

For the first term

F0)=T(1+0)=1

For the second term

24




To find the derivative, note that by the Weierstrass representation

o -1
logT'(2) = —vz—log(z) + Zlog(l+f) + 2
n

n=1 n

By taking the derivaive we have

I(z) 1 &1
(=) ‘_7_2+Z,;k(z+k)

Hence we have
b 1
'l)=-vy-1+) ——=-y-1+1=-
(1)=— ,;k(uk) v ¥

For the third term

£7(0) _T(1)
2! 2

Taking the second derivative

I"(z)0(2) - (I"(2))* _ 1 .
I'2(z) 22 D (z+k)?

Which indicates that

(1) = () 1+ 3 i =77+ 02)

Hence we deduce that

P(z+1)=1-yz+ %(72 £ C2)2+ 0(%)

Dividing by z we get our result.

3.8 Example

Find the integral

oo -t
_at

0 Vi

Now according to our definition this is equal to I' () but this value can be represented using elementary
functions as follows

Let us first make a substitution vt =

2 f e dz
0
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Now to find this integral we need to do a simple trick, start by the following

(fom e*fdz) :(fow e*fdz)-(fowe*fzdx)

Since z is a dummy variable we can put

o) (o)

Now since they are two independent variables we can do the following

/Mfoo 67(m2+y2)dydz
o Jo

2

Now by polar substitution we get

5 & 2
f f e rdrdf
o Jo

The inner integral is %, hence we get

c%
[NE]
N |~
QU
D
I
1

So we have

Take the square root to both sides

So we have our result

3.9 More values

We can use the reduction formula and the value of I'(1/2) to deduce other values. Assume that we want

to find
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If we used this property we get

o(reg)-5r(e) -

Not all the time the result will be reduced to a simpler form as the previous example. For example we

don’t know how to express I'( i) in a simpler form but we can approximate its value

1
I'{-)~3.6256--
(3)

Hence we just solve some integrals in terms of gamma function since we don’t know a simpler form.

For example solve the integral

f e ‘t1dt
0

we know by definition of gamma function that this reduces to

oo . r(i
f e 'ti dt:r(§) = (%)
0 4 4

We have seen that I' (%) = /7 but what about T (‘71) ?

By the reduction formula

so we have that

Then we can prove that any fraction where the denominator equals to 2 and the numerator is odd can be

reduced into

1“(2”;1):01“(%) L CeQ,neZ
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3.10 Legendre Duplication Formula

I‘(1 +n) = (Qn)!ﬁ

2 © 4np)

proof

For the proof we use induction by assuming n > 0. If n = 0 we have our basic identity

Now we need to prove that

R e (R R et

Now we use the reduction formula

F(1+n+1): 1+2n1“(1+n)
2 2 2

By the inductive step we have

1 !
+2nI‘(1+n) _1+2n (2n)
2 2 2 4nn!

VT

We can multiply and divide by 2n + 2

1+2n (2n)! 2n +2 (2n +2)!
. I =
2 4nn) 2n+2 47*l(n+1)!

VT

3.11 Example

o ¢t cosh(av/t)
[,

we have a hyperbolic function

We know that we can expand cosh using power series

=) ‘,L.Zn
cosh(z) = nz=0 ).
Let = a\/t
cosh(av/t) = i a1
_n=0 (27’L)'

Substituting back in the integral we have
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f oo . i 2n tn
o
0 n=0 (271)' \/_
Now since the series is always positive we can swap the integral and the series

2n

> (;n)! Uo i e_tt”_%dt]

n=0

Hence we have by using the gamma function

n=0 (27L')

By further simplification

n=0 47 n!
Now that looks familiar since we know that
[e'e) Z'rL
>
n=0 n'

Putting z = “4—2 and multiplying by /7 we get

w (22)"
4 a2
Z = 64

n=0

So we have finally that

o ¢~ cosh(av/t) a2
————2dt = \/me' T
b= v

3.12 Euler’s Reflection Formula

P()T(1-2)= —— V2¢Z

sin (72)
proof

We have to use the sine infinite product formula

12 2\
sm(7rz) T2 [l ( )

n=1
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Now we start by noting that

L(2)T(1-2) =-20(2)T'(-2)

Now using the Weierstrass formula we have

T(T(-2) =2 S]] (1 . z)'lez/n, 1 (1 _ Z)_lez/n

n=1

This simplifies to

3.13 Example

Find the following

The first example we can write

r(-3)r ()

Now by ERF (Euler reflection formula) we have the following

o))

()

Using the same idea for the second one

SR

This expression simplifies to




By geometry to hyperbolic conversions we get

— & rsech ( z )
cosh ( 5 ) 2
3.14 Example
Find the integral
a+1
f logT'(z)dx
Let the following

fla) = faa+1 logT'(z)dx

Differentiate both sides

f'(a) =1logT(1 +a) —logT'(a) = log(a)

Integrate both sides

fla)=alog(a) —a+C

Leta—0

We have

1
C=[ logT'(z) dx
0

By the reflection formula

1 1 1 1
f logT'(z) dx = f logdx - f logsin(wx) dx - [ logT(1-x)dx
0 0 0 0

Which implies that
1 1 1 1
2 f logT(z) dx = f logdx - [ logsin(mx) dx = log(2m) — f log |2 sin(7z)| dx
0 0 0 0
Note that this is the Clausen Integral

1 2 2 2
f log |2sin(7x)|dx = — [ log |2sin(xz/2)|dx = —cla(27) =0
0 0 T

s
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Hence we finalize by

1
f logT(z) dx = %log(27r)
0
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4 Beta Function

4.1 Representations

4.1.1 First integral formula

1
f #1(1= ) dt = B(z,y)
0

It is related to the gamma function through the identity

I'(z)I'(y)

B(‘Tvy) = F(x+y)

We have proved this identity earlier when we discussed convolution.

We shall realize the symmetry of beta function that is to say

6(‘T7y) = 6(y7$)

Beta function has many other representations all can be deduced through substitutions

4.1.2 Second integral formula
0o tr—l
B(z,y) = f —dt
(.y) 0o (1+t)z+y
4.1.3 Geometric representation

B(x,y) =2 /E cos® 1 (¢) sin® ! (¢) dt
0

The proofs are left to the reader as practice.

4.2 Example

Prove the following

1
f dz:z
0 22+1 2

proof
Putz =/t

1 o t3
—f *at
2Jo t+1
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We can use the second integral representation by finding the values of z and y

Hence we have

1> t2 dt_B(%é)_F(%)F(%)_ﬁ-ﬁ_z
2Jo (t+1) 2 2 2 2

4.3 Example

o0 1
—d
fo (22+1)2 ?

Using the same substitution as the previous example we get

1 e t7
- LA
2Jo (t+1)2

Then we can find the values of = and y

-1 1
r-1=— = x=—
2 2
rT+y=2 = y=—
Then
1= i BGH TAHTE) _TAIE)
2Jo (t+1)2 2 2 4 4

44 Example

Find the generalization

Using the same substitution again

1 e t7
= dt
2Jo (t+1)»
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Then we can find the values of z and y

1
x+y—n:>y—n—§
Then
L= t7 . TG T(n-3)
2Jo (t+1)n 2r'(n)
Now by LDF

F(n 1)_ 2n-2)\/m T(2n-1)\/7

“2) AnT(n-1)! 47 1T(n)

Substituting in our integral we have the following

1~ t3 i 2m T n-1)
2Jo (t+1)»  4n.T2(n)

foo L, _mT@n-1)
o (@2+1)n 2211 .T2(p)

It is easy to see that for n € Z* we get a 7 multiplied by some rational number.

4.5 Example

Lozn B (2n)N
JA A= @ur

Where the double factorial !! is defined as the following

n-(n-2)-5-3-1 ;if nis odd
nll = n-(n-2)-6-4-2 ;if niseven
1 ;ifn=0

The integral in hand can be rewritten as

1 1
/ 2" (1-2)"2dz
0

We find the variables x and y
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r—1=n => z=n+1

This can be written as

1 1
f z"-(l—z)_Edz:B(n+1,1)
0 2

By some simplifications

1\ T'(3)T(n+1)  /al(n+1)
B(””’ﬁ)‘ 1“2( 5 " () (n+d)

Now you shall realize that we must use LDF

Val(n+1) 2./ n! _2.227(nl)?
(n+DP(n+1) " @n+Dya 2~ (2n)

4n !

Now we should separate odd and even terms in the denominator

22“( (n 1)---3-2-1)2
(2n 2n-2)-4-2)((2n+1)-(2n-1)---3-1)

We insert 22" into the square to obtain

(2n-(2n-2)---6-4-2)2 9 (2n)!!

2 (2n-(2n-2)4-2)((2n+1)-(2n-1)-3-1) ~ (2n+ 1)

4.6 Example

Find the following integral

0o 2 \"%
[ (1+ $ ) dx
—o0 n — 1

First we shall realize the evenness of the integral

oo 2
2/ (1+ x
0 n-—

Lett= ‘E—ZI
poun

\
&



Now we see that our integral becomes so familiar

\/ﬁB(l n—l):\/mF("El)

2’2 ()
4.7 Example

Find the following integral

o -p
f 33 dz
o x3+1

Let us do the substitution > = ¢

2
1 © tT
- dt
3fo t+1

Now we should find z,y

1=
y+r=1 = yzl—?p

so we have our beta representation of the integral

B(5 %) _r(E)ra-5°)

w
w

Now we should use ERF

4.8 Example

Now let us try to find

5 3
sin® z dz
0

Rewrite as

% . 3 0
sin2 z cos” zdx
0
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This is the Geometric representation

Then

4.9 Example

Find the following integral

This is the geometric representation

Then

4.10 Exercise

Prove

f§(sinz)i (cosz) " dz
0

1+2

2-1=1 = x=—
2

2u-1=—1 = y=

(\}

()5

x2m+1

m!(n-m-2)!

b

ax? +c)"

T = 2(n - 1)l gm+1 gn-m-1
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5 Digamma function

5.1 Definition

I(z)
INC))

P(x) =

We call digamma function the logarithmic derivative of the gamma function. Using this we can define

the derivative of the gamma function.

I'(z) = ¢(z) I'(x)

5.2 Example

Find the derivative of

RRICED

We can use the differentiation rule for quotients

IV 2z + V)T(x) - T'(2)T'(2z + 1)
I2(x)

which can be rewritten as

2I'(2z + 1)Y(2z + 1)I'(z) = ¢(2)l'(2)I'(2z +1)  T'(2z+1)
I2(x) - I(2)

(29(2z +1) - ¢(x))

5.3 Difference formulas

5.3.1 First difference formula
(1 -2)—y(x) = weot(mwz)
proof
We know by ERF that
I'(z)T'(1-x) = 7ese(mz)

Now differentiate both sides
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Y(x)T(2)I(1-2z) - (1 -2)D(2)T(1 - z) = -7 cse(mx) cot(mz)

Which can be simplified

L(z)L(1-2) (¥(1-2z)-9(x)) =72 cse(mz) cot(mz)

Further simplifications using ERF results in

Y(1-x)—(x) =7cot(mwz)

5.3.2 Second difference formula
1
Y+ a) - (o) =

proof
Let us start by the following

r(l+z)
P(z)
Now differentiate both sides
I'(l1+x) B
Which simplifies to
_ @) _1
¢(1+x)_w(x) - F(l"’l‘) - T
5.4 Example
Find the following integral
= log(s)

o (1L+a2)2

Consider the general case

[ l,tl
T 4
,A (1+22)2 "

Use the following substitution 22 = ¢
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1 oo %
h f o
2Jo (1+1)2

By the beta function this is equivalent to

1 = t°% 1
7/ tizdt:7B(a+172_a+1):lr(a+1)r(2_a+1)
2Jo (L+t)? 2 2 2 2 2 2

Differentiate with respect to a

=1 A i () () o (-

Now puta =0

foo log(t)t= 1
=-T
4 (1+t)2 4

Now we use our second difference formula

(-4 )ele-)-2)-

Also by some gamma manipulation we have

GGG 6]

The integral reduces to

/“"’log(t)t2 po T
4 1+t)2 4
Putting 2 = t we have our result
< ]
og(z) , .7
0o (1+a2)2 4

5.5 Series Representation

¢(w)=—v—i+i -

& n(n+a)

proof

We start by taking the logarithm of the Weierstrass representation of the gamma function

log (T'(z)) = —va - log(x) + i —log(l + %) + %

n=1

41




Now we shall differentiate with respect to

w($)=—v—l+
X

It
—_
+3‘
38
+
S

Further simplification will result in the following

1
@/}(z):—'y—; +7;n(n+x)

5.6 Some Values

Find the values of

1. (1)
b(1)=—y—14 5
- n=1 TL(TL + 1)
It should be easy to prove that
i 1
=1
nzzzl n(n+1)
Hence we have
P(1) = -y
2.9 (3)
1 >, 1
w(ﬁ)__7 -2 +,;n(2n+1)
We need to find
s 1
nZ::l n(2n+1)

We can start by

> x—:—log(l—x)
n

So we can prove easily that
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M8

—— =2-2log(2
‘n(2n+1) og(2)

n

Hence

v(3) = - 2108

5.7 Example

Prove that

1 1 1

/ +——dr =7y
o log(z) 1-=z
proof
Letz=et
oo 1 -t
[ S a
o et-1 t

Let the following

F(s) = fooo ett

T ttetdt = C(s+ DT (s + 1) - I'(s)

Hence the limit

£i£%F(s+1)(§(s+ 1)- %) = lim (s +1) _é

Use the expansion of the zeta function

C(s+1) = 7+Z ( s)"

Hence the limit is equal to vy = 7.

5.8 Integral representations

5.8.1 First Integral representation

(a) = /“ez (1+z)“

We begin with the double integral
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oo t 00 7% _ e—tz
f f e drdz = [ ——dz
0 1 0 z

Using fubini theorem we also have

t oo t 1
f / e **dzdr = f —dx =logt
1 Jo 1 x

Hence we have the following

oo z _ -tz
/ € 7° gz- log(t)
0 z

We also know that

IM(a) = _/0 t" et logtdt

Hence we have

0o 00 p,—% _ otz oo oo ta—l -t -z _ ta—l —t(z+1)
I(a) = f palemt (f e e dz) dt = f f ¢ ¢ ¢ dz dt
0 0 2 o Jo 2

Now we can use the fubini theorem

oo oo ta—l -t -z _ ta—l —t(z+1)
I'(a) = f f ¢ c ¢ dtdz
0 0

z

/ _ 1 -z a-1_—t a—1_-t(z+1)
I ( = - —
a) f (e f 1 et dt [ " e dt) dz
0o =z 0 0

But we can easily deduce using Laplace that

[ 177t g = T(a) (2 + 1)
0

Aslo we have

f t* et dt =T(a)
0

Hence we can simplify our integral to the following

I'(a) =T(a) fow Mdz

z

I(a) et -(1+2)
I'(a) la) = fo z dz
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5.8.2 Second Integral representation

1
1

11— 2%
1) = - d
P(s+1) 'y+f0 s
proof

This can be done by noting that

[}

S
AP R TCEn)

It is left as an exercise to prove that

(o] 11 _ S
Z s 1acdx

Zin(n+s) “Jo 1-z

5.8.3 Third Integral representation

0o ot e—(at)
- [ S - dt
b= [

1-et

proof

Letet =z

1 1 ot
[ - S
o log(z) 1-=z

By adding and subtracting 1

1o 1 1] - gt
—/ +—dm+/ 1=z dx
o log(z) 1-=z o l-xz

Using the second integral representation

L1 1 d (a)
_/0 log(x)+1—x vy +yla

We have already proved that

fl ! +idx—
o log(z) 1-xz -7

Finally we get

-t

® e e~ (at) B B
fo T—th-—7+7+¢(a)-¢(a)
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5.8.4 Fourth Integral representation

Prove that

1 oo
¥(z) =log(z) - % _2fo G +z2)t(e27f - 1)dt : Rez>0

We prove that

o0 t 1
2 [ sy i oe(x) — 5 v

First note that

m = COth(Tf—t) - ].
Also note that
1 2t & 1
coth(nt) = —+ — ) ——
(mt) Tt w kz::lk‘2+t2
Hence we conclude that
26 1 2t2 i 1
et -1 1 T fo k? e+t

Substitute the value in the integral

e 1 1 2t2 & 1
B TR .
[0 t2+z2{7r ™ kz_:lk;2+t2}

The first integral

L L
rdo #2+22 2

Since the second integral is divergent we put

[N;dt—llo (N? + 22) —log(2)
o 2+20 28 &

Also for the series

2 & e t? 31
= at=3.
migJo (124 22) (82 + k2) ok+z

Which simplifies to
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Now take the limit

: 1 2, .2 g Z
1\1[1£2°_§10g(N +2°) +log(2) +HN—kZ::1m
Or
Jim Hy - log(N) +log(z) - Z k(k )

This simplifies to

1 Z-

o8(:) 41~ 3 s <los() -~ (2)
Collecting the results we have

t

1 1 1
(12 + 22) (e2™ - 1)dt =log(z) + 2 o ¥(z) =log(z2) - 5 ¥(z)

59 Gauss Digamma theorem

Let p/q be a rational number with 0 < p < ¢ then

w(g)— 10g(2q)—fcot( )+2q/§1 os(

o)l ()]

proof
The proof is omitted.

5.10 More results

Assume that p = 1 and ¢ > 1 is an integer then

1/1(3) = ——log(2q) - gcot (g) + zq/ilcos(ng)log [sm(%k)]

So for example
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" (é) = %(—67—#\/5— 9log(3))
" (i) = %(—27—7r—610g(2))

) (1) =—y- %\/gﬂ'— 2log(2) - glog(i’))

511 Example

Find the following integral

f e " log(t) dt
0

We start by considering

F(b) = f e b at
0

Now use the substitution = = at we get

Fw= e (7)o

We can use the gamma function

- [ (2 a0

a

Now differentiate with respect to b

by = fo‘”e—x 1Og(£) (w)b - DO Db +1) log(a)l(b+1)

a a a ab+1 ab+1

Now putb=0and at =z

fo“’ e log(1) df = $(1) —alog(a) __ot 1Zg(a)

5.12 Example

Prove the following

1(1—x“)(1—xb)(l—x‘:)d 1 { T(b+c+ )T (c+a+1)(a+b+1)
0 (1-2)(-logx) v Fla+ DT+ DI(c+1)T(a+b+c+ 1)}

proof
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First note that since there is a log in the denominator that gives as an idea to use differentiation under
the integral sign.

Let

ot (1-2%)(1-2b)(1-2z°)
F(C)‘fo o) loga)  °

Differentiate with respect to c

N (1-2%)(1-zb)ze
F'(c) = —/0 - dz

By expanding

F( ) f — % — +xa+b)x o = fl € — potc _ gpbtc 4 xa+b+cdx
(1-2) 0 1-2)

We can add and subtract one to use the second integral representation

I _ ! (xc - 1) + (1 - a:‘“c) + (1 - xb"'c) + (xa+b+c _ 1)
F (C) N »/0 (1 _ x) da:

Distribute the integral over the terms

11— g€ 11 = pate 11 = pbte 11 — pa+tb+c
F,(C):—f i da:+f x da:+[ i dx_f - dx
0o 1-=z o 1l-=xz o 1-=z 0 1-=z

Which simplifies to

F'(e)=-yY(c+1)+y(a+c+1)+p(b+c+1)—p(a+b+c+1)

Integrate with respect to c

F(c)=-log[l(c+1)]+log[T(a+c+1)]+log[T'(b+c+1)]-log[T(a+b+c+1)]+e

Which reduces to

Ta+c+1)I'(b+c+1)
[F(c+1)1“(a+b+c+1):|

Now put ¢ = 0 we have

B F(a+1I(b+1)
o M

The constant
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~ F(a+1)I(b+1)
e——log[ F(a+b+1) ]

So we have the following

F(e) :log[F(a+c+1)F(b+c+1)] o [F(a+1)F(b+1)]

Fle+DI(a+b+c+1) Tla+b+1)

Hence we have the result

[1 (1—a:a)(1—xb)(1—xc)d 1 T(b+c+ I (c+a+1)I(a+b+1)
o (1-2)(-logz) x_Og{I‘(a+1)F(b+1)I‘(c+1)f‘(a+b+c+1)}

5.13 Example

Find the following integral

Let us first use the substitution ¢ = ax
Add and subtract e™*
Separate into two integrals
bt
o 1\ dt e a —e
[ -n) S e
0 1+t) ¢ 0 t
The first integral is a representation of the Euler constant when a = 1

We also proved

Hence the result




5.14 Example

Find the following integral

fooo e (i - coth(x)) dz

By using the exponential representation of the hyperbolic functions

oo 1 l+e™
f e | =~ ¢ dx
0 r l-e2=

Now let 2z = ¢t so we have

T )L _Lre”
/(; N (t 2(1—e‘t))dt

il @_(%t) e_(%t) +e(_L2t_t)
ﬂ t 2-et)

By adding and subtracting some terms

Rl e_t + e_(%t) — e_t e_(%t) + e_(%t) — e_%t + e_(%t)_t
/(; t 2(1-e)

dt

Separate the integrals

ot () e () _(F) e o (¥) ot
f £ ¢ dt+f S — dt+f R
o t 1-et 0 2(1-¢e7?) 0 t

By using the third integral representation

L wew(9)

The second integral reduces to

at

o 6_(7) —e %t_t) R e_(%) 1
fo 2(1-et) :fo ;=g

The third integral

By collecting the results

[ o (Lo o 3)- ()
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5.15 Example

Prove that

/‘x’ T dx 1¢(1+a) 1w(a) 2
S PV (i B (N I
0 xz2+1sinh(ax) 2°"\2 2x) 2"\2x/) =«

proof

f°° x dr ["" z dx
0 x2+1sinh(az) Jo 2+ a2 sinh(z)
= foo foce*at sin(zt) dtdx
o Jo sinh(z)
:f e_“t/ s'ln(xt) dx dt
sinh(x)
/ —at tanh( ) dt
)

2
= f e **tanh(x)dt ;z=—a
0 T

00 pTZT(] _ -2z
= f ¢ e ) (1-e) dx
0 e2r +1

By splitting the integral we have

* e _ —x(2n+z) dr
/(; e~ 4+ 1 nz>o f
Ry

so2n+z

o _ ,—(z+2) ~1)"
_/ %dwz—xi
0 e **+1 o Z+t2+2n

()]

Hence we have

[t e (-1
() 3)-
e 2) ()2



Leta=m/2

~ dz 1 (1 1 1 /1
e Y (el PV il I |
Ji 22 + 1 sinh(Zz) 2¢(2+4) 2¢(4)
e cot(m/4) -1

-~ -1
2
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6 Zeta function

Zeta function is one of the most important mathematical functions. The study of zeta function isn’t

exclusive to analysis. It also extends to number theory and the most celebrating theorem of Riemann.

6.1 Definition

1
C(s) = nz=:1 s
6.2 Bernoulli numbers
We define the Bernoulli numbers Bj, as
X _ i %mk
er -1 3 K

Now let us derive some values for the Bernoulli numbers , rewrite the power series as

5~ Br

z=(e"-1) x
kz:%)k:!

By expansion

1 1 B B3 .
x:(x+—x2+—x3+—x4+---)-(BO+B1x+2—'2m2+3—?m3+--~)

By multiplying we get

x:Box+(31+&)x2+(%+&+&)x3+(&+&+&+%)x4+m
2 320 2 40 30 2121 3!

By comparing the terms we get the following values

1 1
B():1731:_§+32:6133:01B4:_7

Actually we also deduce that

Bog+1 =0 , v keZ*

54



6.3 Relation between zeta and Bernoulli numbers

According to Euler we have the following relation

2k1

k) = (- By

proof

We start by the product formula of the sine function

(-

Take the logarithm to both sides

2
og(sin(2)) - ou(2) = 3310 (1- - )

n=1

By differentiation with respect to z

cot(z) - —=-2 Z . ”2”2
~1-

n2 71'2

;
1- 7r2n2

By simple algebraical manipulation we have

zeot(z) = i

Now using the power series expansion

1 o L
= :Z TSR |zl <mn
1- 2n2 k=0 n=m
2 1 d 1 e 1
. _ Z S22 _ Z Lt
2 .2 22 - 2k+2 —~2k+2 - 2k 2k
nemeN\l- S koM ™ oy T

So the sums becomes

2k

N

zcot(z)zl—?i ini

n=

—
ko
—_
:‘ ‘

Now if we invert the order of summation we have

zecot(z) =1~ Qiiil_l 2ZC(%) ok

k=1n=1T

Euler didn’t stop here, he used power series for z cot(z) using the Bernoulli numbers.

Start by the equation
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By putting = = 2iz we have

Which can be reduced directly to the following by noticing that Bay.1 = 0

0o 2k

2 .
zeot(z) =1- Y (-1)" 1By, 22k
1;1 (2k)!

The result is immediate by comparing the two different representations.

6.4 Exercise

Find the values of

¢(4),¢(6), Bs, Be

6.5 Integral representation

1 oo ts—l

dt
I'(s) Jo et-1

¢(s) =

proof

Start by the integral representation

Using the power expansion

Hence we have

By swapping the series and integral

= ® s=1 _—-(n+1)t _ e ]. _
Zofo PO =T (s) X e = T()()
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6.6 Hurwitz zeta and polygamma functions

Hurwitz zeta is a generalization of the zeta function by adding a parameter .

6.6.1 Definition

>, 1
C(a"z) = ;}m ;C(a,l) = C(CL)

Let us define the polygamma function as the function produced by differentiating the Digamma function

and it is often denoted by

Yn(z) Y20

We define the digamma function by setting n = 0 so it’s denoted by 1y (z) .

Other values can be found by the following recurrence relation
P (2) = Y1 (2)

So we have

1(2) = ¥4(2)

6.6.2 Relation between zeta and polygamma

Vn>1

Vn(2) = (1) 0l ¢(n+1,2)

2n-2
2 7T2n

Pan-1(1) = (-1)" "' Bay,

proof

We have already proved the following relation

)

Yol =y -+ Y =

n=1 n(n + Z)

This can be written as the following

vo(z)=—y+ 3 1

iok+1 k+z

By differentiating with respect to z
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P1(2) = i ﬁ

k=0

valz) = -2 Z  (k+ z)3

=2 32(k+z)4

¢4(Z)— -2-3- 42 (k+z)

Continue like that to obtain

[

Un(2) = (D)™l B e G

We realize the RHS is just the Hurwitz zeta function

U (2) = (—1)"+1n! C(n+1,2)

By setting z = 1 we have an equation in terms of the ordinary zeta function

(1) = (-1)"'nl¢(n+1)

Now since we already proved in the preceding section that

2k-1

2
2k) = (-1)*'B 2k
k) = () B oy
we can easily verify the following
n-1 22n—1 2n n-1 2271_2 2n
’(/)Qn_l(l) = (277, - 1)' (—1) Bgni(Qn)'ﬂ' = (—1) Bgn ™

This can be used to deduce some values for the polygamma function

2 4

(1) = va(l) = 2

Other values can be evaluated in terms of the zeta function

P2(1) = -2¢(3) , 1a(1) = -24¢(5)
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6.7 Example

Prove that

s 71'3

%
1 1 de = — - —
fo xsin(z) cos(z) log(sinx) log(cos ) dx = 6 10

proof

Start by the transformation z - 5 -z

™

fj xsin(z) cos(z) log(sinx)log(cosz) dx = % fg sin(x) cos(x) log(sin ) log(cos ) dx
0 0

We need to find

fi sin(x) cos(x) log(sinz) log(cos x) dx
0

Let us start by the following

F(a,b) = 2f 12971 (1) cos? 1 (z) dr F((“)+(b))

Now let us differentiate with respect to a

f(F(a b)) =4 f n2* () cos?" 1<x>10g(smx>dx:F(@F(b)(;ﬁmb—)wa(mb))

Differentiate again but this time with respect to b

% (F (a,b)) = 8/ 0271 () cos® 1 (x) log(sin z) log(cos x)dx

T(a)T(b) (¥3(a+b) +vo(a)to(b) = tho(a)tho(a +b) = tho(b)tho(a +b) + 1 (a+1b))
- T(a+)

Putting a = b = 1 we have the following

fog sin(x) cos(x) log(sinz) log(cos z)dx = Y6(2) +¥5(1) ~ vo(1)¢(2) - (L)Y (2) = ¥ (2)

8
By simple algebra we arrive to
Ed — 2_
f * sin(x) cos(z) log(sin z) log(cos z)dx = (0(2) 1/10(81)) “1(2)
0

We already know that (1) = -y and ¢9(2) =1 -~
Now to evaluate 1(2) , we have to use the zeta function we have already established the following

relation
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ad 1

Pi(z) =), (s

k=0
Now putting z = 2 we have the following
0@ =Y G
R =1CERR
Let us write the first few terms in the expansion
1 1 + ! + ! +
S (k+2)2 22 32 42

we see this is similar to {(2) but we are missing the first term

7T2

h@) =) -1-T -1
Collecting all these results together we have
3, . 1 72
f sin(z) cos(x) log(sinx) log(cosx)dr = — - —
0 4 48
Finally we get our result
f% xsin(z) cos(z) log(sinx) log(cos ) dx = T Lg
0 & & T 16 192
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7 Dirichlet eta function

Dirichlet eta function is the alternating form of the zeta function.

7.1 Definition
oo 1)n 1

n(s) =Z

The alternating form of the zeta function is easier to compute once we have established the main results

of the zeta function because the alternating form is related to the zeta function through the relation

7.2 Relation to Zeta function
n(s)=(1-2"")¢(s)
proof

We will start by the RHS

(1-2"*)¢(s) = ¢(s) —2"75¢(s)

Which can be written as sums of series

Nk

3

1
277

3

3
Il

—

Z*-2Z

s
=11 n=1

(2n

Clearly we can see that we are subtracting even terms twice , this is equivalent to

ad 1 1
z::l (2n-1)* 2 (2n)°

n=1

This looks easier to understand if we write the terms

( 1 1 ) (1 1 1 )
1+ —+—+ |- =+—=+—+-
38 5s 2s 48 63

Rearranging the terms we establish the alternating form

L N (- 1)" 1
1-—+— E =
2% 35 n=1 n(S)
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7.3 Integral representation
oo t571

n(s)I‘(s):f —dt

0o et+1

proof
Start by the RHS

o) ts—l 0o —tts—l
f dt = f c v gt
0o et+1 0o l+et

Now using the power expansion we arrive to

foo B_tts_ldt ( i (_1)ne—m‘,)
0 n=0

Z (_1)n f e—(n+1)tts—1dt

n=0 0

Using Laplace transform we can solve the inner integral

[oo e—(7n+1)tts—1dt _ F(S)
0 (n+1)®

Hence we have the following

) (_1)n L) (_1)n—1
r =T =T
(S)n;) e 1) (S)nZ::1 e (s)n(s)
An easy result of the above integral
o t 71_2
=I'(2)n(2) = —=
A a1 M=) =1
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8 Polylogarithm

8.1 Definition

°°Zk

Liy(2)=) —
Pl

The name contains two parts, (poly) because we can choose different n and produce many functions and

(logarithm) because we can express Li; (z) = —log(1 - 2).

8.2 Relation to other functions

We can relate it to the Zeta function

Li, (1) =

N
T~

-=((n)

T
A

In particular we have for n = 2

2

Lia(1) = ¢(2) = =

Also we can relate it to the eta function though z = -1

) o (_1 k
Ui (1= 3 C - )
k=1
Also we can relate it to logarithms by putting n = 1
ook
Lij(z)= 3 =
n=1 k

The power expansion on the left is famous

8.3 Integral representation

zL'
Liw(z):fo l"f(t)dt

proof

Using the series representation we have

k

le itk =3 L fztk’ldt S 2 Lina(2)
" T = T = T —Lln z
0t \iZg k" =1k Jo jm1 ket o
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8.4 Square formula

Liy(-2) +Lin(2) =

proof

As usual we write the series representation of the LHS

k=1
Listing the first few terms

+ ’ + 2 et + 2 2

st s i 2

on - 3n 2n 3n
The odd terms will cancel

2 4 6
PR LA L

Take 2'°" as a common factor

e ( LGP
2n 3n

8.5 Exercise

Prove that

w):

Lia(2) = - _/OZ

64
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8.6 Dilogarithms

Of all polylogarithms Lis(z) is the most interesting one, in this section we will see why!

8.6.1 Definition

_ = 2* “log(1-t
ng(z):z%:—/(; &dt

] t

The curious reader should try to prove the integral representation using the recursive definition we

introduced in the previous section .

8.6.2 First functional equation

-1 1 2
Liy (—) +Lig(-2) = —= log?(2) - T
z 2 6

proof
We will start by the following

-1 =1 -
Liz(*)=—f Mdt
z 0 t

Differentiate with respect to z

z

22

—~Li = -
z z

d (—1) 1 (_10g(1+i)):10g(1+i) _ log(1+2) -~ log(z)

Now integrate with respect to z

Lis (;1) - [ log(1=1) 4y - L10g2(2) 4 ¢ = “Lia(=2) - L1og?(2) + C
z 0 t 2 2

To find the constant C let z = 1

C = 2Li, (1)

Now we must be aware that

—r2

C = 2Lix(-1) = -20(2) = —~
Which proves the result by simple rearrangement

2

Liy (;1) #TLin(-2) = ~2log?(2) -
z 2 6
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8.6.3 Second functional equation

2
Liz(2) + Lig(1-2) = % —log(z)log(l-2) ,0<z<1

proof

Start by the following

Lig(z):—fozwdt

t

Now integrate by parts to obtain

Lis (2) = - _/OZ % dt —log(z)log(1 - 2)

By the change of variable ¢t = 1 — x we get

z 1-z —
f log(t) it :_f log(1-x) i
0 1

1-¢ x

ForO0<z<1

fl log(1 - x) dx:fllog(l—x) dac—/liz log(1 - x) da
1 0 0

-z X x x

Now it is easy to see that

fll Mdl« =-Liy(1) + Liz(1 - 2)

-z x

Which implies that
Liz (2) = Lia(1) - Lia(1 - 2) —log(z) log(1 - 2)

Lis (2) + Lia(1 - 2) = Liz(1) —log(2)log(1 - 2)
Now since Lis(1) =¢(2) = %2
Lis (2) + Lis(1-2) = % —log(z)log(1-=2)

We can easily deduce that for z = 1



8.6.4 Third functional equation

Lig(Z)+LiQ( ):—%logQ(l—z) z<1

z—1

proof
Start by the following

Li2( z ):_fz—l log(l—t)dt
z-1 0 t

Differentiate both sides with respect to z

d%Lb(Z:) B (2_11)2 (bg(;;l))

Upon simplification we obtain

Using partial fractions decomposition

2 Ls
2 z-1 1-2 z

dci ( z )zlog(l—z) +log(l—z)

Integrate both sides with respect to z

Lig( & ): L og?(1-2) “Lis(2) +
z—-1 2

Put z = -1 to find the constant

Lis (%) = —% log?(2) - Liz(-1) +C

Remember that

Hence we deduce that C' =0

Lig( : ) = —llogQ(l —-2z) - Lia(2)
z-1 2

Which can be written as

Lig( i ) +Lig(2) = —} 10g2(1 -2z)
z-1 2
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8.6.5 Example

Prove that

52w (5)

2 10 2
proof

First we add the two functional equations of this section to obtain

Lig( & ) + 1Lig(zz) —Lis(-2) = —110g2(1 -2)
z-1 2 2

S

1—
2

Now let z =

s 1-265+5 3-5 z  V5-1 3-5
A = p— = =
4 2 z-1 145 2

Hence we have

ng (3 _2ﬁ) " (ﬁz_ 1) - —%bgg (ﬁ; 1)

We already established the following functional equation

2
Liz(2) + Lig(1-2) = % —log(z)log(1-2)

B

Putz = 2=

Lb(g_?ﬁ)wb(ﬁ?_l):i_log(3_2ﬁ)log(ﬁ2_l)

V5-1

> ) we get our result.

Solving the two representations for Li, (

8.6.6 Example

Find the following integral
I /1 log(1 - x)log(z) de
~ Jo x

Integrate by parts

2O i) = 3 =)
k=1

1= -log(@)Liz(@)l} + [
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8.6.7 Example

Evaluate the following integral

xr 2 —_
f Mdt O<z<l
0

Integrating by parts we get the following

= Jog? (1 t) L12(t)
/(; dt = —log(1 - z)Liy(z) - /

Now we are left with the following integral

z T3 1 1 —
f ng(t) di = f L12(1 t) di
o 1-t¢ 1-x t

Using the first functional equation

/11 %2 — Lis(t) - log(1 - t) log(t) i

-z t

2 11 1 _
—%log(l—x)—f ngt(t) dt—f log(1 -t)log(t) gt
1-z 1

-z t

The first integral

fll LIQt(t) dt = Lis(1) - Lis(1 - )

The second integral is the same as the first exercise

.[1_1 M =Liz(1) +log(1 - z)Lia(1 - z) - Liz(1 - z)

Collecting the results together we obtain

E=a —%zlogu - ) = Liz(1 - 2)log(1 - 2) + 2 Lig(1 - ) - 2((3)

Finally we have

foz IOgQ(tl_t)dt =—log(1 - z)Lis(x) + %210g(1 —x)+Lis(1-2)log(1l-x)-2Liz(1 -x) +2¢(3)
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8.6.8 Example

Find the following integral

a
I :f d
(a) 0o et-1 *

1
l-e==

Start by the power expansion of

a T a Nad
I - / dr = / o~ -nx
(a) Al A Ye

n=0

By swapping the integral and the summation

I(a) =) [0 ze™( D g

n=0

The integral could be solved by parts

I(a) ~ i 1 ~ e—(n+1)a ~ ae—(n+1)a
S (n+1)2 (n+1)2 0 (n+1)

Distribute the summation to obtain

I(a) =¢(2) +alog(l-€e™®) - Lia(e™*)
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9 Ordinary Hypergeometric function

Ordinary or sometimes called the Gauss hypergoemtric function is a generalization of the power expan-

sion definition. Before we start with the definition we will explain some notations.

9.1 Definition

Define the raising factorial as follows

n=0
(Z)n B I'(z+n)

e n>0

Using this definition have

JFi(abiciz) = 5 {Wn0n 27

n=0 (C)n n!
9.2 Some expansions using the hypergeomtric function

We can represent famous functions using the hypergeomtric function

1. Logarithm

o n+1

290F1(1,1;2;-2) =2 Z_E)(lzggl)n(_;,)n = i(—l)" o ?j!l)!z"” = i(—l)”;+ 1= log(1 + 2)

2. Power function

2F1(a71;1;z) — i Mii — i (a)nzn _ (1_2)—11

n=0 (1)71 n: n=0 n!

3. Sine inverse

1 1 1
Dy 2 (3),3), 2 (3), A 2135201 5,
Which can be written as
= (2n)! - GO I .
ZzFl(%a%;%;ZQ):;)WZQ . :ngf *! = arcsin(2)

Now we consider converting the Taylor expansion into the equivalent hypergeomtric representation

Suppose the following
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2F1(a,b;c;2) = Ztkzk y to=1
k=0

Now consider the ratio

tre1  (K+a)(k+0)

th (kto)(k+1)

Using this definition, we can easily find the terms «, b, c.

Let us consider some examples

1. Exponential function

f(z)=¢
The power expansion is
o Lk
. z
fz)=e"=3 —
i=o k!
Hence we have
(7951 _ z
tr k+1
Comparing to our representation we conclude
¥ =2F1(=-1-:2)
2. Cosine function
=) (_l)kZQk)
f(z) =cos(2) = ), =
,;] (2k)!
By the same approach
tist 1 1 —22

B (k+2)(2k+1)  (k+1)(k+1) 4

Hence we have

1 - 2
cos(z) = oFy (—,—;Q;Z)
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3. Power function

£ = ()= 3 D

By the same approach

tht1 (k:+a) (k+a)(k;+1)z
L (k+1) (k+1)(k+1)

Hence we have

(1-2)"%=9F(a,1;1;2)

9.3 Exercise

Find the hypergeoemtric representations of the following functions
arcsin(z),sin(z)

9.4 Integral representation

1 tb_l(l _ t)c—b—l

B(c—-b,b)2F1(a,b;c;2) = '/(: (1=t2)

proof
Start by the RHS

1
f (1 =) (1 —t2) ™ dt
0

Using the expansion of (1 —tz)™® we have

[ tb 1(1 t)(' b-1 Z (a)k k’

Interchanging the integral with the series

a)k kf tk+b 1(1 t)c b— 1dt

Recalling the beta function we have

& (a) L(k+b)T(c-b) 2*
;) T(k+c) k!
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Using the identity that

Blc—b,b) = F(b)rr((cc)'b)
and
L(z+k)
r'(z) (=)
We deduce that

B(c—b,b) Z (a)rT(k+b)(c) 2F

(a) (b) P
i TOI(k+c) K (—bb)];) o k!

9.5 Transformations

1. Pfaff transformations

2F1 (a,bic52) = (1-2) "2 14 (a,c—b; o — 1)
P

and

oFy (a,b;¢;2) = (1-2) "5 Fy (c —a,b;c; —— 1)
P
proof

Start by the integral representation

1 tb_l(l _ t)c—b—l

1
2 b (a,b;c;z): ﬁ(b,c—b) A (1—tz)a

By the the transformation ¢t — 1 —¢

1 _ 4\b—-14c-b-1 1 _ 4\b-14c-b-1
(1-t) "¢ dt = / (1-¢t)1¢ gt
0o (I-(1-t)z)e 0o (1-z+tz)®

Which can be written as

(1-2)"
B(b,c—b)

1 2 -a
tet (1 - 1)o7t (1 —t ) dt
0 z-1

Note this is the integral representation of
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(1-2)"%F (a,c—b; c; L)
z—1

Also using that

2F1 (a,b;¢;2) = oF1 (b, a;¢;2)

We deduce that

o F1 (a,byc;2) = (1-2) "o Fy (C—a,b;c; : 1)
oo

. Euler transformation

oFi (a,b;c;2) = (1= 2)* "5 Fy (c—a,c - b;c; 2)

proof

In the Pfaff transformations let 2 — ]

oI (avb; ¢ : 1) =(1-2)"%Fi(a,c-b;c;2)

z -

and

oF (a, b; ¢; il) =(1-2)"F (c-a,b;c;2)
o

By equating the two transformations

(1-2)"%F (a,c=b;¢;2) = (1- 2) % Fy (c—a,b; ¢ z)

Now use the transformation b - c—b

(1-2)""%F (a,b;¢;2) = (1 - 2) " F) (¢ —a,c-b;c; 2)

Which can be reduced to
oFi (a,b;c;2) = (1= 2)"* "5 Fy (c—a,c - b;c; 2)
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9.6

Quadratic transformation

a a a 1 22
F b;2b;2)=(1-2)"2oF | =,b— —;b+—;——
2 l(aa ) 72) ( Z) 2 1(27 2a +274Z—4)
Kummer
oF (a,b;¢;2) =oF1 (a,b;1+a+b-c¢;1-2)
Special values
Atz=1

T'(c)T'(c-a-b)

2Fi(a, b 1) = I'(c-a)l(c-a)

Start by the integral representation at z = 1

1 . b
2F1(a,b;c;1):m[0 tb 1(1—t) b 1dt

Now we can use the first integral representation of the beta function

1 L®)(c-b-a)
B(c—-0b,b) I'(c-a)

2Fi(a,byc;1) =

Which could be simplified to

QFl(a,b;c; 1) - F(C) ) F(b)r(c— b-— a) ~ F(C)F(c— a—b)

L(b)I(c-b) I'(c-a) " I'(c-a)(c-a)

Atz=-1

F(1+a-b)I'(1+%)
F'(1+a)l'(1+§-0b)

QFl((Z,b; 1+ (Z—b;—].) =
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10 Error Function

The error function is an interesting function that has many applications in probability, statistics and

physics.

10.1 Definition
_ 2 [t
erf(x)—\/Ev[0 e’ dt

10.2 Complementary error function

erfc(x) =1 -erf(x)

10.3 Imaginary error function

erfi(z) = —ierf(ix)

10.4 Properties

1. The error function is odd

erf(-z) = % /Oix e dt = —% 0:1: e dt = —erf(x)

2. Real part and imaginary parts

_ erf(z) +erf(z2)

Rerf(z) 5

erf(z) —erf(z)

Jerf(z) = 5
i

Using complex variables it can be done using erf(z) = erf(z)

10.5 Relation to other functions

1. Hypergeomtric function



proof

By expanding the hypergeometirc function

Which can be simplified to

2x 13 2) r & (-2?)F
iadiny AN [l S N S
NG 1(2’2’ * \/7?,;)(%+k)k!

Notice that this is actually the expanded error function

r oo (—$2)k 2

2 [T . 2 o
= dt = —— dt=—3 2
ﬁfo ¢ v Jo ,CZO k! 7r,;0(2k+1)k!

. Incomplete Gamma function

proof

By the definition of the incomplete gamma function

Let t = ¢/?

We have already proved that

2[ e_y2dy:\/7_r
0

Hence we have using the definition of the error function

78



F(%,xQ) = /1 - /merf(z)

By rearrangements we get our result.

10.6 Example

Find the integral

I:f e dt
0

The function has no elementary anti-derivative so we represent it using the error function.

Consider the imaginary error function

erfi(x) = —i% fol et dt

By differentiating both sides we have
Hence we have

By integrating both sides we have

10.7 Example

Prove that

[Ooo erfc(x) dx = %

proof

Using the complementary error function
f (1 -erf(x))dx
0
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Integrating by parts we have

I=2z(1-erf(x)) ]8°+%/(;mx67m2 dx

Now we compute erf(oco)

2 2 2
erf(oo):ﬁfo et dt:ﬁx\/le

So the first term will go to zero. The integral can be solved by substitution

-2 foo e dy =
= — T Tr=—
v Jo N3

10.8 Example

Prove that
/ erfc®(z) dx = 2-v2
0 NZs
proof
Integrate by parts

I = zerfc®(z) | —Qmexerfc'(x)erfc(:v)dx

The first integral goes to 0

I=-2 foo verfc' (z)erfc(x) dx
0

The derivative of the complementary error function

erfc’(z) = (1 - erf(z))’ = —%e*f
That results in
1= 4 /ooxefzzerfc(x)dx
v

Integrate by parts again
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At infinity the integral goes to 0. At 0 we get

2 2

leimzerfC(I)];c:O = ~ (1 - erf(O)) =

Vr v VT
The integral can be evaluated to
f e 2t dt = —ﬁ
0 22
Collecting the results together we have
po2 VA A 2V
VT2 o T
10.9 Example
Prove that
o0 - 2coth™ /2
f sin(x?)erfe(x) dx = m
0 427
proof

Using the substitution = = NS

% [ sineyeterte(vi) di
0

Consider the function

I(a) = % fo ” sin()tFerfe(av/?) di

Differentiating with respect to a we have

-1 e 2 -1 1
I =—f in(t)e *tdt= — — —
(a) VT Jo sin(t)e NZENE

Now integrating with respect to a
-1 o dx
I(a) = —= / ¥ e
(a) VrJo zt+l
To evaluate the constant we take a - oo

-1 > dx

I(oo):ﬁ 0 x4+1+C
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The function has an anti-derivative and the value is

e de VT
vrdo ziel 22
Note that
NZS
erfc =0 = (C=—"—
(c0) Vi
Finally we get

e VT
”“)—ﬁfo 71 0

Let a = 1 in the integral

I(1) = fooosin(xQ)erfc(g:) dx = 2\\/2 _ \/1%/01 %

Also knowing that

4 +1 N

L[l dx 7+ 2coth™ /2
VT Jo

Hence we have the result

oo _ -1
/ sin(z?)erfe(z) dx = M
0 427

10.10 Exercise

Can you find closed forms for
f erfc®(z) dx =?
0

foo erfc* (z) dz =?
0

What about

f erfc" (z) dzx =7
0
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11 Exponential integral function

11.1 Definition

oo ,—1 oo ,—It
E(a:):/ %dt:f et dt
T 1

11.2 Example

Prove that

tim [log(2) + £(x)] =
proof

Integration by parts for E(x)

E(z)=e"log(t) 17 + fzm log(t)e™ " dt

The limit at infinity goes to zero

E(z)=-e"log(x) + fwoo log(t)e " dt

Hence by taking the limit

iii% [log(z) + E(x)] = ii_r}r& (log(z) —e " log(x)) + /OOO log(t)e " dt

The first limit goes to 0

lim [log(2) + E(2)] = [ log(t)e™" de = (1) =~

11.3 Example

Prove that for p > 0

L'(p)

pa®

[ 2P E(ax) dx =
0

proof
Integrating by parts we have
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Sl 1 o 1 1 —ax
f P EB(ax) dr = 2P E(ax) |5 + —f P~ e O dy
0 D ap Jo

The first limit goes to 0

1 oo 1 oo T
L xp_le_ax do = — xp—le—z dr = (p)

ap Jo paP Jo paP

114 Example

Prove the general case

f :Ep_le”E(ax) de = ——— T_. L(p)
0 sin(ar) aP

proof

Switch to the integral representation

oo oo ,—t
f :Up_le“x[ C dtde
0 axr t

Use the substitution ¢t = ax y

o oo —az(y-1)
f f a:p_leidydx
o Ji Yy

By switching the two integrals

fwlfmxp_le_“m(y_l)dxdy
1 yJo

By the Laplace identities

L(p) = 1
ar J1 y(y-1)P

Now lety =1/z

L(p) !

P11 _ ) Pd
) (1-2)Pdx

Using the reflection formula for the Gamma function

1
F(p) mp—l(l_x)fpdz: : ™ . F(p)
ab Jo sin(am) aP
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11.5 Example

Prove that

ooZE2 d:l
/Oe (2)dz G

proof

Using the integral representation

) 00 o~TZ Y2

oo 9 oo oo oo B,Z(I+y,1)
/ e*E*(z)dz = [ / f ————dadydz
0 o J1 1 xy

Swap the integrals

/mlfool fooe’z("”y*l)dzdacdy
1 yJ1 oz Jo

© 1 [ 1
/ 7_/ —dxdy
1y z(z+y-1)

The inner integral is an elementary integral

f°° 1 d = _108()
1 z(z+y-1) 1-y

The integral becomes

f°° log(y)
1oy(y-1)
Now use the substitution y = 1/z

2

Vlog(z) ,  ['log(l-z) 7= Lin(1) = —
~Jo (1—x)dx_ fo T dr=Liz(1) = 6

11.6 Example

Prove that

oo 2
f ZT"lEQ(z)dZ:#gFl(p,p;p+1;—l)
0 p

proof
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Consider

oo ,—t
E2(z):f ert

By differentiation with respect to z
2¢*E
2B (2)E(z) = 2¢7°E(2)
z

Knowing that we can return to our integral by integration by parts

2 5]
- f e B(2)dz
p Jo

Write the integral representation

2 oo oo ,—2t
— / 2P le? f C  dtd»
p Jo 1 t

Swap the two integrals

gfmlfoozp’le’z(“t) dzdt
pJi1 tJo

The inner integral reduces to

2I(p) [~ dt
D fl t(1+t)r

Use the substitution ¢ = 1/x

2F(p) ab!
f (1+x)1’

Using the integral representation of the Hypergeometric function

1 $b71(1 _ x)c—b—l
B(C—b7b)2F1(a,b;C;Z):/0‘ wdfﬂ
Letc=p+1,b=p,a=p, z=-1
1 pp-l
1,p)oFy(p.pip+1:-1 :f d
FLp)2Fa(ppip+1i-1) = | Trap @

Hence the result

IR O (”) 2Fu(p,pip+ 13-1)
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Where

I'p) _1
@ 17p = =~
(12) I'(p+1) p
11.7 Exercise
Find the integral fo n € N
foox"Ez(x) dx
0
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12 Complete Elliptic Integral

12.1 Complete elliptic of first kind

K(k)—f% do _fl dx
0 V1-k2sin?0 Jo V1-22V1-k222

12.2 Complete elliptic of second kind

1 \/1_k2x2d

Ek=/§ 1-k2sin?0do = | ———
(k) ; sin o i x

12.3 Hypergeometric representation

T 11
K(k)==,F 7,7,1,18)
(k) = 52 1(2 2
and
T 1 1
E(k)==,F 7,—7,1,18)
(k) =32 1(2 2
proof

Using the integral representation of the hypergeometric function

1 4b=171 _ 2\c-b-1
B(c=b,b)2F1(a,b,c,z) = fo t((ll—ttz))a

Now use the substitution ¢ = 22 and z = k2

2b-1 (1 _ x2)c—b—1

d
(1 - k2a2)e v

1
B(C_b7b)2Fl(aabacak2):2[ e
0

1 da 1 11
==5(1/2,1/2) o F —,—,1,k2)
/o i 2 MR 1(2 2

By the beta function we have

oo el)

Hence the result

11
272

T
*2F1(

K=

,1,k2)
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By the same approach we have

s 1 1
E(k) = §2F1 (57—57 1ak’2)

124 Example

Prove that

folK(k)dk -G

G is the Catalan’s constant.

proof

Start by the integral representation

dz dk

1,1 1
A A i
o Jo 1-22vV1 - k222

Switching the two integrals

1 1
I:[ f dk d
0 V1-z2Jo V1-k222

1 arcsinz

= [ ST
0 zvV1-2a2

Now let arcsin z = t hence we have x = sint

Tt
1':/2 L
0 sint

The previous integral is a representation of the constant

12.5 Identities

1. Fork>1

K(Vk) = 11—kK( 1:1)

and
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E(Vk) :\/1—kE( kk_l)

proof

Starting by the integral representation

1 dx
KW= [, =

Use the substitution x = /1 - y?2

/1 ydy
0 1-12/1-(1-y?)/1-k>(1-3?)

By cancelling the terms we have

dy

1
fo V1-92y/1- k2 + k2y2

Take V1 — k2 as a common factor

b ——
0 1-k2\/1-y2 1—k§i1y2

Comparing this to the integral representation we get

1 k2
K(k) = 1_k2K( k2—1)

We can finish by & - V&

Similarly for the second representation

E(\/E):fol 1-ka?

V1-2a2

By using that z = /1 - y?

1 _L
E(\/E):\/l—k:f V\;l_k_lydy:\/l—kE(
0 —y2
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1 2k
K““)ZMK(M)

proof

Start by the Quadratic transformation

4z
(1+2)2

Hence we can deduce by putting a = b =1/2

1 1
2F1(a,b,2b, ):(1+z)2a2F1(a,a—b+2,b+2,z2).

K(Z\/E
1+k&

): (1+k)K (k)

Or we have

1 2k
K(k) = k+1K(1+k)

NERENEE

1+k) 1-k \1-k
and
s(05) - (i)
proof
Start by the following

2Vk 1 1
K(\/;) - f dz
1+ 0 V1-22./1- (1?]2)2%‘2

By some simplifications we have

2k 1 1
(1 k) +k)fo \/1—x2\/(1+k)2—4kx2dx

Usez =+/1-12

/‘1 1+k 1+k/‘
0 T-y2/(1+k)? -4k (1- y2) V1o ,/1+
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Hence we have

K(fﬁ):i:K(Qy—__:)

Similarly we have

s(10) (i)

12.6 Special values

1.
1 (1
K(i)= =t (Z)
and
o) @)
E@) = N + N
proof

By definition we have

=3

Letz = (‘/Ewehavedx:i

1 rt s
K@= [ tFa-nFa
By beta function
,_TEIrG)
K(Z)_ 3
4r(3)

By reflection formula

LorHriz) @)
K@) - 4m2 A2r
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By definition we have

1+ x2
2= [,
V1-22?
Separating the two integrals

1+ 22 2

¢— J—d“/ s

The first integral is K (i) for the second integral use = = v/t

E(i) = dx

1 1 3 1 1
Sttt a-t)rat= -
i), tasy () v

Hence we have

™)
—~
|00
~
=
N
—~~
N
N
ap!
[
—~~
|
N

and
()0 )
v2) 8T 2ym
proof
Start by the identity

For the value k = -1

Using the value for K (¢)

93



K(12) =V2K(i) = ﬁﬁ (i)

Similarly we have

a5
K(2 —4+3¢§) = 14;;%%2(411)
and
E(2 —4+3¢§) = 11/35[22\(/%) + F;(E)]
proof
Start by the identity
K(k) = kilK(fﬁ)

Hence we have for k = -1

S

K(2 —4+3\/§) - 1}?1{(;5) - ZT/;_EFQ(D

For the elliptic integral of second kind using the hypergeomtric representation with a = 5 and

_1
b=3

4z 1 2
o Fy (—1/2, 1/2,1,(1+Z)2) = (1+2) 2 (-1/2,-1/2,1,2%)

The later hypergeometric series can be written in terms of elliptic integrals using some general

contiguity relations

oFy (-1/2,-1/2,1,2%) = % (2B(k) + (K* - 1)K (k))

So we have

2E(k) + (K> -1)K(k) = (k+1)E (M)

1+k
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Fork:%
E(2 —4+3¢§) f/_[rs\i_) F;(_i)]
4.
K(2 —4—3%5):“/_ i (\g
and
C(2+V2) (72 44T (3))
E(2 —4—3\/5)- 1T (5)
proof

Start by the following identity

e(7)- e (5

Letx = 1/\/5

S

K(2 —4—3\/§)= Wf?;(g)

(2+V2) (72 +41* ()
4/71%(1)

E( 43\/_)

12.7 Differentiation of elliptic integrals

Note We should remove the variable k¥ and denote elliptic integrals £ and K once there is no confusion.
It is assumed that the variable is £ when we use these symbols.

Interestingly the derivative of elliptic integrals can be written in terms of elliptic integrals

Derivative of complete elliptic integral of second kind

d 19 .\/1 - k242
E Ok T 7 dx

Pl My

d —k 22
—E:f
dk 0 1-22V1- k2$2

Adding and subtracting 1 results in

f \/1—]€2$2 _1 1 dx
k V1-22 kJo /1-22V1-k222
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Upon realizing the relation to elliptic integrals we conclude

d o E-K
dk k
For the complete elliptic integral of first kind we need more work
Start by the following

dK /‘1 1 0 1 i
—K = — T
dk 0 V1-22 0k|V1-k2g2

Ly [ 1 ko do
dk 0 V1-22V1-k222(1 - k222)
Adding and subtracting 1 we have

-1 /‘1 1-kz?-1 J 1/‘1 dz K
- P _
k Jo /1-22V1-k222(1 - k222) kJo /1-22V1-k222(1-Kk222) k
Let us focus on the first integral

1 1
T dz
fO V1-22(1- k222)2

_ _ 1
Let z = /t and we have dzx = 2\/Eaft

1 1 t3
= [ - dx
2Jo V1-#(1- Kk2t)2
Using the hypergeometric integral representation

1t 2 ™ 31
- = F 1k2)
2f0 VI-i(1- k23 27 1(

ia 57 ’
Using the linear transformation

2 F1 (a,b,c,z) = (1 _Z)c_a_bQFl (C_aac_ b,C,Z)
We get by putting &' = v/1 - k2

So finally we get



13 Euler sums

13.1 Definition

oo (ngp) )T‘
S - =
P q kZ::l ka

Where we define the general harmonic number

HO - Z . 1O = 1, Zl

Euler sums were greatly studied by Euler, hence the name.

13.2 Generating function

Proof

(p)

Start by writing H,"’ as a sum

k=1n=1

oo o k 1
St -5 5 Lo
k=1 n

By interchanging the two series we have

> 7 > oy > z*
n=1k=n T n=1 " p=n
The inner sum is a geometric series
Liy(z)

1 & 2"
- =1 nP

We can use this to generate some more functions by integrating.

1-z

13.3 Integral representation of Harmonic numbers

11— gm
H”:f x dx
o 1-=x

proof

We can use the geometric series of 2"




13.4 Example

proof

Using the integral representation

[ S, [ e,
0 0

1-z /7 n? 1-z

Now use the functional equation

¢(2) - Lig(z) = Lio(1 - x) + log(x) log(1 - x)

Hence we have

[1 Liz(1 - z) +log(z) log(1 - x) iz
0 -z

The first integral

[T =)

The Second integral using integration by parts

log(1-x)log(x) , [l Lia(z)
A B ()

T €T

Finally we have

3 = () +((3) = X )
13.5 Example
ki %x =Liz(z) - Liz(1-z) + log(1 - z)Lis(1-z) + = log(ac)logQ(l -xz)+¢(3)
1

proof

In the general definition assume p = 1
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& log(1 -
$ gyt - lo8)
k=1 l-=

Divide by z and integrate to get

Hy, 1
? :Lig(l')+§10g2(1—x)

Now divide by = and integrate again

= He p 1 1 r=log?(1-t)
Thyk o1, 7f 28 70 g
Z:: k2 13(96)4—2 0 t

Now let us look at the integral

x] 2 —
f og (1-1t) .,
0 t

Integrating by parts

fom log” (1 —t) dt = —log(1 - z)Lis(z) - f Ll2(t)

Use a change of variable in the integral

z T3 1 1 _
f ng(t) di = / ng(l t) dt
o 1-¢ -z t

Now we can use the second functional equation of the dilogarithm

fl T Lia(t) - log(1 - ) log(t) @t

-z t

Separate the integrals

2 11 1 _
—%log(l—x)—f ngt(t) dt—f log(1 -t)log(t) gt
l1-z 1

-z t

The first integral

fll LIQt(t) dt = Lis(1) - Lis(1 - )

Use integration by parts in the second integral

.[1_1 M =Liz(1) +log(1 - z)Lia(1 - z) - Liz(1 - z)

Collecting the results together we obtain
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n L112_(t)dt—‘Elog(1 #) = Lia(1 - 2) log(1 - ) + 2 Liz(1 - ) - 2((3)

Hence we solved the integral

Aw IOgQ(tl_t)dt =—log(1l - z)Lis(x) + 7%210g(1 —x)+Lis(1-2)log(l-z) - 2Lis(1 - z) +2¢(3)

So we have got our Harmonic sum
Hy,
1 k2

=Lig(x) + % ( log(1 - z)Liy(z) + %2 log(1-x) + Liz(1 - xz)log(l —z) - 2Lis(1 - ) + 2{(3))

&

=Lig(x) - Lis(1 - z) + log(1 — z)Lis(1 —z) + %log(x) log?(1 - ) +¢(3)

M3
%

el
I
—

13.6 General formula

Tii?:(1+;])C(Q+1)—;ZZ_:_1C(k+1)g(q_k)

This can be proved using complex analysis.

13.7 Example

fl log?(1 - z)log(x) _ _L‘l
0 x 180

proof

Using the generating function

i Hkxk‘fl — _log(l - 'I)
k=1 z(1-x)
By integrating both sides
= Hy, 1
> L Liy(z) + = log?(1 - )
=1k 2

log?(1-z) = 22 S ¥ _oLiy(x)

plugging this in our integral we have
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2 (35 Bt - 1)) 252 o

k=1

Which simplifies to

= H, 1 , 1 1
2y =k [ log(z)z* 1t dax -2 f Lig(as)M dx
-k Jo 0 x

The second integral

—QAlLig(x)@dx:2[01U3dex:2<(4)

The first integral

i % f #* 1 log(z) da

Using integration by parts twice and the general formula for ¢ = 3

Hy,
k3

23 G =R+ )

Finally we get

[1 log?(1 - z)log(x) _

. =50(4) +¢*(2) +20(4) = ¢*(2) - 3¢(4)
13.8 Example

Show that

oo 2 2
f (bt)logt ) (log(a”?) +7) arctan(é)
0 2 a

Proof

We can start by the following integral
I(s) = f 57t e sin(bt)dt
0
By using the the expansion of the sine function
1)n(bt)2n+1

s—1 —at (
I(s) = f t nzo T(2n +2)

By swapping the summation and integration
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DG L on (=D)"()*"'T(s +2n+1)
I(s) = nz%)m 0 t e dt = 7;) T(2n + 2)azd

By differentiating and plugging s = 0 we have

I'(0) = i (_D%W(z)%ﬂ sl )Z (-1)" ( )2n+1

four 2n+1 02n+1

Now use that ¢ (n+1) +~v = H,

I'(0) = i (D" Han =y (b)2n+1 - log(a) arctan (g)

fouur 2n+1 a

I'(0) = Z GV Han (b)2"+1 - (’y+log(a))arctan(2)

o 2n+1 a

Now we look at the harmonic sum

oo 1 t2k}

S (1) Hopa® Z( 1k Qkf ﬁdt

k=0

Use the integral representation

(-1)F2?* (1-12%) dt

|
h

gMS

Swap the series and the integral

11
b

(-1)* (x% — (xt)?) dt

gM%

Evaluate the geometric series

f11(1_1)t f (1-12) "
o 1—-t\1+22 1+¢2a2 1+x2 (1-#)(1 +t2x2)

which simplifies to

—z? 1 1+t —z? 11 t
dt = f + dt
1+22 Jo (1+1t2a2) 1+22\Jo 1+¢222 1+1¢222

Evaluating the integrals

1
m (296 arctan(z) + log(1 + 5’32))

Using this we conclude by integrating

Z( 1) H2k' 2k

1
——log(1 + 2* t
P T 5 og(1+ z*) arctan(z)
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Hence the following

(=) Hyp (DN 1 a? + b2 b
Z ( ) =——log arctan(f)
= 2k+1 \a 2 a? a

Substituting that in our integral

- 1 2,12
f e~ sin(bt) Ogtdt__(log(a o )+fy+log(a))arctan(b)
0 2 a? @

2, 12
() (2)
2 a

13.9 Example

[01 Lip(2) Lig(x)

xT

= pz::(—l)n—lc(p_n+ D¢(g+n) - ;wzq:_l (_1)P—1C(n+ D¢(p+qg-n)
+ (- 1)”1(1+ 5 )C(p+q+1)

proof

We can see that

T

VLip(2) Lig(z) , & & 1
/0 dm‘,;n; ke (n+ k)

Let us first look at the following

- 1 H,
=S —— . 1.k) ==~
fg(a, ) nzz:l na(n"’k) ? %(7 ) k

This can be solved using

ad 1 1 1
Clak)=S — [~ -
(e k) ;knwl (n n+k)

1 1
- 20(@) = € 1k)

1 1 1
= %C(@) - ﬁ((@—1)+ ﬁ‘é(a—lkz)

:1<<a>—i<;<o¢—1>+---+<—1>“@+,€1 o= (a-1).)

_Z( 1)n IC lHk

n=1

(- n+1) (1)

103



Hence we have the general formula

E a-n+ ,
ok = 3y T e

Dividing by £? and summing w.r.t to k

k) ai( 1" ¢(a—n+ 1)C(8 +n) + (-1)° 5

oo
2
k=1

Now we use the general formula

q-2
S (14 D) e -5 k16
k=1

1 ng

Ngk

n

Hence we have

) a+pB-2
> = (1 ) - 5 3 k)5 b)

And the generalization is the following formula

a a-1 a+p-2
Cg( k) /;(—1)"’14(04 -n+1)((B+n)- % 2:21 (—1)0"1C(n +1){(a+ B -n)

o (~1)t (1 . O‘T”g)g(mm 1)

oo
2
k=1

We conclude by putting that

13.10 Relation to polygamma

We can relate the generalized harmonic number to the polygamma function

_1(k+1)
H(P) =((p) + (-1 pflw;ﬂ 1(
proof
-y Lo 3 L
SR k1 P
Now change the index in thesumn =i+ k+1
R Y B P s
A= g =0 (i+k+1)P
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We know that

’l/)p_l(k+1) :i 1

O T & ket P21

Hence we have

AP = () -1y D

We can use that to obtain a nice integral representation.

13.11 Integral representation for r=1

dxr

o H,gp) ~ 1 1 Liy(z) log(z)P~t
T 0@ (Y ey T
proof
Note that

1-z°

1
wo(a+1):f0 - dz

By differentiating with respect to a , p times we have

0 11-2g°

= — d
Oa? Jo 1-x o

Yp(a+1)

Ppla+1)=- /01 2" log(@)” dzx

l1-z

Leta=k

1 gk log(x)P~!

dzr
1-x

ks 1) == [

Use the relation to polygamma

1 ! pl
f " log(z)"™
0

H =) + (D' =5, o

Now divide by £ and sum with respect to k

dx

< [P , 1 1 Lig () log(a)P!
X S =N @ - (D A e
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13.12 Symmetric formula

co H(p) o H(Q)
2 m +Zl 1 = C(P)(a) +C(p+a)

k=

proof

Take the leftmost series and swap the finite and infinite sums

I

1
P kT o

<.
Il

=

ke

The second sum can be written as

oo IEQ)
-¢(p+q)

Hence we have

(p) (q)

> = (p)a) - 3 T e a)
k=1 k=1

co () oo (9)

S S ) o)
k=1 k=1

For the special case p=¢g=n

13.13 Example

oo (3)
> B 1EB) o)

2
k=1 k

proof

Using the symmetric formula

S = 7
=((2)¢B) +<¢(5) -

Using the integral formula on the second sum

(2)
B @+ [ @),

>

k=1
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Using integration by parts on the integral

! Lig(x)log(z) .~ ! Lig(z)Liz(1 - x)
/0 ————dzr = /(; —————dx

l1-z T

Let us think of solving

fl LIQ(JZ)LIQ(I —.I) da
0

xT

Using the duplication formula

Lig(1-2) = {(2) - Lia(x) — log(x) log(1 - x)

[ iz )62) - i) o) og(1 =),
0

T

The first integral

) [ = )¢9

The third integral
/‘1 Liz(x)log(z)log(1 - a:) 1 L12(Jj)
0 T "2 T
Finally we get
I Lig(z) log(z 1 Li3 Lij(z)
o 1-xz 2
So

oo (2) fl le(l‘)
k 1 k3 T2

Hence we finally get that

(3)

5 T - @ (o) -3 [ 22

Let us solve the integral

fl LiZ(x) "
0 X

By series expansion
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This can be simplified to conclude that

'Lij(a) s
fo L da = ((2)C(3) - gg
Now using that
,i B _3¢(5) - C2)¢(3)
Hence
.2
fl L@@ 40— o2c@)c3) - 3¢(5)
0 X
Finally we get

oo (3)
,;1 h;z =C(2)¢(3) +<(5) - 7(24(2)4(3) 3¢(5)) = L()

2¢(2)¢(3)
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14 Sine Integral function

14.1 Definition

We define the following

Si(z) = foz sin(z) dz

T

A closely related function is the following

si(z) = - /;oo sinfr;) dz

These functions are related through the equation

Si(z) =si(2) +g

A closely related function is the sinc function

1 z=0
sinc(x) =
sin(z)

z+0

Using that we conclude

d . .
%Sl(.ﬁ) = sinc(x)

For integration we have
f Si(x) dx = cos(z) + zSi(x) + C

14.2 Example

Show that

fooo sin(z)si(x) dx = —%

proof

Using integration by parts we get

[T, 1 e

T 2 Jo x
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Let2z =t

1 o a1
“f sin(t) , 7
2 Jo t 4

14.3 Example

Prove

/Ooo z* si(z) de = RAC) sin(%)

(0%

proof

Using the integral representation

—fooxafl /mwdtd:c
0 x t

Letaxy=t

_\/‘ooxafl be Sln(zy) dydl’
0 1 Yy

Switching the integrals we get

oo 1 oo
—/ *f 7t sin(zy) de dy
1 yJo

Now letzy =t

(o] 1 ] a1 .
—fl ya“/o t*7" sin(t) dt dy

The Mellin transform of the sine function is defined as

M (sin(z)) = /Ooo 2 sin(z) da = T'(s) sin (%5)

Hence we conclude that

_F(a)sin(%)/;m yal+1 :—ysin(%)



14.4 Example

Show that
_arctan(a)

e T 2 d —
fo e *Tsi(x) dx

proof

Use the integral representation

—[ooe_w” foo%dtdm
0 x t

Letazy =t

_ / p-ae f S02Y) 4 de
0 1 Y

Switching the integrals

[e] 1 ]
—f ,f e % sin(xy) dx dy
1 yJo

The inner integral is the laplace transform of the sine function

. a
ES(Sln(at)) = m
Hence we conclude that
f < 1 _arctan(a)
1 y2+a? 7 o

14.5 Example

Prove the following

[Ooo si(z)log(z)dx =v+1

proof We know that

[ z* si(x) dx = RAC)) sin (B
0 « 2

Differentiate with respect to «
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2

2 o 2 2

fo"" 2% tsi(x) log(x)dx = FC(MQ) sin(B) - M sin(m) - LW) cos

Leta—1

/Ooosi(x) log(x)dr=1-9¢(1)=1-(-y) =1+~

14.6 Example

Find the integral

f si(z) sin(px) dx
0
solution

Using integration by parts we get

si(z)cos(pz) " 1 [ sin(z)
[_]U +]—)fo — cos(px) dx

p
Taking the limits

hm_sn(x) cos(pz) _ si(0) _ T
20 p p 2

lim — si(z) cos(px) _

Hence we get

1 [ si
LI [ sin(x) cos(px) dx
2p pJo T

The integral

% gin(z) 1 reesin((p+1)x)-sin((p-1)x)
b h dm

cos(pz)dx = =
2 T
Separate the integrals

1 resin((p+1)x) 1 reesin((p-1)x)
1= 3 ./0 ——dx - 3 /(: — dx

X

Ifp-1>0weget

(

iyes

2

)



Ifp-1<0

Izlf sm((p+1)x)dz+1f sm((l—p)x)dx:z
2 Jo x 2 Jo x 2

If p = 1 we have

I:lf S(20) 4y T
2 Jo T 4

Finally we get

—2% p>1

si(z)sin(px)dx ={ _ -
| si@ysinpayde =z o1
0 p<l1

14.7 Example

Prove that for0 < a < 2

[ si?(z) cos(ax) dx = R log(a+1)
0 2a

proof
Using integration by parts we get

.2 . o0 0o .
[51 (x) sm(az)] ~ 2[ si(z) sin(z) sin(az) dz
a o aJdo x
Taking the limits
.2 .
i S (x) sin(ax) 0
x—0 a
.2 .
i S (x) sin(ax) o
T—>00 a
Let the integral

I(a) = /Ooo w sin(az) dzx

Differentiate with respect to a

I'(a) = [Ooo si(z)sin(z) cos(az) dz
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Now use the product to sum trigonometric rules

I'(a) = % /;oo si(z)(sin((a + 1)z) —sin((a - 1)x)) dz

From the previous exercise we have
[ si@)sin((a+ Dayde = ——— >0
S1(Z ) sin( (a r)ar = ———— ; a
0 4(a+1) "’

fomsi(a:)sin((a+ Da)dr=0;a<2

Hence we conclude that for 0 < a < 2

™

M@=~

Integrate with respect to a

I(a) = —glog(cu—l) +C

Leta—0

I(0)=0+C - C=0

Hence we have

f‘” si(z) sin(z)

; sin(az) dx = —% log(a +1)

Which implies that

/(;oosiQ(x) cos(az) dx = _;2 (—glog(a+ 1)) = ;—alog(a-r 1)

14.8 Example

Find the integral, for a # 1

fow si(z) cos(ax) dx

solution

Use integration by parts to obtain
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lfom sin(x) sin(ax) da

a €T

Let the integral

I(t) = fowe_mwdx

Differentiate with respect to ¢

I'(t)=- '/Ooo e " sin(x) sin(ax) dz

Use product to sum rules

I'(t) = % fow e (cos((a+1)x) - cos((a—1)x)) dx

Now we can use the Laplace transform

, 1 t t
I(t)ZQ(t2+(a+1)2 _t2+(a—1)2)

Integrate with respect to ¢

I(t) :—ilog(w)+0

t?+(a-1)2

After verifying the constant goes to 0, we have

[} <31 3] 2 2
f ot sin(z) sin(ax) e 1 log(t +(a+1) )
0

x 4 2+ (a-1)2

Lett -0

00 o . 2
f sin(z) sin(ax) o = 1 log ( a+1 )
0 T 4 a-1

We conclude that

oo 1 a+1 2
i 5 dr=-—1
ﬁ si(z) cos(ax) dx ™ Og(a—l)
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15 Cosine Integral function

15.1 Definition

Define

ci(z) = - ﬁoo cos(t) dt

t

A related function is the following

Cin(x) = /Ow 1—+()s(t)dt

The derivative is

d . . cos(x)
%Cl(l‘)— .

The integral

/ ci(x) dx = zci(x) - sin(z) + C

15.2 Relation to Euler constant

Prove that

lim Cin(z) -logz = v

zZ—00

proof

Write the integral representation

lim

z—00 JQ

z1—cos(t
%()dt—logz

Can be written

z1- t z 1 it 1 t
lim [ 1zcos(t) )dt—[ = dt- f _cos®) 4y
z—o00 Jo t o 1+t o t(l+t) t

This is equivalent to

oo ts—l
—t5" L cos(t)dt

y
=0Jo (1+1)

The first integral
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oo ts—l
fo G TN

The second integral

fow t5 L cos(t)dt = T'(s) cos(ms/2)

Hence, it reduces to evaluating the limit
lir% L(s)I'(1-s)-T(s)cos(mws/2)
Using I'(s + 1) = sI'(s)

lim I(1-s)-cos(ms/2)

s—0 S

Use L'Hospital rule

lim ~T(1 - 5)(1 - s) + (m/2) sin(ms/2) = (1) =

15.3 Example

Prove the following

Cin(z) = —ci(z) +log(z) +~

Start by
Cin(x) = / cos(t)
Rewrite as
Cin(z) = fw Lo cos(t) g _ fw Locos®) 4
0 t T t
Which simplifies to

Cin(z) = lim [ fo ’ 1_%‘”(“ dt - log(z)] —ci(z) +log(x)

Z—>00

The limit goes to the Euler Maschorinit constant

Cin(x) =~ - ci(z) + log(x)
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15.4 Example

Find the integral

fooo ci(z) cos(pz) dx

solution

Using integration by parts we get

[Umr T )

p o P

Taking the limits

lim ci(z) sin(pz)
z—0 p

=0

lim ci(z) sin(px) o

Tr—>00 p

Hence we get

_1/ Msin(px)dx
p Jo x

The integral

* cos(z) . 1 peesin((p-1)z) +sin((p+1)x)
[0 ———= sin(pz) dx = 3 /0 - dx

Separate the integrals

1 resin((p+1)x) 1 e sin((p-1)x)
=3[R o [T g,

Ifp-1>0weget

Ifp-1<0

If p = 1 we have
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1 [ sin(2
I:ff Ll G s
0

Finally we get

~3, P> 1
fo ci(x) cos(pz) dx = - p=1
0 p<l
15.5 Example
Find forp > 1
f ci(px)ci(z) dx
0
solution
Let

I(p) = fow ci(px)ci(z) dx

Differentiate with respect to p

I'(p) = 2% /000 cos(px)ci(z) dx

If p > 1 from the previous example we conclude that

1 (-7 m
o= (5)-

p\2p
Integrate with respect to p

I(p)=—+C
2p

Take the limit p - o0, s0 C = 0.

15.6 Example

Prove that

fom z* tei(x) d = —@ cos (%)
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proof

Use the integral representation

—fooxa_lfoo cos(t) dtdz
0 x t

Lett=yx

0 1 Y

Switch the integrals

[} 1 (o)
—f f/ 27! cos(yx) dx dy
1 yJo

Using the Mellin transform we get

() [ e ()

15.7 Example

Prove that

™

fo ci(x)log(z) dx = 5

proof

From the previous example we know

/Ow 2 'ci(z) dx = _¥ cos (%)

Differentiate with respect to «

[T ey ton@) o = T2 o (07) O o (am) 7T, (o)

Take the limit o — 1

*° ™ ™ ™
i(2)log(z)dz=0-0+—sin(~) =2
fo ci(x)log(z) dx t5 sm(2) 5
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15.8 Example

Show that

oo 1
f ci(z)e *dx =-—logV1+a?
0 o

proof

Use the integral representation

_ f ooz f cos¥) 4 i
0 1 Y

Switch the integrals

o] 1 co
—f f/ e " cos(yx) dx dy
1 yJo

Use the Laplace transformation

oo o} 1 1
[ dy=-—log(1+a?) = ——logV1+a?
fl y(a? +y?) Y700 og(1+a’) a 8 “
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16 Integrals involving Cosine and Sine Integrals

16.1 Example

Find the integral
foo si(qz)ci(z) dx
0

solution

Using the integral representation

—fwsi(qx)fmwdydx
0 1 y

Switch the integrals

—/mlfomsi(qx) cos(yz) dx dy
1

Yy
We also showed that
” 1 a+1
. o L

/(; si(z) cos(ax) dx ” Og(a . 1)

Let a = y/q
f si(z) cos(yx/q) dI:—ilog(y_HJ)

’ 2y "\y-q

Let €T = tq

0 1
f si(qt) cos(yt) dx = ——log(y+q)
0 2y y-q

Substitue the value of the itnegral

1 re1
L e (22)
251 y* T\y-q

We can prove that the anti-derivative

[}

[log(y) B ilog(y2—q2) _ 21ylog(y+q)]

q 2q y-q
Which simplifies
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The limit y - oo

The limity - 1

Can be written as

16.2 Example

Prove that

[Ooo C;(imﬁ) dx = —% {Si(aﬁ)2 + ci(aﬁ)z}
proof
Let the following

[ ci(ax)
I(a)—fo e dz

Differentiate with respect to «

iy 1 [ cos(ax)
I(oz)—a’[0 e dx

Letx+38=t

I,(O[) _ l ‘/ﬁoo COS(O{(t—B)) dt

(o t

Use trignometric rules

I'(a) = 1 [ﬁ‘x’ cos(at) cos(af) + sin(at) sin(af) gt

o t

Separate the integrals

r, y_ cos(af) e cos(at) sin(af) [ sin(at)
I'(a) = 2 fﬁ St fﬁ 2t

This simplifies to
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I'(a) - —%jﬁ)a(aﬁ) - @sﬁ(aﬁ)

Integrate with respect to o

I(a) - -% [si(aB)? + ci(aB)?} + C

If @« » 0o we have C' = 0.
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17 Logarithm Integral function

17.1 Definition

Define =

lie) = .[ log(t)

The derivative is

1
log(z)

li(2)

|~

The integral
f li(2)dz = 21i(2) - Ei(2log 2)

By using integration by parts

f li(z) dz = 21i(2) - ; log(x)

In the integral let —2log(z) = ¢

f li(z) dz = 2li(z) + f —dt =z1i(2) - Ei(2log 2)

2log(z) t

17.2 Example

Prove that

fol li(x) dz = —log(2)

proof
Let the following

e~ 0 log(t) dt

Ka) = / f T log(t) d

Differentiate with respect to a

1 T
I’(a)=—/ f % dt de
0 0
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I'(a) —Lifllﬂd
a) = X X
a-1Jo

Which reduces to

1 1 1

F«w:(a—IXQ—a):Q—a_l—a

Integrate with respect to a

I(a) = log(l -

)+C
2—-a

Take the limit a — oo we get C' =0

e~alos(®) gy l1-a
e
log(t) 2-a
Leta—0

fol li(x) dz = log (%) = -log(2)

17.3 Find the integral

1
f 2P i(x) da
0
solution

Let the following

—alog(t)dt
0= [l [
(a) = T ToaD) dx

Differentiate with respect to a

1 T
I'(a) = —/ zP! / t~*dtdx
0 0

! 1 1 Y4 d
I'(a) = ~[ -a
(@)=0=7 ), v de

Which reduces to

, _ 1 _1 1 ~ 1
Ia) = (a-1)(p-a+1) _p{p—a+1 1—a}

Integrate with respect to a
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1-a

I(a):%log( )+C

p-a+1

Take the limit a - oo we get C' =0

e—alog(t) 1 1-—
f pl[ dt x:—log( a )
log(t) P p-a+l

Leta—0

e~aloe(®) gt 1 1 1
p-1 == ==
[ f log(t) de plog(p+1) plog(p+1)
17.4 Find the integral

fol li (i) sin(alog(x)) dz

proof
Let the following

L1 b log(t)dt

1(b) = folsin(alog(x))fow Wdz

Differentiate with respect to b

I'(b) = —folsin(alog(x)) [)E t7° dt dx

1

1
I'(b) = — f 2 sin(alog(x)) dx
b-1Jo

Letlog(z) = -t

1

') =1 f e~ sin(at) dt
- 0

Using the Laplace transform

a

"= @

Integrate with respect to b

alog(a® +b?) —alog(b—-1)? +2 arctan(b/a)

I(b
(b) = 2a2 + 2

Letb —» oo
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=—— 4+
2(a2+1)

Hence we have

log(z)) f _blog(t)dt dr alog(a? +b?) — alog(b-1)% + 2arctan(b/a) T
./ sin(alog(x log(t v 2a% +2 2(a?+1)

Letb—0

L, . _alog(a®) ™ 1 z
fo sin(alog(z))li(x) dx = 2a2+2 3(a2+1)  wil (alog(a) - 2)

17.5 Example

Find the integral

s
f fi) log?™! (l) dx
0oz x

proof
Let the following

1 z o—alog(t) "
Ha) = ./ : [./0 log(t) d]logp (é) e

Differentiate with respect to a

'(a) :—folé[fozt—“dt] log™! (i) da

I'(a) = z %og?™! (l) dx
- T
Let —log(z) =
I'(a) = T (a1 gy
a-1Jo
I,(CL) - _ F(p) — F(p)

(I1-a)(1-a)?  (1-a)r+!

Integrate with respect to a

~_I'(p)
p(1-a)P
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Let a — 0, Hence

17.6 Example

Prove that
% (1 _1 7T
f h(f)logp (z)dx=-— T'(p)
1 x sin(mp)
proof
Let the following

I(a) - fl "l () log? Y () d

Differentiate with respect to a

d. . d o od ae
—li(z™) = — f =
da da Jo log(t) a

Hence we have

1 oo
I'(a) = - f 2% log? ! (x) dx
a1

Letlog(z) =t

1 o]
I'(a) = - [ e~(a D=1 gy
a Jo

Using the Laplace transform

@) =T 0) 5

Take the integral
/OOI’(a)da - T )[m o
1 W a(a-1)p
The left hand-side

I(oo)—](l)ZF(p)/loo B

a(a—-1)P
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Now since I(o0) =0

e 1
=_T b,
1) =-1() [ s
Which implies that

Lo e ) [

Now lett=a -1

[
o t+1
Using the beta integral # +y = 1 and x — 1 = —p which implies that z =1 -p,y = p

Hence we have

S Cdt=5(p1-p) = T(G)T(1 - ) =

t+1 sn(rp)

Finally we get

flm H(i) log? ! (z) dx = ———T'(p)

sin(mp)
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18 Clausen functions

18.1 Definition

Define

sin(k0 .
pa q”;c(m ) mis even

cly,(0) =
pOya] Coz(n]fe) m is odd

18.2 Duplication formula
A (20) = 271l (6) = (=1) ™l (7 - 6))

proof

If m is even then

. >, sin(km — k6 had sin(k6
clipg(r=0) =Y % =- Z(-M#
k=1 k=1

This implies

cla(8) + iy, (7 - 0) = Z(_l)k sin(k6) - sin(kg) 1 3 sin(2k0)
= km ] km 2m 1 frc] km

This implies that

L (20) = 2™ (L (8) = cln (7 - 0))

If m is odd then
iy, (7 0) = Z cos(knr ko) Z( 1)k cos(k0)
= ] km
cos(k:&) d cos(k0) 1 s1n(2k0)
S el | gy 1S
k=1 k=1 k=1
Which implies that

cln (20) = 2™ (el (0) + cly (7 - 6))

Collecting the results we have

cln(20) = 2™ (el (0) = (1) cly (7 - 6))
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18.3 Example

Find the integral, for m is even

fo " el (0)d6

solution

Using the series representation

f sm(k9)
0

Swap the integral and the series

>, kim fowsin(ké)dﬁ
The integral
T 1 T (-1)F+1
f sin(k0)dl = - |:f cos(k:@)] ="
0 k 0 k
We get the summation
= —(-1)F+1

‘;{ng(mu)m(mu)

Now use that

1(s) = (1-2"7)¢(s)

[

m+1 —C(m+1)+(1 27 ((m+1)=((m+1)(2-2"™)
k=1 k

18.4 Example

Find the integral for m is even

f () do
0

Using the series representation

f°° i sm(k0) nb gy
k=1
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Swap the integral and the series

Zim f sin(k0)e ™ df

Using the Laplace transform we have

. 1
2 iR )

Add and subtract k? and divide by n?

1 i k2 +n?2-k2
) km=1(k2 + n2)

Distribute the numerator

1 1 & 1
PR UD Rl D e T

Continue this approach to conclude that

i 1 1)7 & 1
(1) g lm == 1)+ S S s

=1

Let m —2j — 1 = 1 which implies that j =m/2 -1

(_1)m/271 i 1
nm-2 = k,(k.Q + TL2)

m/2-1 1
> () - (21 1) +

=1

Now let us look at the sum

o 1 © 1 1 1
;k(k2+n2) ‘gzmk{k—m_mm}

Which can be written as

= 1 1 &1 in —in

According to the digamma function

o 1
,;W m2 {7+¢(1+m)+¢(1_m)+ﬂ

which simplifies to

kad 1 (1 —in) + (1 +in) +2y
,;1 k(k2+n2) 2n2
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Now we we can verify (1 —in) = (1 + in)

Which suggests that
(1 +in) + (1 —in) = 2R {¢p(1 +in)}

Hence we have the sum
B 29{{1/1(1 +m)} + 2y B 9‘{{1/)(1 +zn)} +7)
- 2

had 1
,; k(k2+n2) 2n? n
This concludes to
= @UD) | R}y
n7"

Z (-1) n2l
=1
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19 Clausen Integral function

19.1 Definiton

We define

hy(z) =Y sin(kx)

2
k=1 k

19.2 Integral representation

cb(Q)z—fflog[Qsin(%)]dqb

proof
Start by the following

oo _ik0 oo 00 i
. e e cos(kf) . & sin(k0)
Liz(e”) = ) 12 :kz_:l 2 +zkz_:1 2

k=1

By the integral definition of the dilogarithm

Liz(e”)—gm):—fld de

Let z = ¢

Lis(e) - ¢(2) = —i fog log(1 - ¢)d¢

Let us look at the following

1-€' =1-cos(¢) —isin(¢) = 2sin®(¢/2) - 2isin(¢/2) cos(¢/2)

Which simplifies to

1- €' =2sin(¢/2) [sin(¢/2) —icos(¢/2)] = 2sin(qb/2)e_(i/2)(”_¢)

Hence our integral

Liz(e') - ¢(2) = i foe log [2sin(¢/2)e” D] g

Use the complex logarithm properties

Lig(e) - ¢(2) = i foe log [2sin(¢/2)] d¢ + i(ﬂ -0)? - %rz
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By equating the imaginary parts we have our result.

We can see the special value

oy (Z) _ i sin(km/2) _ i (-1)* G

2) =k i=o (2k + 1)

Where G is the Catalan’s constant.

19.3 Duplication formula

Prove the following

cl2(260) = 2(cly(0) - clo (7 - 6))

proof

We provide a proof using the integral representation

cly(20) = —/026 log [ZSin(%)] dt

Lett=2¢

-2 [00 log [2sin (¢)] do

Use the double angle identity

o o3 ()]

Separate the logarithms

RSS

—2foolog[2sin(§)]d¢—2[0910g[2cos( )]qu

We can verify that

clo(m-0) = [Oglog [2cos(§)]d¢

Hence

cla(20) = 2(cla(0) — cla(7 - 0))

Using that we get the value
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3 s
cla(37) = 2cly (7) - 2cly (—5)

o(5)-5) (3] o

Since cla(37) =0

19.4 Example

Prove that

2m 9 7T5
/(; clo(z)*de = %

Using the series representation

adgiad 27
1;1”2::1 (nk)?2 /0 sin(kx) sin(nz)dx

Consider the integral

2 . . 1 2m
[0 sin(kx) sin(nz) dx = 3 fo cos((k —n)x) —cos((k +n)z)dr

We have two cases

If n = k then
1 27
= f 1-cos(2nx)dx =7
2 Jo
Ifn+k
2 . _ . 27
% _/0 cos((k— m)) — cos((k + n)a) di = % [sm((kkz_ nn)iv) ~ sm((kk:nn)x) O 0
Hence we have
2 0 n=+k
f sin(kx) sin(nz) dr =
0
T n=k
We can write the series as
22 e L 2

Now since the integral n # k goes to zero the result reduces to
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1 5
=W = oo

3

19.5 Example

Prove that

/2 7 w2
1 i dr = —((3) - —log2
/0 xlog(sinzx) dx 16(( ) g o8

proof

sl jus 2
I= / ’ xlog(sinz) dx = f ’ xlog(2sinz) - 7Tglog(2)
0 0

The integral reduces to

gD T
B 4n:1 ’I’L3 471:177’3
7
- (3

L)

Collecting that together we have

2
1= Le(3)- T log(2)

19.6 Example

Prove that

/4 T
f xcot(x)dx:—glog(2)+G/2
0

proof
Start by integration by parts

/4 T /4
f xcot(x) dx = 3 log(2) - f log(sinx) dx
0 0

In the integral
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/4
[ log(sinx) dx
0

Letz — t/2

1 /2
= f log(sint/2) dt
2 Jo

Which can be written as

1 /2 ) 1 /2
7/\ log(2s1nt/2)dt—ff log(2) dt
2 Jo 2 Jo

Using the Clausen integral function we get

—%Cb(w/z) - %bg(g)

Note that cla(7/2) = G
We deduce that

w/4 . T
/0 log(sinz) dz = -G/2 - 1 log(2)

Collecting the results we have
74 ™ ™ T
f xcot(x)dr = 3 log(2) + G/2 - 1 log(2) = 3 log(2) + G/2
0

19.7 Second Integral representation

Prove that
) 1 log(z)
12(6) = -sin(0) |
cla(8) = ~sin(6) 0 x2-2cos()x+1
proof
Note that
22 =2cos(@)z+1=2> - (e +e Nz +1=(z-e)(x-e)
This implies

1 o {1 1 }
22 -2cos()z+1 el —ei0 g —eif g —eif
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Note that e?? — e = 2isin(4)

1 o { 1 }
—2cos(f)z+1  2isin(h) \z—e® z—e

Now use the geometric series

1 _ 1 ke o—i(k+1)0 N~k i(k+1)0
-2cos(@)z+1  2isin(0) {k;)x ¢ k;]x ¢

1 o0
-2cos(f)x+1 Sln(ﬂ) Z

~sin(k0)

That implies

. 1 log(x) = . fl k-1
—S == S 1 = 1
sin(0) fo 2 cos(0)x + 1 dz kE=1 sin(k6) A " Hog(z) dx = cla(0)

19.8 Example

Find the value of

proof

Use the second integral representation

c12(27r/3)——\/_[ _log(z)

22+x+1
Use that
2 -1=(z-1)(z*+z+1)
Hence
g1
012(2w/3):-ﬁf L7 Jog(x)dz
2 Jo a3-1
Letz3 =t
1 1 tl/S_l(tl/S _ 1)
1o (27/3) = - f log(t)d
clo(2nf3) = = [ a0y
Note that
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1 .’L‘S_l
P'(s) = [) log(x) dx

l1-z

We deduce that

el (21/3) = —% (W' (2/3) - v'(1/3))
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20 Barnes G function

20.1 Definition

Gl +1) = )y Pexp (- 2 ] {(1 ) ez )}

n=1
20.1.1 Functional equation

Prove that

G(z+1) =T(2)G(z2)

proof

From the series representation we have

k

Gl+1) = Varep(-z-72+ 1)

( k+z ) o (22—1—2k)
X —_— 1.
G(2) kio-1) TP\ o

Gl

This can be written as

k

)

Ex N

M:Z\/ﬁexp(—2+l)ﬁ( k+z )

1+2k z\ e 7?2 2\7!
) 1+ 2 1+2 (
G(2) o) Mk exp( ok )( +k) E ,1—[1( +k) ‘

Use the definition of the gamma function

Ot arvares -+ 1) 1 (52 ) e (<Lo25) (1)

It suffices to prove that

7\ = k+z ) ( 1+2k)( z)
V2 4~ )1+ 2) =1
‘ 7TeXp( Z+2)g(k+z—1 PUT2r U 7%
or
°°( k+z )k (_1+2k)(1 z)_exp(z—g)
i \k+z-1 2k k N2
Start by
N( k+z )’f ( 1+2k)( z)
lim xp [ - -
Nooop i \k+2z-1 2k k
Notice
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f_vl( o )(1k) it (k +2) TS (1+ )

k+z-1 k Y, (k+2-1)k

I (ke 2) M TR (R + 2)
ZNITINE (k + 2)k+

(N )M (ke 2) TG (b 2)
ZNI TN (K + 2) R+

B (N+z)N+1 Hg:?(k + z)k+1
ZNI TS (k + 2) R+

~ (N+Z)N+1
N zN!

The second product

Hence we have the following
e~ 3HN-N (N +z)N*!

ZN
According to Stirling formula we have
N+1
o~ HN-N (N +2)M o 3HN-N (N+2)"" « 1
ZN! 2(Nje)N  /2xN

By some simplifications we have

1+—
N

eé<HN1°gN>( Z)x(1+Z)N>< 1 exp(-3+2)

z

Where we used that

lim H, -log(n) =+

and

N
lim (1+ i) = ¢
N

n—oo

20.2 Reflection formula

log{G(l ; z)} _ zlog(Sin:rZ) ) . cla(272)

2
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proof

Start by the series expansion

G(1-2) (27) /2 exp (%) e, {(1 - %)nexp (% + z)}
GO+2) @m e (=) I (1 5) ew (57 -2))

n=

This simplifies to

G-2) _

Zo? (n—z)
G(1+2z) 2m)” H

(n+z)"

Take the log of both sides

log{gﬁlz;} =-zlog(2m) + 2z +log{n EZ;;;H }

Let the following

f(z):log{n (n-2)" } inlogn z) -nlog(n+z) + 2z

n:l( +Z)n n=1

Differentiate with respect to =

-n —n(n+2)-n(n-2)+2(n?-2?)

HOEDY 223

Zn-z n+z n2 - 22

z

Hence we have

00 _222
n=1 n?—z2
Now we can use the following
) _222
zmeotmz =14 ) ———
n=1 "~ %

Hence we conclude that

f'(z) = zrcotmz -1

Integrate with respect to z

f(z)= fozxﬂcot(mc) dx — 2z

Hence we have
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1og{G(1 -z)

G(1+ z)} = —zlog(2m) + fo zm cot(mz) dx

Now use integration by parts for the integral

f xmeot(mx) dx = zlog(sinmz) — f log(sinmx)dx
0 0

That implies

= zlog(2sin7z) - [ log(2sinmz)dx
0

. 1 21z o
:zlog(QSlnﬂz)—?f log (251n§)dx
m Jo

cla(272)
T

=zlog(2sin7z) +

(272)

G(1- mz) - zlo 7T+1 8 .7r
| { ( Z)}:zlog(QSin 2) - zlog(2m) Mzzk (Sl(z)) cly

G(1+2)

21

20.3 Values at positive integers

Prove that

proof

n-1

G(n) = []T (k)
k=1

It can be proved by induction. For G(1) = 1, suppose

We want to show

By the functional equation

G(n) - jr[iF(k:)
G(n+1) = [[T(k)
k=1

G(n+1) = T(n)G(n) = T(n) :1‘[1 (k) - ]f[ll“(k)
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20.4 Relation to Hyperfactorial function

We define the hyperfactorial function as

H(n) = ﬁ K"
k=1

Prove for n is a positive integer

G(n+1) = (n)"

H(n)
proof
We can prove it by induction for n = 0 we have, G(1) = 1,
suppose that
~ F(n)n—l
)= Ho-1
we want to show that
I'(n)™t
1)="T =T _
Gln+1) = D)) = D) gy
Notice that
n-1 n 1.k
" k" H(n)
Hn-1)=[[k=2+—="2+
(n-1)=[[K ===
We deduce that

G(n+1) =T(m)G(n) - X xn"_ ()"

H(n)  H(n)
20.5 Loggamma integral
Prove that
fozlogF(x)dx = glog(27r) + z(z2— D) +2logl(2) -logG(z + 1)
proof

Take the log to the series representation

2

2 1 oo
logG(z+1) = glog(27r)— w + Z nlog(1+ %) + ;—n -z
n=1
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Let the following

f(Z):inlog(l+Z)+22_Z

n=1 2n

Differentiate with respect to z

oo oo 2
, n z z
= 2 1=y
7() ,;z+n+n nZ::ln(n+z)
Now use the following
1 & z
() __V_E-FT; n(n+z)

which implies that

oo 2

227=z¢(z)+72+1

Zn(n2)

Hence we have

J'(2) = 2(z) + 72+ 1

Integrate with respect to z

f(z) = /(;Zx@/)(:c)der 7722 +2z

which implies that

f(z) =zlogI'(2) - [OZ logT'(z)dx + 7722 +z

Hence we have

2

2 1 z
w+zlogf(2)—/ 10gF(w)dw+%+z
0

logG(z+1) = glog(%r) - 5

By some rearrangements we have

/Z logT'(z)dx = glog(%r) + @ +zlogT(z) -logG(z+1)
0
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20.6 Glaisher-Kinkelin constant

We define the Glaisher-Kinkelin constant as

A= 7}21010 22 ]241]12 ;—n?[4

20.7 Relation to Glaisher-Kinkelin constant

Prove that

. G(n+1) et/12
lim S = =
n—eo (27)1/2nn?[2-1/12¢-3n2/4 A

proof

Use the relation to the hyperfactorial function

I (nh)™
nl—I}:;lo H(n)(gﬁ)n/2nn2/2—1/126—3n2/4

Now use the Stirling approximation
(n')n o (271_)n/2nn2+n/2€—n2+1/12
Hence we deduce that

i (27T)n/2nn2+n/267n2+1/12 1
im

n—oo H(n) X (27r)”/2n"2/2—1/12e—3n2/4
By simplifications we have

2 2
12+ [2+1/12 ;-0 [4 ,1/12

1/12 1 —
T ahe H(n) A

20.8 Example

Prove that

¢'(2) = %2 (log(27) +~ —12log A)

We already proved that

G(n+1) 1
(27T)n/2nn2/2—1/12€—3n2/4 12

log —log A
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Let the following
G(n+1) ]

(27r)n/2nn2/2—1/12673n2/4

o

Use the series representation of the Barnes functions
n ’I’L2 [es) n 2
(2m)™? exp (—w) ITrey {(1 + E) exp ( - n)}
(2m)/2n?[2-1/12¢=3n7/4

f(n) =log
Which reduces to
n+n?(l+vy) & n? n? 1 n?
= Elog(1+— )+ —=-n; - |—-—]! —
fm) y Tk Og( +k)+2k: 7 " 1z)loem)
Differentiate with respect to n
f'(n) ——%—n—’yn+m/)(n)+7n+1—n10g(n)—%+%+3§
Note that we already showed that
) 2
di > {klog(lJrZ)Jr;Lk—n} =nyY(n)+yn+1
By simplifications we have

1

1 _ —nl - 4z

/() = () ~ nlog(n) + = + -

Now use that
(n) =log(n) - / (n2 + 22 6271'2 _ 1)dZ
Hence we deduce that
nzdz 1
-2 f dz+ —
/() = (n? +22)(e?7* - 1) T 1on
Integrate with respect to n
* zlog(n* +z
f(n) :—[ (eg2(m_ D )dz+—log(n)
Take the limit n - 0
zlog(2?) zlog(27) .

_ 1
= 1'1_13% f(n) - 12 log(n) + fo (e27% — 1)
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Hence we have the limit

G(n+1)
(27r)n/2nn2/26—3n2/4

lim G(n+1)

n—0 (27T)”/2n”2/2 1/1267‘3”2/4 =0

B log(n) = }LI_I)T(lJ log
Hence we see that

o2 [

Finally we have

f(”):_fooo zlog(n® + z )dz+%10g(n)+2f (zlog(_z)

(627rz _ 1) 6271'2

f(n)=—ﬁmwdz—log(n2)f 62“— ) log n)+2f _zlog(z)

(627rz _ 1) e27rz _

Also we have

A
0 (e2m—1) 24

That simplifies to

f(n):_/ow Zlog 1+ 2/ zlog(2)

(627rz _ (6271',2 _ 1)

Take the limit n — oo

zlog 1
Qf — —log A
(e@=-1""12°*®

Now use that

5 f°° zlog(z) 9 /‘ zlog(z) 1 &
0 (627rz _ 1) e2nz — e 2Tz
=2 Z f 6_2”("+1)zlog(z) dz
n=0-0
_§ 1(2) ~log(21) ¢ log(n)

2m2n2

((2) - log2m)E(2) + C'(2)

27?2

Hence we conclude that

'(2) = (log(2m) - $(2))G(2) + 27* (5 ~log A) = () (lg(2m) + 7 - 12log 4)
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20.9 Example

Prove that
, 1
¢'(-1) = - -log A

proof
Start by

m 1-s -5 —s—1

¢(s) :77111_1};(2 k% - T—s - m2 + sm12 ) , Re(s) > -3.

k=1

Differentiate with respect to s
m ml—s ml—s m=$ m=S 1 —-s—-1
4 . —S
C (S) = "lll_{I(lx? (— kzz:l k lOg(k/') — W + 17—5 log(m) + log(m) + 12 — 12

Now let s - -1

m 2 2 1 1
¢'(-1) = 77lLl_r)riQ (—kZ:l klog(k) - mj + m? log(m) + % log(m) + TRET log(m)

Take the exponential of both sides

mm2/2+m/2—1/126—m2/4 mm2/2+m/2—1/12e—m2/4 el/12

oS D) Z p1/12 §5 =e'1? lim =

m—»o0o eZL’;l klog(k) m—o0o H(m) A

We conclude that

1
(1) = — —log A
¢'(-1) 15 ~log

20.10 Relation to Howrtiz zeta function

Prove that

logG(z+1) - zlogT'(2) =¢'(-1) - ¢'(-1,2)

proof
Start by the following

s . Z1=s *© sin(sarctan(z/z))

+2
2 s-1 0 (22 +a?)s2(e2mr -1)

z

C(s,2) = dx

Take the derivative with respect to s and s — -1
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(~1,2) = _ zlog(z) . 2% log(z) B ‘i . /oo zlog(z2 + 22) + 2z arctan(z/2) .
2 2 4 0 (627rz _ 1)

Now use that

-1 [
Which implies that
2zx 1
1) (1) dz = zlog(z) - 5 2(2)
By taking the integral

> rlog(z? + 2?) - xlog(xQ) z z 5
‘/O (627r:r _ 1) A J,‘lOg(],‘) dx - A Wﬁ(l‘) dr - 5

Which simplifies to

— 2., .2 2 #
fo ”3(06%_*12))43;:4’(—1)—1+2z210g(z)—210gf(2)+f0 10gf(af)d“f—§

Also we have

) - .
QL ($2+Z2)(62WI_1)d$:10g(2)_£—w(2)

By integration we have
 arct 1
2[) W(ﬁx:z+Og2(z)—zlog(z)+log1“(z)+0
Let z — 1 to evaluate the constant
oo 1 1
2 / arctan(x/z)d = M - zlog(z) +logT'(2) — = log(2m)
6271'9: _ 2 2
Multiply by =
1
2 f zar(;tan(x/z) dr = 2%+ %g(z) - 2%log(2) + zlogT'(2) - glog(%r)
e T _

Substitute both integrals in our formula

o2 ¢y

f logT'(x)dx = %10g(27r) +
0

We also showed that
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z(1-2)

[ logT(z)dx = glog(%r) + +2logl(2) -logG(z + 1)
0

By equating the equations we get our result.

20.11 Example

Prove that
G (1) _ 9l/24_~1/4,1/8 4-3/2

2
proof
We know that

log G(z) +log'(2) — zlog'(z) = ¢'(-1) - ¢’ (-1, 2)
Note that
1 S

¢(s3) = -1eE

Which implies that

¢(-13) =821 - 2

Hence we have

1y 1 1y 3 log(2)
1 )+ SlogD (=) =S¢/ (-1) - === ¢(-1
0gG(5) + 5loeT(5) = 3¢/ -1 - B¢
Using that we have
(1) 1/24_~1/4 3¢'(-1)
G 5 =2 ™ ez
Note that

(1=

This can be proved by the functional equation of the zeta function.
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