King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352

Section 1, CRN: 13536
Section 2, CRN: 30521
First Semester 1432-33 H (Fall-2011) - 4(4,1,1)
MANUFACTURING PROCESSES - 2

Machining Exercises Answers

Name:	Student Number:
	42

Answer ALL of the following questions [2 Points Each].

1. Let $n=0.5$ and $C=90$ in the Taylor equation for tool wear. What is the percent increase in tool life if the cutting speed is reduced by (a) 50% and (b) 75% ?

Solution:

Taylor Equation for tool life:

$$
\begin{aligned}
& \boldsymbol{V} \boldsymbol{T}^{n}=\boldsymbol{C} \\
& n=0.5 ; C=90 \\
& \Rightarrow \boldsymbol{V} \boldsymbol{T}^{0.5}=\mathbf{9 0} \Rightarrow \boldsymbol{V}_{\mathbf{1}} \boldsymbol{T}_{1}{ }^{0.5}=\boldsymbol{V}_{2} \boldsymbol{T}_{\mathbf{2}}{ }^{0.5}
\end{aligned}
$$

a) $V_{2}=0.5 V_{1}$
$\Rightarrow V_{1} T_{1}{ }^{0.5}=0.5 V_{1} T_{2}{ }^{0.5}$
$\Rightarrow T_{1}{ }^{0.5}=0.5 T_{2}{ }^{0.5}$
$\Rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{0.5}=2$
$\Rightarrow \sqrt{\frac{T_{2}}{T_{1}}}=2$
$\Rightarrow \frac{T_{2}}{T_{1}}=4$
\Rightarrow increase in tool life $=\frac{T_{2}-T_{1}}{T_{1}}=\frac{T_{2}}{T_{1}}-1=3$
\Rightarrow i.e. increase in tool life is 300%
b) $V_{2}=0.25 V_{1}$ (since speed decreases by 75\%)
$\Rightarrow T_{1}{ }^{0.5}=0.25 T_{2}{ }^{0.5}$
$\Rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{0.5}=4$

King Saud University - College of Engineering - Industrial Engineering Dept.

$$
\begin{aligned}
& \Rightarrow \frac{T_{2}}{T_{1}}=16 \\
& \Rightarrow \text { increase in tool life }=\frac{T_{2}-T_{1}}{T_{1}}=16-1=15
\end{aligned}
$$

\Rightarrow i.e. increase in tool life is 1500% (i.e. 15 - fold)
2. Taking carbide as an example and using the equation for mean temperature in turning on a lathe, determine how much the feed should be reduced in order to keep the mean temperature constant when the cutting speed is doubled.

Solution:

equation for mean temperature in turning on a lathe,

$$
T_{\text {mean }} \alpha V^{a} f^{b}
$$

Given: $T_{\text {mean }}=C_{1} ; V_{2}=2 V_{1} ;$ for carbide: $a=0.2, b=0.125$

$$
\begin{aligned}
& \Rightarrow C_{1}=C_{2} V^{0.2} f^{0.125} \\
& \Rightarrow V_{1}^{0.2} f_{1}^{0.125}=\left(2 V_{1}\right)^{0.2} f_{2}^{0.125} \\
& \Rightarrow\left(\frac{f_{2}}{f_{1}}\right)^{0.125}=0.5^{0.2} \\
& \Rightarrow \frac{f_{2}}{f_{1}}=2^{-\left(\frac{0.2}{0.125}\right)}=2^{-1.6}=0.330 \\
& \Rightarrow \text { reduction in feed }=\frac{f_{1}-f_{2}}{f_{1}}=1-0.330=0.670 \\
& \Rightarrow \text { i.e. reduction in feed is } 67 \%
\end{aligned}
$$

King Saud University - College of Engineering - Industrial Engineering Dept.
3. An orthogonal cutting operation is being carried out under the following conditions: $t_{o}=0.1 \mathrm{~mm}, t_{c}=0.2 \mathrm{~mm}$, width of cut $=$ $5 \mathrm{~mm}, V=2 \mathrm{~m} / \mathrm{s}$, rake angle $=10^{\circ}, F_{c}=500 \mathrm{~N}$, and $F_{t}=200 \mathrm{~N}$. Calculate the percentage of the total energy that is dissipated in the shear plane.
Note, for detailed solution, see similar exercise:"cutting force exercise 2.PDF"

Givens: thicknesses: $t_{o}=0.1 \mathrm{~mm} ; t_{c}=0.2 \mathrm{~mm}$

$$
\text { angles: } \alpha=10^{\circ}
$$

velocities: $V=2 \mathrm{~m} / \mathrm{s}$

$$
\text { forces: } F_{c}=500 \mathrm{~N} ; F_{t}=200 \mathrm{~N} ; F_{s}=? ; F_{n}=\text { ? }
$$

Required: \%ge of total energy dissipated in primary shearing zone

$$
\text { i.e. } \frac{U_{s}}{U_{\text {tot }}}(100)=\frac{\text { Power }_{s}}{\text { Power }_{\text {tot }}}(100)=\text { ? }
$$

Solution:
$\frac{\text { Power }_{s}}{\text { Power }_{\text {tot }}}=\frac{F_{s} V_{s}}{F_{c} V}$
Strategy: we have F_{c} and V, and we need to find F_{s} and V_{s}

- V_{s} can be obtained if we have shear angle (ϕ), from,

$$
V_{s}=V \frac{\cos \alpha}{\cos (\phi-\alpha)}
$$

o and ϕ can be obtained from,

$$
\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}
$$

o and r can be obtained from,

$$
r=\frac{t_{o}}{t_{c}}=\frac{0.1 \mathrm{~mm}}{0.2 \mathrm{~mm}}=0.5
$$

o now, working back \Rightarrow

$$
\phi=\tan ^{-1}\left[\frac{0.5 \cos 10^{\circ}}{1-0.5 \sin 10^{\circ}}\right]=\tan ^{-1} 0.539=28.3^{\circ}, \text { and: }
$$

King Saud University - College of Engineering - Industrial Engineering Dept.

$$
V_{s}=2 \mathrm{~m} / \mathrm{s} \frac{\cos 10^{\circ}}{\cos \left(28.3^{\circ}-10^{\circ}\right)}=(2 \mathrm{~m} / \mathrm{s}) * 1.037=2.075 \mathrm{~m} / \mathrm{s}
$$

Note how shear velocity is higher (4\%) than cutting speed

- F_{S} is now required and can be obtained force circle, by resolving component of F_{c} along F_{s} direction, and F_{t} opposite to F_{s} direction \Rightarrow

$F_{s}=F_{c} \cos \phi-F_{t} \sin \phi$

$$
\begin{aligned}
& =(500 N) \cos 28.3^{\circ}-(200 N) \sin 28.3^{\circ} \\
& =440 N-94.9 N=345 N
\end{aligned}
$$

- Substituting values of V_{s} and F_{s} into $\frac{\text { Power }_{s}}{\text { Power }_{t o t}}=\frac{F_{s} V_{s}}{F_{c} V} \Rightarrow$

$$
\frac{\text { Power }_{s}}{\text { Power }_{\text {tot }}}=\frac{(345 \mathrm{~N})(2.075 \mathrm{~m} / \mathrm{s})}{(500 \mathrm{~N})(2 \mathrm{~m} / \mathrm{s})}=\frac{718.875}{1000}=0.719
$$

$\Rightarrow \%$ ge of total energy dissipated in shearing is approximately 72%
Note, you can check your answer by calculating \%ge of energy dissipated due to friction (which should 28\%; see "cutting force exercise 1.PDF"), and adding the two values, which should amount to exactly 100\%.

King Saud University - College of Engineering - Industrial Engineering Dept.
4. For a turning operation using a ceramic cutting tool, if the speed is increased by 50%, by what factor must the feed rate be modified to obtain a constant tool life? Use $n=0.5$ and $y=0.6$.
Given:

$$
\begin{aligned}
& V_{2}=V_{1}+0.5 V_{1}=1.5 V_{1} \\
& T_{2}=T_{1} \\
& n=0.5 ; y=0.6
\end{aligned}
$$

Required: $\frac{f_{2}}{f_{1}}=$?

Solution:

Taylor tool life equation for turning operation:

$$
\begin{aligned}
& V T^{n} d^{x} f^{y}=C_{1} \Rightarrow \\
& V_{1} T_{1}^{n} d_{1}^{x} f_{1}^{y}=V_{2} T_{2}^{n} d_{2}^{x} f_{2}^{y}
\end{aligned}
$$

since $T_{2}=T_{1}$, and assuming constant depth of cut $(d) \Rightarrow$
$V_{1} f_{1}^{y}=1.5 V_{1} f_{2}^{y} \Rightarrow$
$\left(\frac{f_{2}}{f_{1}}\right)^{0.6}=\frac{1}{1.5} \Rightarrow$
$\frac{f_{2}}{f_{1}}=1.5^{-\frac{1}{0.6}}=0.509$
\Rightarrow feed must be modified by a factor of 50.9\%

King Saud University - College of Engineering - Industrial Engineering Dept.
5. Using the equation for surface roughness to select an appropriate feed for $R=1 \mathrm{~mm}$ and a desired roughness of $1 \mu \mathrm{~m}$. How would you adjust this feed to allow for nose wear of the tool during extended cuts? Explain your reasoning.
Given:

$$
\begin{aligned}
& R=1 \mathrm{~mm}=1 * 10^{-3} \mathrm{~m} \\
& R_{t}=1 \mu \mathrm{~m}=1 * 10^{-6} \mathrm{~m}
\end{aligned}
$$

Required:

- $f=$?
- how to adjust feed to account for nose wear

Solution:

- equation for surface roughness,
$R_{t}=\frac{f^{2}}{8 R} \Rightarrow$
$f=\sqrt{(8 R) R_{t}}=\sqrt{\left(8 * 10^{-3} m\right)\left(1 * 10^{-6} m\right)}=\sqrt{8 * 10^{-9} \mathrm{~m}^{2}}=$
$=8.94 * 10^{-5} \mathrm{~m} / \mathrm{rev}=0.089 * 10^{-3} \mathrm{~m} / \mathrm{rev} \Rightarrow$
\Rightarrow appropriate feed is $0.089 \mathrm{~mm} / \mathrm{rev}$
- when nose wear occurs \Rightarrow
radius (R) will increase \Rightarrow
to keep the surface roughness $\left(R_{t}\right)$ the same
\Rightarrow the feed must also increase

