King Saud University College of Engineering IE – 341: "Human Factors" Fall – 2014 (1st Sem. 1435–6H) **Human Capabilities** Part – B. Speech Communications (Chapter 7) Prepared by: Ahmed M. El-Sherbeeny, PhD

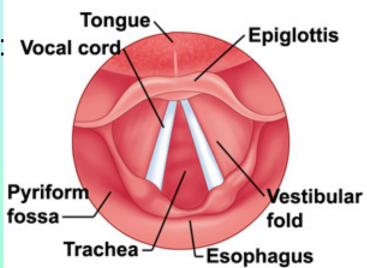
Lesson Overview

- Introduction
- The Nature of Speech
- Criteria for Evaluating Speech
- Components of Speech Communication
 Systems

Introduction

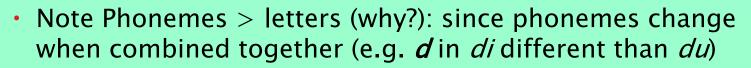
- Speech is form of "display"
 - i.e. form of auditory information
- Source of speech
 - Mostly human (focus of this lesson)
 - Could also be *synthesized*
 - i.e. machine; e.g. voice mail, access confirmation)
- Receiver of speech
 - Mostly human
 - Could also be machine: "voice recognition"
 - not advanced as synthesized sound

The Nature of Speech


- Speech: closely associated with breathing
- Organs associated with speech:
 - Lungs
 - Larynx
 - contains vocal cords
 - Pharynx
 - channel bet. larynx & mouth
 - Mouth (AKA: oral cavity):
 - tongue, lips, teeth, velum
 - Nasal cavity

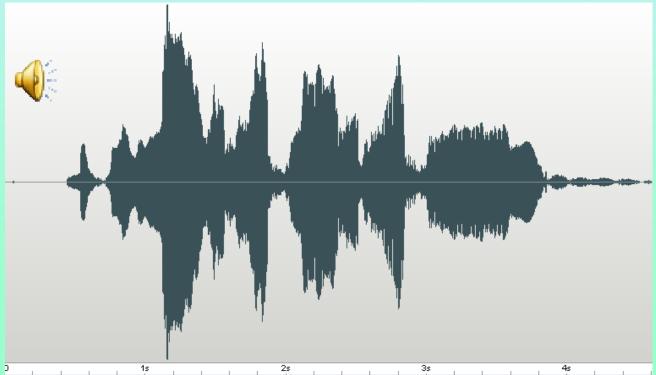
Cont. The Nature of Speech

- Vocal cords
 - Contains vibrating folds
 - Opening between folds: glottis / epiglottis
 - Vibrates 80-400 times/sec.
 - Rate of vibration of vocal cords: Vocal cords controls freq. of resulting speech sounds
 - Watch "Vocal Cords in Action": <u>www.youtube.com/watch?v=iYpDwhplLkQ</u>
 - Speech/sound waves:
 - Produced by: vocal cords
 - Further modified by "resonators":
 - pharynx, oral cavity, nasal cavity
 - Further articulated by "manipulators":
 - Mouth: tongue, lips, velum
 - Nasal cavity: velum, pharynx muscles

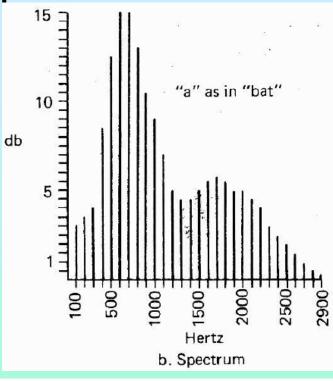


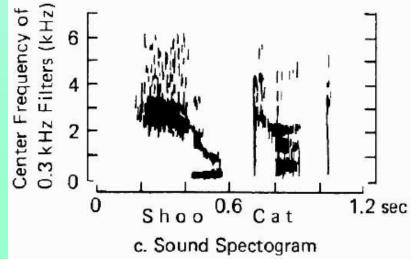
Cont. The Nature of Speech Types of Speech sounds

• Phonemes


- Basic unit of speech
- Defⁿ: "shortest segment of speech which, if changed, would change the meaning of a word"
- Phonemes in English language:
 - Vowel sounds: 13 (e.g. *u* sound in *put*, *u* sound in *but*)
 - Consonant sounds: 25 (e.g. g sound in gyp, g in gale)
 - Diphthongs (i.e. sound combinations):
 e.g. *oy* sound in *boy*, *ou* sound in *about*
 - Can you compare these to Arabic phonemes?
- Combining phonemes:
 - Phonemes form syllables ⇒ syllables form words (e.g. ac · a · dem · ic) ⇒ words form sentences

Cont. The Nature of Speech Depicting Speech

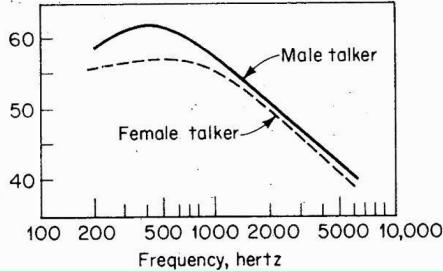

- Sound is generated by variations in air pressure
- This is represented in several graphical ways
- Method 1: waveform
 - Shows intensity variation over time (relative scale)
 - Listen to file below for verse "بسم الله الرحين الرحيم"



Cont. The Nature of Speech

- Cont. Depicting Speech
 - Method 2: spectrum
 - Shows for given phoneme / word: intensity of various frequencies in that sound sample (see right)
 - Which freq. has highest intensity in shown figure?
 - Method 3: sound spectrogram
 - Frequency: vertical scale
 - Time: horizontal scale
 - Intensity: degree of darkness on plot (see right)

Cont. The Nature of Speech


- Intensity of Speech (AKA "Speech Power")
 - Variation among phonemes
 - Vowels speech power » consonants
 - e.g. *a* in "*talk*" has speech power: 680 times > *th* in *then* (i.e 28 dB difference)

ecibels

- Variation among speech types
 - conversational speech: 45–55 dBA*
 - Telephone/lecture speech: 65 dBA
 - Loud speech: 75 dBA
 - Shouting: 85 dBA

women (see right)

- Variation: Male & Female[®]
 - Male > female by 3-5 dB (in general)
 Men in lower freq. has higher intensity than

Criteria for Evaluating Speech

- Speech Intelligibility
 - Defⁿ: "degree/percentage to which a speech message (e.g. group of words) is *correctly* recognized"
 - This's major criterion for evaluating speech
 - Assessment of speech intelligibility:
 - Either repeating back read material
 - Or answering questions regarding material
 - Speech Intelligibility tests:
 - Nonsense syllables (e.g. un, us, mus, sub, sud, ...)
 - these have least intelligibility
 - Phonetically balanced (PB) word lists
 - Nonsense syllables < words Intelligibility < sentences
 - Complete sentences

- These have highest intelligibility, even when some words are not recognized (i.e. depends on context)
- e.g. "Did you go to the store" may sound as "Dijoo ..."

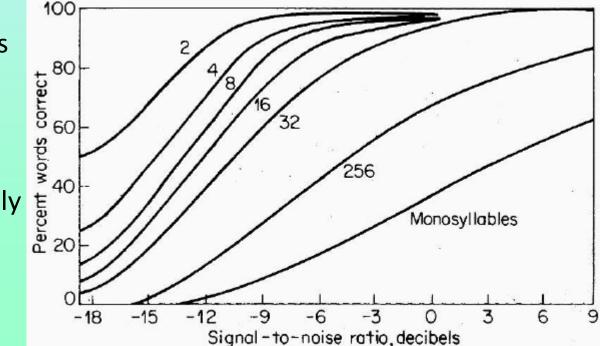
Cont. Criteria for Evaluating Speech Speech Quality

- Another criterion for evaluating speech
- May be important in identifying a specific speaker e.g. on phone (i.e. absolute identification)
- Also important to choose bet. different products e.g. speaker phone on home phones, mobile phones
- Assessment of speech quality
 - Usually done using rating system
 - e.g. people listen to speech and asked to rate quality: excellent, fair, poor, unacceptable, etc.
 - May also be done by comparing to some standard speech quality

Components of Speech Communication Systems

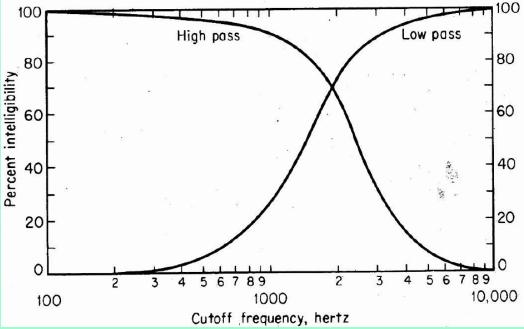
- Components
 - 1. Speaker
 - 2. Message
 - 3. Transmission System
 - 4. Noise Environment
 - 5. Hearer
- Discussed here in terms of
 - Effects on intelligibility of speech communications
 - Methods to improve intelligibility of system

1. Speaker


- Intelligibility of speaker usu. called "enunciation"
- Research found higher intelligibility is caused by:
 - Longer syllable duration
 - Speaking with high intensity
 - Making use of speech time with spoken words and little pauses
 - Variation of speech frequencies
- Differences bet. Intelligibilities generate from:
 - Structure of articulators (sound-producing organs)
 - Speech habits that people acquire
 - Speech training may improve speech intelligibility (but not very much)

- 2. Message
- Affected by: phonemes used, words, context
 - Phoneme Confusions
 - Some speech sounds more easily confused than others
 - e.g. letters in each group (consonants) can be confused with each other: DVPBGCET, FXSH, KJA, MN
 - Avoid using single letters in presence of noise
 - Word Characteristics: for higher intelligibility use:
 - More familiar words
 - Longer words: for longer words even if part of word is dropped, rest can still be figured out
 - e.g. "word-spelling" alphabet: alpha, bravo, charlie, delta, ... instead of A, B, C, D

- 2. Cont. Message
 - Context features: for higher intelligibility use:
 - Sentences (rather than words)
 - Meaningful sentences (rather than non-sense phrases)
 - e.g. "This book is great" rather than "is great book this"
 - Less vocabulary (words) in the presence of noise
 - More words with noise \Rightarrow less intelligibility (see below)
 - Note, -ve SNR means noise is more intense than signal
 - Also note, monosyllable: words with only one syllable (e.g. hit, ant, cube, fish)

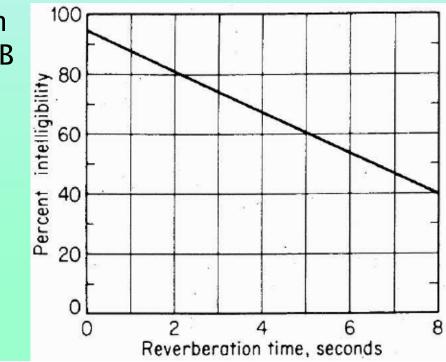


- 3. Transmission System
- Transmission Systems
 - Natural: air
 - Artificial: telephone, radio, etc.
- Artificial systems cause distortions, e.g.
 - Frequency distortion
- Frequency distortion
 Amplitude distortion
 Filtering

 Low-pass filter:
 eliminates freq.

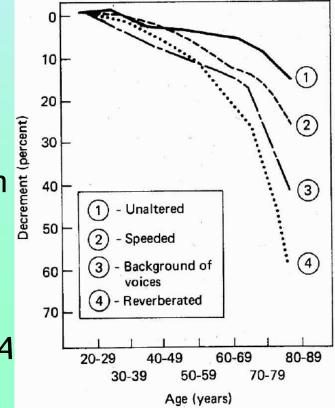
 above some level
 - High-pass filter: eliminates freq. **Below level**

• Filtering: freq. > 4000 Hz, < 600 Hz: little effect on intelligibility; but how about > 1000 Hz, < 3000 Hz? 16



- 4. Noise Environment
 - causes biggest harm to speech intelligibility
 - **SNR** (signal to noise ratio):
 - Simplest way to evaluate impact of noise on intelligibility
 - Study: for noise level of 35–100 dB ⇒ SNR = 12 dB for threshold of intelligibility (what to do for loud noise?)
 - However, SNR does not take frequency into consideration (only intensity)
 - Other measures (taking freq. into consideration):
 - Articulation index (AI): a measure (0-1) of speech intelligibility while knowing the noise environment
 - Preferred-octave speech interference level (PSIL): rough measure of effect of noise on speech reception

 Preferred noise criteria (PNC) curves: suggest acceptable noise level for different work environments (e.g. offices)


- 4. Cont. Noise Environment
 - Reverberation:
 - Bouncing effect of noise from walls, floor, ceiling in a closed room
 - Greatly decreases speech intelligibility (e.g. classrooms)
 - In general, the longer the reverberation time, the more the speech intelligibility decreases
 - Examine the linear relation (right) for decaying a 60 dB noise

5. Hearer

- To receive speech under noise: hearer should
 - Have normal hearing
 - Be trained to receive messages
 - Be able to withstand stress of situation
- Age
 - Also affects speech reception (i.e. intelligibility); see right
 - 20-29 age group: base level
 - Note, unaltered speech: 120 wpm
 vs. speeded speech: 300 wpm
- Hearing protection
- Ring Saub Rimits 1957 7 5
- Prevents hearing loss
- May improve SI for noise >80 dBA
- Decreases SI for noise <80 dBA</p>

References

 Human Factors in Engineering and Design. Mark S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.

