First midterm exam of Chem 336

Date: 04/11/2025 - Allowed time: 90 minutes

Answer all the following questions and be sure to give <u>at least 3 significant figures</u> for any numerical answer and the <u>appropriate unit</u>.

- 1. We mixed 109.0 mL of pure ethanol (0.789 g/mL) with 80.8 mL of pure water (0.998 g/mL) at room temperature (25 °C). Calculate **for the ethanol** in this solution:
 - a) The percentage by volume.
 - b) The percentage by mass.
 - c) The mole fraction (X_{eth}).
 - d) The total volume of the solution by using the partial molar volumes of ethanol and water given below.

X _{eth}	0)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
V _{eth} / mL mo) ⁻¹		53.1	55.36	56.4	57.1	57.5	57.87	58.1	58.3	58.5	58.63
V _{wat} / mL mo	ol ⁻¹ 1	8.07	18.11	17.67	17.3	17.01	16.8	16.21	15.9	15.75	15.7	

- 2. At 25 °C, the density of a 52.3 per cent by mass ethanol—water solution is 945 kg m⁻³. Given that the partial molar volume of water in the solution is 17.3 cm³ mol⁻¹, calculate the partial molar volume of the ethanol.
- 3. The total volume (in \mathbf{cm}^3) of a liquid solution of A in B is expressed as function of the number of moles of A (\mathbf{x}) by the following equation:

$$V_T = 32 + 3.5 x + 0.75 x^2$$

Given that the number of moles of A and B are 1.5 mol and 3.5 mol respectively, what are the partial molar volumes of A and B?

- 4. A container is divided into two equal compartments. One contains 4.5 mol $H_2(g)$ at 25°C; the other contains 1.5 mol $N_2(g)$ at 25°C. Calculate $\Delta_{mix}G$ and $\Delta_{mix}S$ when the partition is removed. Assume perfect behavior.
- 5. We mixed 3.7 mol of *A* and 2.7 mol of *B* at 25 °C. Given that the total Gibbs free energy of this mixture is expressed as below:

 $G_T = 3.5 + 0.45 \text{ n} + 0.15 \text{ n}^2$, where **n** is the number of moles of **B**.

Calculate:

- a) the total Gibbs free energy of this mixture,
- b) the chemical potential of B at 25 °C in this mixture,
- c) the chemical potential of A at 25 °C in this mixture.