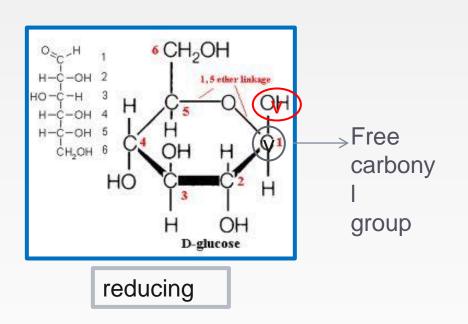
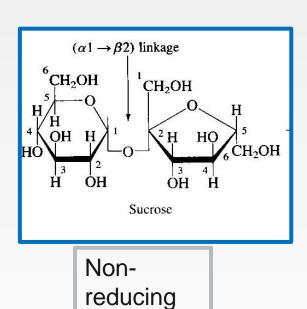

Estimation of reducing sugars by dinitrosalicylic acid method

- Determining the sugar concentration of food samples is very important especially in industries where quality control is monitored.
- There are different method for sugar estimation, such as pheno-sulfuric acid method, somogyi Nelson method, dinitrosalicalic acid method.

Carbohydrate in milk

The major constituents of milk are <u>lactose</u>, fats and proteins.

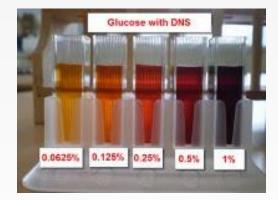




- The determination of lactose in dairy product is important and there are many methods are available.
- Theses methods are based on the assumption that lactose is the only reducing sugars in milk.
- In this experiment, DNS method will be used.

DNS method

- The DNS method for estimating the concentration of reducing sugars in a sample
- Reducing sugars contain free carbonyl group, have the property to reduce many of the reagents.
- All monosaccaride and some disaccaride are reducing sugars



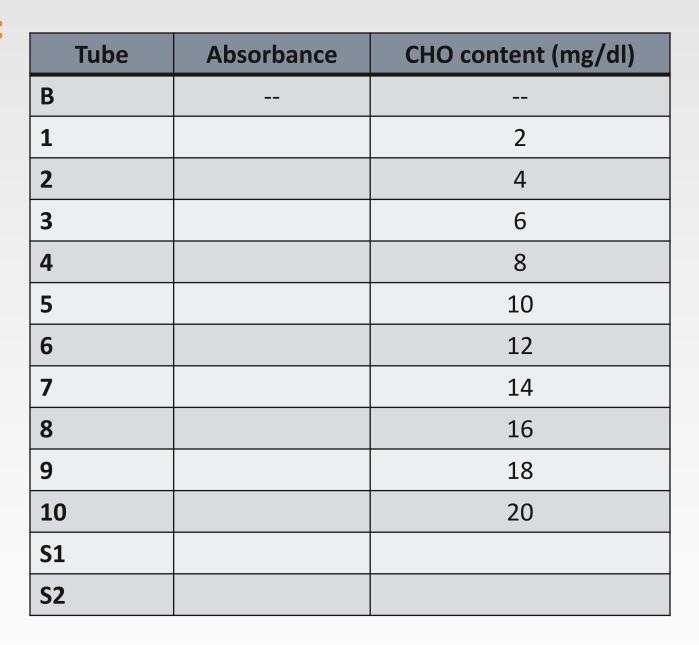
Principle

• When alkaline solution of 3,5-dinitrosalicylic acid reacts with reducing sugars(eg. Glucose, lactose..) it is converted into 3-amino-5-nitrosalicylic acid with orange color.

Intensity of the colour is an index of reducing sugar.

Objective

Estimation of reducing sugars by dinitrosalicylic acid method in milk sample


Method

	Glucose solution	sample	water	DNS reagent		Soduim potasui m tartarate
В			1	3	Cover the tubes (with aluminui m foil) And heat for 5 min. in a boiling water bath	1
1	0.1		0.9	3		1
2	0.2		0.8	3		1
3	0.3		0.7	3		1
4	0.4		0.6	3		1
5	0.5		0.5	3		1
6	0.6	-	0.4	3		1
7	0.7		0.3	3		1
8	0.8	-	0.2	3		1
9	0.9		0.1	3		1
10	1			3		1
S1		0.4	0.6	3		1
S2		0.6	0.4	3		1

Method

- Mix the contents.
- Cool by immersing in cold water and read <u>at 510</u> nm.
- Plot the standard curve and calculate the amount in the sample from standard curve and calculate the contents.

Result:

- Calculation:

- The amount of carbohydrate in 1 gram of sample= -----mg/dl x dilution factor x 100
- Normal range= 4-5 gm